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1 Introduction

Several authors have written about the history of point processes. For example, Daley and
Vere-Jones (2008) devote a chapter to it, in which they distinguish between two strands
of history: life tables and counting problems. Cox and Isham (1980) provide a variety of
historical remarks in their Bibliographic notes at the end of each chapter. Peter Diggle, in
Chapter 1 of Gelfand et al. (2010), gives a brief historical outline of spatial point processes,
in the context of general spatial models. Kallenberg (1983) makes some historical remarks
at the end of his book. Lewis (1972) laments the variety of nomenclature used in the point
process literature. Things have not really improved since then.

In this paper we will go into a little more detail about some of the original contribu-
tions, and add new aspects of the history of point processes. We first discuss the Poisson
process, tracing some of the early uses of it and searching for who first named it. The
history of cluster processes goes back to 1939, while doubly stochastic processes can be
traced back at least to 1938. Markov point processes are nowadays almost exclusively
used in the sense of Ripley and Kelly, but we also describe some earlier attempt to extend
the Markov property to the plane and their consequences for point process theory. For
length reasons, we leave out the important topics of multivariate and marked processes.

2 The Poisson process

The Poisson process is characterized by the distribution of the number of points in a
bounded Borel set B being Poisson with mean Λ(B), where Λ is a non-atomic finite mea-
sure (Rényi, 1967). It follows that the number of points in disjoint sets are independent.
In fact, it suffices to look at the zero probability function, i.e., the probability of no points
in the set B (Daley and Vere-Jones, 2008). A crucial property of the homogeneous Pois-
son process, having Λ(B) = λ|B|, is that given the number of points in a set, they are
uniformly distributed over the set. This is the property most often used in the earliest ap-
plications of this process. For Poisson’s contribution to the distribution, see Stigler (1982),
and for a historical overview, see Chapter 9 of Haight (1967).

2.1 Some astronomy
The earliest use of a Poisson process that we are aware of is a paper by Michell (1767),
over a decade before Poisson was born (see Todhunter (1965), pp. 332-335). The paper
examines

what it is probable would have been the least apparent distance of any two or more stars,
any where in the whole heavens, upon the supposition that they had been scattered by
mere chance, as it might happen.

More precisely, what is the probability that any particular star should happen to be within
one degree of another star? The probability is the ratio of a square degree to the surface
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area of the sphere, or 1/13131.25. Subtracting this number from 1, and raising it to the
power n of the number of stars of not less brightness than those in question, gives the
probability that none of the n stars is within one degree of the given star.

Michell takes as an example the six brightest stars in the Pleiades, there being about 1500
stars “equal in splendor to the faintest of these”, i.e. of similar or larger apparent bright-
ness. Starting from the star Maya, the five other stars (Taygeta, Electra, Merope, Alcyone
and Atlas), are respectively at distances of 11, 19.5,24.5, 27 and 49 arc minutes from Maia.
He then computes the probabilities that no star out of 1500 scattered at random would be
within these distances of Maia. These are .998173, .988018, .982506, .977148 and .926766,
respectively. Subtracting each of these from 1 yields the respective probabilities that “such
stars would be found within the distances above specified from the star Maya”, and he
now multiplies these together, “to determine the probability that these events should all
take place at the same time”, and finally multiplies by 1500 “to find the probability, that
it should not have happened any where in the whole heavens” (he probably means the
probability that it should have happened somewhere), which is about 1 in 496 000.

Multiplying the five probabilities together is an error, as the spheres are not disjoint. If
one instead calculates the probabilities of one star in each of the spherical shells, and oth-
erwise proceeds as did Michell, the answer becomes 1 in 14 509 269. Michell’s conclusion
is that stars are not scattered by mere chance, but rather that there is some cause for this.
Newcomb (1860) points out that Michell’s resulting probability was too high, but takes a
different approach to calculating the probability, “to be used in so many more problems”.
He derives the Poisson distribution as the binomial approximation for large n and small
p (there is no mention of any earlier work), shows that it is a distribution, and applies it
to calculating the probability of seeing six stars in a square degree, which he finds to be 1
in 7 790 638. Perhaps we would be inclined to compute the probability of finding at least
six stars in a square degree, which in this case is 1 in 7 831 614. Stigler (1982) considers
this the first application of the Poisson distribution to data. Pólya (1919) calculates the
average nearest neighbor distance for uniformly scattered stars, with no reference to any
earlier calculations.

Seidel (1876) posed the following elementary probability problem:

An event A can occur in an unlimited, or in a very large and not known, number
of instances which are mutually independent and all equally possible; we denote the
probabilities (assumed finite and not close to one) that it does not occur, occur precisely
once, precisely twice, etc., by y0, y1, y2... One of these numbers are given; how do we
determine the other?

As an example, Seidel mentions the number of comets with luminosity exceeding a min-
imum value that are seen in a year. He computes the Poisson approximation to the bino-
mial for p = λ/N , and notes that if the events occur in a given time interval or set, the
probability corresponding to a three-fold increase in the time interval or set will be of the
same form, but with a λ which is three times larger. Given that on average over several
years there are 6.9 comet sightings per year, then the case where we observe 6 sightings
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is more likely than observing 7 by a factor of 7:6.9.

Seidel only refers to Bernoulli’s work, and not in detail. However, it would not be sur-
prising if he was aware of the work of Clausius described in the next section. They both
entered University of Berlin in 1840 as students of Dirichlet (O’Connor and Robertson,
2000a,b).

2.2 The kinetic theory of heat
At the beginning of the 19th century, heat was considered a weight-less substance, caloric,
which permeated different pieces of matter in differing degrees depending on their tem-
perature. Among the eminent scientists of the day espousing this point of view were
Carnot, Laplace and Poisson. In the middle of the nineteenth century a different idea
started to emerge, espoused above all by Krönig, Clausius, Joule and Maxwell. Instead of
assuming the presence of a caloric, they advocated a kinetic theory, saying that heat only
was movement of molecules, and consequent collisions with other molecules or the sides
of the container. This explained the gas laws, relating temperature, pressure and volume,
in a very simple fashion, and had actually been suggested by Daniel Bernoulli a century
earlier (Brush (2003) is the source for the description in this paragraph).

The simplest kinetic theory assumed that molecules move with constant velocities and
direction until they collide with another molecule or the side of the vessel containing the
substance. This was criticized (e.g., by Buijs-Bullet (1858)) on the grounds that this theory
would imply that two gases would mix rapidly, in contrast to observations. For example,
when food is brought into a room, if molecules are moving rapidly in straight lines, the
smell ought to reach each part of the room nearly simultaneously, which it of course does
not. In order to explain this phenomenon, Clausius (1858) set out to calculate the mean
distance between collisions. If a molecule tends to collide fairly quickly with another
molecule, instead of moving a long distance in a straight line, the criticism would be
rendered invalid.

His assumptions are set out in an earlier paper about the kinetic theory (Clausius, 1857).
They include (a) the space actually filled with molecules of gas is infinitesimal compared
with the whole space occupied by the gas; (b) the duration of an impact is infinitesimal
compared to the interval between two successive collisions; and (c) the influence of the
molecular forces is infinitesimal.

The third assumption can be interpreted to require that the portion of the path for which
molecular forces are changing the motion of a molecule must be infinitesimal compared
to the portion where such forces can be considered inactive. However, since the theory
is based upon molecular forces being active only at very small distances, a path which is
long in comparison to the sphere of influence of a molecule may yet, in absolute terms,
be very small. Clausius now attempts to compute “How far on average can the molecule
move, before its center of gravity comes into the sphere of influence of another molecule.”
If this average distance is small, most molecules will not be able to travel very far before
they collide with another or at least have their path bend, and consequently gases will
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not mix very rapidly.

In order to compute this mean free path of a molecule, Clausius first argues that the mean
free path among moving molecules is no greater than among stationary ones, and so
proceeds to discuss the case where only one molecule moves and all other are stationary
(the mean free length is then reduced by 3/4 compared to the case where all the molecules
are moving with the same velocity). He now makes the crucial assumption that

there is a space containing a great number of molecules, and that these are not regularly
arranged, the only condition being that the density is the same throughout, i.e., in equal
parts of the space there are the same number of molecules.

Later text seems to indicate that what Clausius means is really that the average numbers
of molecules are the same in equal parts of the space. The space is now divided into
parallel layers perpendicular to the direction of movement of the single molecule, and
the probability that the molecule freely passes through a layer of thickness x is ax, where
a is the probability of free passage through a layer of unit thickness. This, of course,
subsumes independence between occurrences in different layers. He sets α = − log a
to get the probability e−αx, the zero probability of a Poisson process, probably the first
derivation of this quantity, which will be rediscovered repeatedly.

The reference to this work is given in several places, such as Cox and Isham (1980) and
Gelfand et al. (2010). In Daley and Vere-Jones (2008) a reference is instead given to Boltz-
mann (1868), a reference originating from Haight (1967), which however appears to be
incorrect. The Boltzmann paper derives the asymptotic distribution of the maximum of
uniform random variables.

2.3 The distribution of blood cells over a microscope slide
Abbe (1879) describes a new instrument, designed by C. Zeiss, to count the number of
blood cells in a sample. He is interested in the reliability of the instrument. Abbe is study-
ing the variability about the mean number n of blood cells in a defined region, and uses
the Poisson distribution to describe it. He says

this rule can similarly be used whether the situation is a random spatial distribution of
counts, as in this case, or the counts are distributed in time. ... Its validity is based on
the assumption that n is small compared to the square root of the number corresponding
to the largest possible value in the set of possible numbers, and also, if it concerns spatial
counts, the mean number in the volume is only a small fraction of the square root of the
number that would completely fill this volume.

Abbe does not mention the independence between counts in disjoint sets, and does not
give an argument for the Poisson distribution of counts, although he determines that it is
a proper distribution.

Student (W. S. Gosset) (1907) studies a similar problem (yeast cells rather than blood
cells), and, after deriving the marginal Poisson distribution of counts in a square, remarks
“In applying this to actual cases it must be noted that we have not taken into account any
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"interference" between the particles; there has been supposed the same chance of a parti-
cle falling on an area which already has several particles as on one altogether unoccupied.
Clearly ifm [the average number of cells per square] be large this will not be the case, but
with the dilutions usually employed this is not of any importance.” He then proceeds to
estimate the correlation between each square and its four nearest neighbors, which in his
material is very close to 0.

2.4 Insurance mathematics and approximations
In a 1903 dissertation at the University of Uppsala in Sweden, Filip Lundberg (Lundberg,
1903) lays the foundations to what would later become the Stockholm school of insurance
mathematics. He introduces the concept of a continuous risk, characterized by being a
sum of independent partial risks, or risk elements. Each of the risk elements is associated
with a risk sum ai and a risk coefficient pi′ in such a fashion that during a time element
dt there are two possibilities, (a) the risk sum ai comes due with probability dpi = pi

′; or
(b) the risk sum ai does not come due with probability 1− dpi.

Lundberg is interested in the distribution of the total risk x =
∑

i aimi where the mi are
non-negative integers. Writing f(x) for the density of x, he derives a variational equation

δf(x) =
∫

(f(x− a)− f(x))δp(a)da (1)

where δp(a) = pi when a = ai. In the special case where all the ai are equal to a unit
value, writing P =

∫
p(a)da =

∑
aipi, we see that

∂f(x, P )
∂P

= f(x− 1, P )− f(x, P ) (2)

This is the forward equation for the Poisson process, later derived (as a special case)
by Kolmogorov (1931) in his fundamental paper on Markov processes. When the ai are
different, the resulting process is a compound Poisson process (Cramér (1969) describes
Lundberg’s work and puts it in the context of modern insurance mathematics).

2.5 Telephones, earthquakes, and radioactive decay
In 1909, the Danish telephone engineer A. K. Erlang published some probability calcula-
tions (Erlang, 1909) relating to telephone processes. In the paper he develops the Poisson
distribution for the number of incoming calls to an exchange in a given period of time,
discusses briefly the possibility of temporally non-homogeneous processes, and outlines
the first example of aM/M/1 queue. The paper does not give many references, but Erlang
describes how the Director of the Copenhagen Telephone Company, Mr. F. Johannsen,
has been using probability methods in solving many practical problems, and set others
to work on similar investigations.

Whitworth (1886) also calculates the zero probability function for a Poisson process on the
positive half line, and mentions an application to earthquakes. He clearly considers this
his own invention. von Schweider (1905) quotes the “well-known free path distribution”
and deduces the standard error of the average alpha particle count in a fixed time interval
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based on the Poisson distribution. Bateman, in his Note following Rutherford and Geiger
(1910), refers to both Whitworth’s and von Schweider’s results, and derives the forward
equations for the transition probabilities in the same fashion as Lundberg (1903). The
paper by Rutherford and Geiger deals with the counts of alpha particles in 1/8 minute
intervals.

2.6 Where did the name come from?
From a mathematical point of view, the Poisson process was invented by Filip Lundberg
(Haight (1967) only indirectly mentions Lundberg, and mistakenly ascribes the deriva-
tion of the forward equations to Charlier (1905), who derives the Poisson distribution in
his B-series approximation, but does not deal with temporal or spatial developments).
But who came up with the name? Lundberg’s dissertation (as well as his subsequent
work) does not name the process. Like de Finetti (1929), Kolmogorov (1931) and Lévy
(1939), he just notes that the marginal distribution is Poisson. Fry (1928), in his excel-
lent book on engineering uses of probability, uses the term “Poisson law” in two senses:
as the probability distribution, and as the process, but does not seem to need to distin-
guish the senses. Khinchin (1933) also develops the Poisson process, which he calls “the
elementary discontinuous process”, while Doob (1937) calls it “the time series with Pois-
son distribution”. Wiener (1938) associates a stochastic process in his harmonic analysis
framework with the name Poisson, when he develops the “discrete or Poisson chaos”,
establishing that a linear resonator set in motion by Poisson chaos has the same spectrum
as the response to a single impulse.

On the other hand, Feller (1940) uses the name Poisson process as if it were well-known,
and Ove Lundberg’s dissertation the same year (Lundberg, 1940) does the same. The
name may have been in common use in Stockholm (where Feller worked 1934-1939 and
Lundberg was a PhD student), but not until after Cramér finished his book (Cramér,
1937) in 1936, since he also just notes the marginal Poisson distribution. In later editions
he uses the term Poisson process. Also, in his lecture (Feller, 1936) at the 1936 Interna-
tional Congress of Mathematicians in Oslo, Feller describes but does not name the Pois-
son process. Grimmet and Stirzaker (2001) say that Feller came up with the name “before
1940” which is consistent with our findings. Since neither Kolmogorov, Khintchin, nor
Doob use that nomenclature, it must not have been standard in the Soviet Union or in
the United States. In the British literature we have not found the terminology before 1947
in a book review by Kendall, while Lévy uses the term in a 1948 letter. It is likely that
the term was adopted by most participants at the first major meeting after World War
II, the Berkeley Symposium on Probability and Mathematical Statistics in 1945, where it
was used in lectures by Doob and Feller. The term point process originated with Connie
Palm in his 1943 dissertation (Palm, 1943). Eggenberger and Pólya (1923) may be the first
authors to use the spatial term point patterns, in discussing “die statistische Verteilung
von Punktgesamtheiten im Raume.”
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3 Cluster processes

A general cluster process is constructed from a primary process of cluster centers, each
point of which generates a secondary process of cluster points. The resulting superpo-
sition of points (which may or may not include the points from the primary process) is
a cluster process. Usual simplifying assumptions include the primary process being a
Poisson process (yielding a Poisson cluster process), the secondary processes being con-
ditionally independent of each other (yielding an independent cluster process) in which
case a general formula for the probability generating functional can be derived (Daley
and Vere-Jones, 2008, eq. 6.3.6). In what follows we shall, unless otherwise specified, as-
sume that the cluster processes considered are independent cluster processes.

3.1 Neyman-Scott Poisson cluster processes
Neyman (1939) describes a stochastic model for the location of potato beetle larvae on
a field. The structure is based on the beetle laying masses of eggs in random locations.
When the eggs hatch, the larvae can move independently away from the egg mass. In this
paper, Neyman mainly uses the structure to develop a family of over-dispersed (com-
pared to the Poisson distribution) discrete distributions, so-called contagious distribu-
tions, these being the marginal distributions of the numbers of eggs in a given part of the
field. Since it is a marginal distribution, it depends on the dispersion (larva movement)
only through an integral. The distribution of egg mass numbers is taken to be Poisson
or binomial in the paper (although a general formula is developed for the characteristic
function of the number of larvae in a given part of the field). It would be straightforward
to develop the joint distribution of numbers of larvae in disjoint parts of the field by re-
placing a binomial distribution by a multinomial in the calculation, but Neyman does not
do that.

The particular case where the egg mass sizes are Poisson distributed is studied by Thomas
(1949), without allowing any movement of larvae. It was not until Neyman and Scott ap-
plied the structure to clusters of galaxies that the actual location of the points, once they
are moved away from the cluster centers, were considered (Neyman and Scott, 1952). A
variety of researchers (e.g. Bartlett (1954); Skellam (1952); Thompson (1954, 1955)) have
worked out details about special cases. Frequently the Neyman-Scott approach is cited
using Neyman and Scott (1958), but this is not where the process was introduced, not
even in the context of galaxy models. The apparent clustering of galaxies is discussed
by many astronomers, such as Bok (1934), while the idea that galaxies are clustered in
reality, not just apparently, is suggested by Charlier (1922).

The independent and identically distributed distance of the secondary points from their
cluster center characterizes the Neyman-Scott cluster process structure. The name Thomas
process has been used in the literature for a Neyman-Scott Poisson cluster process with
Poisson cluster sizes and bivariate normal dispersion. As pointed out by Diggle et al.
(1976), this is a generalization of the distribution derived by Thomas, and they propose
the name generalized Thomas process. This Neyman-Scott Poisson cluster process (re-
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gardless of the dispersion distribution) is also a particular doubly stochastic Poisson pro-
cess, known as a shot noise process (Exercise 6.3.8 in Daley and Vere-Jones (2005)), and it
seems hardly necessary to give the process with normal dispersion a separate name.

3.2 Other dispersion or cluster size mechanisms
Bartlett (1963) in the context of traffic and Lewis (1964) in the context of computer failures
independently develop a Poisson cluster process in which the secondary processes are
renewal processes, now called a Bartlett-Lewis process. A straightforward generalization
to more than one dimension is to have the secondary processes be random walks.

There are no examples in the literature of secondary processes that are not independent
(Laslett (1978) mentions the possibility), although it is not difficult to think of some. For
example, in the linear case one could let the cluster sizes be determined by the value of a
birth-death-immigration process at the times of the primary points.

3.3 Non-Poisson cluster processes
There is really no particular reason (except mathematical convenience) to use a Poisson
process for the cluster centers. Neyman and Scott (1952) use a “quasi-uniform” distribu-
tion of cluster centers, which could be a Poisson process or a doubly stochastic Poisson
process. Neyman and Scott (1958) outline a hierarchy of kth order cluster processes, hav-
ing a k − 1th order cluster process as its primary process. Apparently clusters of galaxies
need at least a second order cluster process.

As discussed, e.g. by Le Cam (1960) and Kavvas and Delleur (1981), in modeling precip-
itation it would be natural to have cluster centers correspond to front systems, which,
since they are physically separated, would need an inhibitory mechanism (see e.g. Istok
and Boersma (1989)). A physical description of stratiform precipitation can be found in
Hobbs and Locatelli (1978).

Similarly, in modeling forests (such problems go at least back to Pólya (1918), describing
the longest line of visibility in a random forest), there is an apparent tendency for large
trees, even in virgin forests, to be less dispersed than what would be predicted by a Pois-
son process. On the other hand, processes of seed dispersal can create clusters of smaller
trees (e.g., Guttorp (1991), Rathbun and Cressie (1994) and Jalilian et al. (2011)).

4 Doubly stochastic processes

Le Cam (1947) uses the characteristic functional (originating with Kolmogorov (1935))
to analyze a precipitation model which is a Poisson process where the rate itself is a
random process. Such processes are called doubly stochastic Poisson processes. The name
was introduced by Bartlett (1963). Other names for the same process are the Quenouille
process (Brillinger, pers. comm.) after a spatial sampling paper (Quenouille, 1949) that
introduces the doubly stochastic mechanism, and the Cox process after Cox (1955), where
a piecewise constant rate function was suggested as a model for stops of a loom due to
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weft break. The latter name apparently was coined by Krickeberg (1972).

Commonly used particular cases of doubly stochastic Poisson processes are ones where
the rate process is expZt where Zt is a Gaussian process (called a log Gaussian Cox pro-
cess by the same misnomer as for the lognormal distribution) and one where the rate is a
shot noise process. The later is a linear filter of a Poisson process,Xt =

∫ t
−∞w(t−u)dN(u),

and was first considered by Campbell (1909). It is interesting that a doubly stochastic
Poisson process where the rate is a Poisson driven shot noise process is equivalent to a
Neyman-Scott Poisson cluster process with Poisson distributed cluster size distribution
and dispersion density proportional to w.

The Gauss-Poisson process, introduced by Newman (1970), is defined through its charac-
teristic functional, and determined by its first two factorial moments. It was proposed as
a generalization of a Poisson process that maintains invariance under superposition. Da-
ley and Vere-Jones (2005, Chapter 6) point out that this process is both a doubly stochastic
Poisson process and a Poisson cluster process of Bartlett-Lewis type. It also shares with
the Poisson process the fact that the property of first order stationarity is equivalent to
that of full stationarity (Milne and Westcott, 1972).

The first general characterization of doubly stochastic Poisson processes was given by
Mecke (1968) who defines the process through a mixture of Poisson process,

X =
∫
XλQ(dλ),

where Xλ is a Poisson process with intensity λ and Q is a probability measure on a
suitable σ-algebra of subsets of the set of all Radon measures λ. Let Dq denote an op-
erator that independently selects the occurrences of a point process X with probability
q, for example DqXλ = Xqλ, and let Π denote the set of all point processes such that
DqΠ = {DqX : X ∈ Π}. Mecke then shows that the set⋂

0<q<1

DqΠ

is the set of all doubly stochastic Poisson processes.

Matérn (1971) poses the question

...one may ask if it is possible to construct a doubly stochastic Poisson process with
a nontrivial variable density function in such a way that the numbers N(B) will be
distributed in the negative binomial distribution.

In his reply to the discussion of the same paper, Matérn notes that the number of points
in the bounded Borel set B, N(B), will have a negative binomial distribution if and only
if the random intensity measure has a gamma distribution. More generally, Diggle and
Milne (1983) investigate whether there exist spatial point processes with negative bino-
mial counts that are stationary, ergodic, and orderly. They consider two classes of pro-
cesses: doubly stochastic processes with a gamma distributed random intensity measure
and cluster processes with Poisson cluster centers, cluster sizes following a logarithmic
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distribution, and a degenerate dispersion process that places all the offsprings at the clus-
ter center. Under the assumption that the gamma measure is a completely random mea-
sure, Diggle and Milne (1983) show that a doubly stochastic process of the first type is
necessarily also in their second class of cluster processes.

We are not aware of any further examples of doubly stochastic non-Poisson processes,
although the processes determined by its conditional intensity (see section 6) can be
thought of that way.

5 Markovian processes

Three types of Markov properties for point processes appeared in the literature over a
period of three decades, from 1948 to 1977. The earliest approaches concern univariate
processes in time while each type has also been considered for spatial or, more gener-
ally, multivariate processes. Interestingly, the three properties define three disjoint model
classes.

5.1 Markov dependent interpoint intervals
It was Wold (1948, 1949) who first investigated a Markov property for point process mod-
els through his work on processes with interpoint intervals that form a Markov chain. He
thereby extends the arsenal of available models past the Poisson process and renewal
processes both of which appear as limiting cases in his framework. Let {Wj} denote the
process of interpoint intervals. Under Wold’s model, the intervals take the form of an m-
dependent Markov sequence such that the distribution ofWj+m given {Wi : i ≤ j+m−1}
does not depend on {Wj : i < j}. These processes are now called Wold processes. When
{Wj} is assumed to be stationary with m = 1, a marginal interval density f(·) for Wj and
a conditional interval density f(·|w) for Wj given Wj−1 = w define a Wold process if

f(v) =
∫ ∞

0
f(v|w)f(w)dw.

Wold analyzes this model in the case where the conditional density is an exponential
density with rate λ(w) = aw−1/2 and Cox (1955) considers λ(w) = a0 + a1w.

Lampard (1968) discusses a first order Wold process which is more tractable than Wold’s
and Cox’s models, and notes that it was being used in neurophysiological experiments.
Lampard’s process is a counter system with two counters, A and B, which input is a
pair of independent Poisson processes, Xup and Xdown, with different mean rates. At
time tj , counter A has Nj + r + 1 counts in it and is switched to receive pulses from
Xdown while counter B has zero counts and is switched to receive pulses from Xup. The
situation continues until counter A reaches zero at which time tj+1, an additional count
of r + 1 is added instantaneously to counter B for it to have Nj+1 + r + 1 counts in it.
The roles are then switched. Most statistical properties of this process can be obtained
in closed form (Lampard, 1968; Lee and Ong, 1986). However, the general intractability
of Wold processes is a limitation of the model framework. The three models mentioned
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here, and their statistical properties, are discussed in detail in Lawrence (1972), a more
recent overview and further examples are given in Daley and Vere-Jones (2005).

Several other models have been proposed that are strongly related to Wold processes. The
semi-Markov process is a model with k distinct distribution functions F1, . . . , Fk from
which the interpoint intervals may be drawn where the current distribution function is
selected according to a Markov chain. This process was proposed independently by Lévy
(1954a,b), Smith (1955) and Takács (1954). Its properties are discussed in Cox (1963), Cox
and Lewis (1966), Cox and Isham (1980), and Lawrence (1972). The semi-Markov process
has e.g. been applied to model spike trains recorded from nerve cells (Ekholm, 1972).
Moran (1967) proposes a point process where the interpoint intervals are a sequence of
independent pairs {Wj1,Wj2}which each have some bivariate distribution F . He in par-
ticular discusses the case when F is such that Wj1 and Wj2 are marginally exponentially
distributed with unit mean and their sum Wj = Wj1 + Wj2 has density λe−λ, see also
Cox and Isham (1980) and Lawrence (1972). Moran called his process a non-Markovian
quasi-Poisson process; it has since been called Moran’s process.

Isham (1977) extended this notion of Markovian dependency to higher dimensions. Here,
the finite point process Xn = {Xj}nj=1 is a Markov sequence of points in a subset of Rk

described through its spherical polar coordinates {n1/kRj ,Θj}, where Θj is a (k − 1)-
dimensional vector. The radial coordinates are rescaled such that the average density of
events in Xn is the same for all n. As a special case, Isham considers the case k = 2
where the radial coordinates are independent with πRj ∼ U([0, 1/λ]) while the angular
variables form a 1-dependent Markov sequence with

f(θj+1|θj) =
1

2π
[
1 + 2ρ cos(θj+1 − θj)

]
, |ρ| < 1

2

if j > 1 and θ1 uniformly distributed on [0, 2π). It then follows that Θj is marginally uni-
formly distributed over [0, 2π). The points in the process are thus marginally independent
and the process Xn converges to a Poisson process as n→∞.

5.2 Lévy’s Markov property
In 1948, Lévy defined a Markov property for processes on the real plane as follows: a
process Z is said to have the sharp Markov property with respect to a given set in the plane
if the σ-field generated by the values of the process on the set and the σ-field generated
by the values outside the set are conditionally independent given the σ-field generated
by the values on the boundary of the set (Lévy, 1948a). In a second paper that was pub-
lished together with the theory part, Lévy provides a handful of very specific examples
of processes fulfilling the sharp Markov property (Lévy, 1948b) and he concludes his the-
ory paper by asking “Do there exist nondegenerate two-parameter processes with the
sharp Markov property with respect to a sufficiently large class of sets?” (Merzbach and
Nualart, 1990)

In the point process setting, the process Z corresponds to the counting process associated
with a point process X . The first existence result for point processes is Carnal (1979)
and Carnal and Walsh (1991), who show that the Poisson sheet fulfills the sharp Markov
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property with respect to bounded relatively convex sets on the positive quadrant of the
real plane. The Poisson sheet is defined by Z(t) = N(Rt), where N denotes the counting
process for the unit Poisson point process on the positive quadrant of the plane and Rt =
(0, t] is a rectangle in this space. Later, Dalang and Walsh (1992) show that any two-
parameter process on the positive quadrant of the plane of independent increments with
no Gaussian part and where the map t 7→ Z(t) is continuous in probability satisfies the
sharp Markov property relative to all bounded sets. Merzbach and Nualart (1990) and
Russo (1984) have previously proved special cases of this result for smaller families of
sets. It follows from Theorem 2 in Wang (1981) that if a point process X (or its associated
counting process) fulfills the sharp Markov property, it is either a Poisson process or a
doubly stochastic Poisson process.

5.3 Ripley-Kelly Markov property
Markov point processes are nowadays usually considered to be the class of processes
that satisfy the spatial Markov property described by Ripley and Kelly (1977). Ripley and
Kelly’s Markov property is the point process analog of a Markov random field (Besag,
1974). Let ∼ denote a neighborhood relation on the set S on which the point process is
defined. A Markov point process is defined through properties of its density function.
The density f with respect to the unit rate Poisson process on S should satisfy the fol-
lowing: Whenever f(x) > 0, it holds for all ξ ∈ S \ x that f(x ∪ ξ)/f(x) depends only on
x through the neighbors of ξ, that is, points η ∈ x with η ∼ ξ. The Hammersley-Clifford
characterization offers an alternative representation (Ripley and Kelly, 1977), see also
Isham (1981). It states that the density function f is the density of an (orderly) Markov
point process if and only if there exists and interaction function ϕ such that

f(x) =
∏
y⊂x

ϕ(y), (3)

where an interaction function is a non-negative function such that ϕ(x) = 1 whenever
there exist ξ, η ∈ xwith ξ � η. These processes have been thoroughly studied in the recent
literature, see e.g. Daley and Vere-Jones (2008, Chapter 10), Møller and Waagepetersen
(2004, Chapter 6), and van Lieshout (2000).

Point processes whose densities fulfill Equation (3) are much older than their formal
characterization. The simplest nearest neighbor interaction potential is of the form v1(r≤R

where 0 ≤ v ≤ 1 measures the strength of inhibition for points within a radiusR (Strauss,
1975). Such processes occur also in statistical physics as model for large interacting parti-
cle systems and are in this context usually called Gibbs processes, see e.g. Preston (1976)
or Ruelle (1969). A brief overview of Markov point process models with their roots in
statistics is given in Daley and Vere-Jones (2008, Chapter 10) who also discuss extensions
of the Hammersley-Clifford characterization above.
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6 Intensity-based processes

A different way of constructing point process models on the positive half-line originated
with the idea of a random hazard function (Gaver, 1963). The idea led to the concept of
a conditional intensity function (Yashin, 1970), and the subsequent realization that the
conditional intensity determines a regular point process uniquely (Papangelou, 1972).
Among the important consequences is the possibility of writing down an explicit likeli-
hood, tools for simulating these processes through a random time change of a unit rate
Poisson process, and the consequent possibility of a residual analysis (Section 7.2 of Daley
and Vere-Jones (2005) describes much of this).

The first process defined through its conditional intensity was the self-exciting process
(Hawkes, 1971), but even Wold’s process of Markov intervals can be written in this form.
More generally, Aalen’s (Aalen, 1978; Andersen et al., 1993) work on multiplicative pro-
cesses originated in this idea.

On the line, doubly stochastic processes are of course defined through their conditional
intensity, given a σ-algebra generated by the history of the point process and of the pro-
cess determining the rate.

7 Concluding remarks

In this paper we have attempted to go through systematically the history of the main
classes of univariate unmarked point processes. We have rediscovered an early use of the
Poisson process, and a forgotten definition of Markov point processes. In addition, we
have traced the first use of some terms in the point process literature, including the term
itself, the names Poisson process and Cox process, and the term point pattern. Occasion-
ally some workers in the field of point processes may be a little surprised by some of the
first occurrences we have managed to document, but there is of course no guarantee that
there may not be an earlier instance in a literature we have not had access to.
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