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ABSTRACT 
Nation-wide forest cover change monitoring in countries the size of Tanzania needs to be based on 
automatic processing chains. Whenever new satellite images are available, they should be 
processed to provide updated estimates of deforestation, reforestation, forest degradation and 
regeneration.  This paper describes some of the methods that will be used in a Norwegian-funded 
project to enhance the measuring, reporting and verification of forests in Tanzania through the use 
of advanced remote sensing techniques. Landsat-5 TM and -7 ETM+ images provide the main 
source of satellite data, supplemented by SAR images to reduce the impact of cloud cover. The 
Norwegian Computing Center (NR) is responsible for developing methods for pre-processing of 
optical images and automatic forest change detection in time series of optical images. NR will also 
contribute in extending the change detection method to combine optical and SAR images in the 
time series. 

The pre-processing of optical images includes atmospheric correction, cloud and cloud shadow 
detection and masking, and co-registration and terrain height correction. Forest change detection 
is based on a hidden Markov model. In this context, “hidden” refers to the fact that the true land 
cover state for each location on the ground is unknown, but observations are available as a time 
series of satellite image pixels. Given the observations, the most probable sequence of ground 
cover states is determined. From this, forest state changes, say, from “forest” to “non-forest”, can 
be found to have occurred between two observations. Due to varying cloud cover across a scene, 
and missing pixels (SLC-off) in Landsat 7 due to sensor failure, the different pixels may have 
different time series of observations. The hidden Markov model automatically compensates for this. 
However, the accuracy will increase with more observations, so it is important to have access to a 
dense time series of past observations, and guaranteed access to future acquisitions at regular 
and relatively short time intervals. The upcoming Landsat-8 and Sentinel-2 optical satellites will be 
important in this respect. 

INTRODUCTION 
The Government of Norway has entered into a bilateral agreement with the Government of 
Tanzania on Climate and Forest. The overall goal of this agreement is to achieve reductions in 
greenhouse gas emissions from deforestation and forest degradation in Tanzania.  The 
introduction of a measuring, reporting and verification (MRV) system that meets the United Nations 
Framework Convention on Climate Change (UNFCCC) reporting requirements is a vital part of this 
agreement. 

Nation-wide forest cover change monitoring in countries the size of Tanzania needs to be based on 
automatic processing chains. Whenever new satellite images are available, they should be 
processed to provide updated estimates of deforestation, reforestation, forest degradation and 
regeneration.  This paper describes some of the methods that will be used in a Norwegian-funded 
project to enhance the measuring, reporting and verification of forests in Tanzania through the use 
of advanced remote sensing techniques. Landsat-5 TM and -7 ETM+ images provide the main 
source of satellite data, supplemented by SAR images to reduce the impact of cloud cover. The 
Norwegian Computing Center (NR) is responsible for developing methods for pre-processing of 
optical images and automatic forest change detection in time series of optical images. NR will also 
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contribute in extending the change detection method to combine optical and SAR images in the 
time series. 

One task in this project is to develop methods for improved atmospheric correction of high 
resolution optical images, for use in an operational setting, both for historical and current images. 
Ideally, one is interested in vegetation and ground surface reflectance, with all atmospheric effects 
eliminated, in order to be able to accurately monitor changes of vegetation on the ground. Further, 
it is desirable to be able to measure surface reflectance using different high resolution optical 
sensors. This requires sensor cross-calibration, or at least, that the differences between sensors 
are studied. 

Atmospheric correction to surface reflectance is not a trivial task, and many methods have been 
suggested (see, e.g., (1)). One popular atmospheric correction method is based on dark objects 
that are identified in the image, and used to estimate the aerosol optical thickness. The dark dense 
vegetation method by Kaufman et al. (2) is such a method, and was applied by the Landsat 
Ecosystem Disturbance Adaptive System (LEDAPS) (3). An alternative is to use images from other 
satellites to assist in the calibration of the Landsat images (see, e.g., (4)). The MODIS sensor on 
board the Terra satellite acquires images 45 minutes after the Landsat-5 TM sensor, and for the 
Landsat 7 ETM+-sensor, the time difference is 15 minutes. Some of the 36 MODIS bands are 
designed for atmospheric correction of water vapour, aerosols and haze, and could be utilized in 
atmospheric correction of Landsat  images as well, provided the conditions have not changed 
significantly (in a statistical sense) between the MODIS and Landsat acquisitions. MODIS has 
operated since 2000, so for pre-2000 Landsat scenes, MODIS cannot be used. One candidate 
instrument is ATSR-2, on board ERS-2, which has operated since 1995. Another candidate, 
AVHRR has operated since 1978. Both these instruments have only a few channels, and low 
resolution, so one may have to resort to a semi-automatic atmospheric correction procedure for 
pre-2000 Landsat scenes. The upcoming medium resolution Sentinel-3 has dedicated channels for 
atmospheric correction, so the MODIS-Landsat combination approach will give relevant experience 
on how Sentinel-3 can be used to improve atmospheric correction of high resolution images from 
Sentinel-2 and Landsat-8. 

For optical images, clouds and cloud shadows often obscure parts of the image. These need to be 
detected and labelled as missing data. This enables subsequent methods to make their own 
decisions about how missing data should be handled. Since a thermal band is included in the 
Landsat sensor, many good cloud detection algorithms have been proposed for Landsat images 
(5). However, robust detection of cloud shadows is not trivial, but good estimates may be obtained 
by using information about the cloud position and location of the Sun (6). 

There are a number of alternatives to handle missing data. One approach is to fill in missing image 
portions from previous acquisitions of the same area on the ground, either from the same satellite 
sensor or from another sensor.  Alternatively, one may design the subsequent 
classification/detection methods to handle missing data by using time series analysis. However, 
the particular strategy can be different in different systems, so the pre-processing methods should 
not make these decisions. The pre-processing step should only flag these areas as missing, 
preferably labelling the cause of the data being missing. 

An important design principle in this project is to use automatic processing of time series of satellite 
images. The motivation is that automatic (forest) land cover classification cannot be performed 
reliably on a single (cloud free) remotely sensed image for a number of reasons. Thus, an attempt 
at doing automatic change detection from two land cover maps of the same scene at two different 
dates is even less reliable, as the errors from the two classifications add up. Rather, a time series 
of many acquisitions of each scene is needed to account for the inherent variability due to 
seasonal (phenological) variations of ground cover reflectance, varying atmospheric disturbances, 
humidity on the ground, etc. In the time series analysis approach, the natural variations can be 
modelled, and distinct deviations from the expected natural variability will be flagged as changes. 
The time series analysis will then also be able to produce: 
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1. minimum cloud cover mosaics, adjusted to the correct phenological state for a given date; 

2. land cover classification,  

3. forest/non-forest map, and/or  

4. per cent tree cover.  

These single-date products will emerge as an output from the time series analysis, not the other 
way around. Single date products may be produced more accurately if one considers a time series 
of images and model the natural variation of the land cover and measurement noise.  

As a result, the pre-processing steps in this project are limited to steps that do not preclude 
subsequent time series analysis of the images. As a consequence, mosaicking or gap filling will not 
be part of the pre-processing. 

An important goal in the project is to provide methods to map forest areas and forest area changes 
on a yearly basis for the whole of Tanzania. For this purpose, the only available data source with 
full national coverage is satellite data. In addition, forest land cover and changes need to be 
established for historic data on five-year intervals from 1980 to date.  

The motivation for using time series of remote sensing images is to detect changes of vegetation 
with high degree of certainty (7). By using time series we may be able to discriminate between 
natural variability and changes caused by human activity, and eliminate seasonal variability. 
Trends can then be estimated with a higher degree of certainty. Time series have been used in the 
literature to increase the performance of land cover classification by including acquisitions from 
several phenological states. Aurdal et al. (8) and Leite et al. (9) used hidden Markov models to 
account for the phenological variation during a year, and thus increased the classification 
performance. Salberg (10) used a pixel level fusion approach on a stack of Landsat acquisitions to 
strengthen the classification results, assuming no changes of land cover between image 
acquisitions.  

An important first task is to study the natural variability of ground cover reflectance for different land 
cover classes. What is the natural variability, and how do the ground cover reflectance and the 
phenological states vary within the same geographical area and between different geographical 
areas? Such a study requires access to a large image database. 

The observed natural variability must be used to tune the time series analysis methods, which are 
used for change detection and production of single-date products. One approach is to identify 
areas on the ground that maintain the same land cover class through a number of image 
acquisitions, and use these to calibrate the time series analysis methods. Then the time series 
methods can adapt to the observed natural variability.   

As mentioned earlier, single date products can be produced as output from the time series 
analysis. This can be done by e.g. finding the optimal land cover sequence for each pixel using the 
Viterbi algorithm (11), or by finding the optimal land cover for a given date using the forward-
backward or BJCR-algorithm (12,13). Single date products include:  

1. land cover map, 

2. forest/non-forest map,  

3. per cent tree cover, and  

4. minimum cloud cover mosaic.  

Typically, one wishes to produce annual land cover maps, etc. For areas with phenological 
variations during one year (due to deciduous trees or otherwise), one can use a land cover product 
to predict the ground cover reflectance at any date, and produce a synthetic minimum cloud cover 
image mosaic for a specific date. 
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An expected outcome of this project is methods and systems for producing historic and current 
changes of forest areas in Tanzania, and for producing land cover maps, forest/non forest maps, 
per cent tree cover maps, and minimum cloud cover image mosaics. The goal is that these 
methods and systems can enable Tanzania to document historical and annual changes in forest 
areas, in accordance with the reporting guidelines of the UNFCCC. 

DATA AND METHODS 
In order to assess the suitability of the hidden Markov model, a small experiment is conducted on a 
time series of Landsat optical satellite images. 

Satellite data 
A stack of 14 Landsat TM L1T images (path 166, row 063) are being used, covering a 196 km x 
182 km area, half of which is ocean. The land area is a part of Tanzania, including the Nilo Forest 
Reserve in the south-western part of the image. The forest reserve contains intact tropical forest, 
but just outside of the reserve boundary there are areas with changing land cover. Five images are 
from 1985-1987, three images are from 1995, and six images are from 2008-2010 (Figure 1). The 
images are available from the U. S. Geological Survey (USGS) at http://earthexplorer.usgs.gov. All 
images are converted to top-of-the-atmosphere reflectance and level 1T terrain corrected. Upon 
visual inspection, all the images used in this study appear to be correctly geo-referenced and co-
registered to sub pixel accuracy. 

 
Figure 1. The Landsat images used in this study. 

 

We also have access to a Worldview-2 image from 4 March 2010 (Figure 2), provided free of 
charge by Digital Globe, Inc., as part of the Group on Earth Observations (GEO) Forest carbon 
Tracking (FCT) data acquisition for national demonstrators. The Worldview-2 image covers a small 
part of the Landsat image stack, including parts of the Nilo Forest Reserve (4.92 S latitude, 38.66 
E longitude). 
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Figure 2. The Worldview-2 image. Left: the entire image. Right: a small portion, approximately 900 
m x 600 m on the ground, covering open land with scattered trees and a part of the Nilo Forest 
Reserve, Tanzania. 

 

Time series analysis 
A hidden Markov model is used to model each location on the ground as being in one of four 
states: 

1. forest 

2. sparse forest 

3. grass 

4. soil 

The term ‘hidden’ refers to the fact that the true land cover class is not known. However, we have 
observations, in the form of sequences of Landsat image pixels for each 30 m x 30 m area on the 
ground (Figure 3). These observations are used by the time series analysis algorithm to predict the 
most probable sequence of states for each 30 m x 30 m area on the ground. From this, forest state 
changes, say, from “forest” to “sparse forest”, can be found to have occurred between two 
observations. This approach does not propagate errors, since the whole sequence of observations 
of a pixel is classified simultaneously. The current approach treats each pixel in isolation. 

The Landsat TM image data (band 1-5, and 7) are modelled using class dependent multivariate 
Gaussian probability density functions, and the parameters (mean vector and covariance matrix) 
are estimated from data corresponding to each of the classes. The training data is manually 
selected in two Landsat images (one from 6 October 1986 and one from 1 February 2010), guided 
by the very high resolution Worldview-2 image (Figure 2). 
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Figure 3. Principle of hidden Markov model. One area on the ground has a time series of hidden 
states, and each state may or may not have an associated observation. The hidden states are in 
grey, the observations are in green, and missing observations are indicated as dotted circles. 

 
Figure 4. State transition probabilities for a hidden state that has class 1 in the present time instant. 

 

The hidden Markov model is based on state or class transition probabilities (Figure 4). These need 
to be determined before we can classify the time series. These probabilities depend strongly on the 
application, and may be estimated from the data (14). The probabilities are designed to be 
dependent of the time interval between the two subsequent observations. At the moment, we have 
not estimated the transition probabilities from the data, but used time interval-dependent ad hoc 
values. For example,  

 
where the four classes are given in the following order: forest, sparse forest, grass and soil. 

Clouds and cloud shadows generally appear bright and dark, respectively, in the reflective bands. 
The cloud/shadow classification is performed using a support vector machine (SVM), with the C-
parameter equal to one, and the smoothing parameter estimated using Silverman’s mean 
integrated squared error method (15). Since cloud and cloud shadows are visually easily 
distinguished from vegetation, soil, etc., we assume that this classification task may be done with a 
very high accuracy. Pixels classified as clouds or cloud shadows are labelled as missing. 

To reduce the impact of atmospheric variations between the images in the time series, we use the 
following method (16). The two training images are used as a baseline for the class-dependent 
distributions for the multispectral pixel values.  For each of the remaining images and for each 
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class, the mean vector and covariance matrix of the class-dependent data distribution are adjusted 
such that the class mixture distribution possesses a good fit to the remaining images.  

The processing chain may be summarized as follows: First the Landsat TM images (band 1-5, and 
7) are converted to top-of-the-atmosphere (TOA) reflectance and the bands are stacked into one 
file. Then the SVM based cloud screening procedure is applied to the Landsat images. This 
procedure creates a mask corresponding to the pixels containing clouds or cloud shadows. The 
parameters corresponding to the class-dependent distributions are then re-trained for each image 
applied in the analysis. Now, the most likely or most probable state or class sequence Ω={ω1, 
ω2,… ωN} is found for each pixel in stack of Landsat images by solving for Ω that maximizes the 
likelihood  

 
using the efficient Viterbi algorithm (17). Here, P(xt|ωt) is the probability of observing the 
multispectral pixel value , given that the true state is . Each P(xt|ωt) distribution is estimated 
from the training data, assuming a multivariate Gaussian distribution. In practice, we have selected 
areas in the two images where no apparent change in land cover has taken place, and used the 
Worldview-2 image to locate specific areas of each class. The transition probabilities p(ωt|ωt-1)  are 
taken from the transition probability matrix of the specific time delay between t-1 and t.  

 
Figure 5. The most probable sequence at time t+1 for each state (e.g., forest) can be found by only 
considering the possible states at time t, since the most probable sequence of states for each state 
at time t is already known. 

The brute force method of finding the most probable sequence of states, given the observations, is 
to examine all KN (with K = number of classes = 4) possible sequences. However, the Viterbi 
algorithm is much faster than this, and works as follows. Let us assume that at time instant t, and 
for each of the K possible states, or classes, at a that specific time t, the most probable sequence 
of states leading to that specific state has been found. Then, the most probable sequence of states 
at time t+1 for state k at time t+1 can be found by comparing K expressions and selecting the 
maximum (Figure 5).  
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This determines the most probable sequence at time t+1 for arriving at this state at time t+1. At 
each time instant, K2 computations are done, giving a total of NK2 instead of KN computations. The 
state at t=0 is unknown, since the first observation is at t=1, so   

 
for all states k=1, …, K. p(ω1)is then the prior probability of each state, and we have used equal 
prior probabilities for all states, i.e. 

 

RESULTS 
The method is applied on the time series of 14 Landsat images, and a small portion is inspected 
and compared with the Worldview-2 image. The method is able to pick up changes in an area 
where, at least by visual inspection of the Landsat images, there seems to have been a change in 
land cover from forest to non-forest. However, there are areas in the Worldview-2 image (4 March 
2010) that appear as non-forest vegetation that are labeled as forest at the end of the time series 
(10 February 2010). E.g., see the 11 pixles ‘forest’ area in the land cover classification result of 10 
February 2010 (Figure 6), which appears as an area with low green vegetation and a single, 
central tree canopy in the Worldview-2 image. 

 
Figure 6. Result of land cover classification. Top row, from left: Landsat-5 images from 16 June 
1986, 17 February 1995, and 10 February 2010; Worldview-2 image from 4 March 2010. Bottom 
row, from left: land cover classification results from 16 June 1986, 17 February 1995, and 10 
February 2010. 

 

The land cover classification maps are based on the most probable sequence of states for each 
individual pixel (Figure 7). From these sequences, change maps are also produced (Figure 7), 
showing some small changes from forest to non-forest between 1985 and 1995, and a large area 
of change between 1985 and 2009. In the event of missing observations, typically due to cloud 
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cover, the previous states are kept (Figure 8). The final change map shows a non-forest area (grey 
and red pixels) that is clearly smaller than the non-forest area in the Worldview-2 image. 

 

 
Figure 7. The most probable sequence of states for a single pixel. 

 

 
Figure 8. Change maps, relative to 9 March 1985. White: forest, grey: non-forest, red: changed 
from forest to non-forest. For three of the dates, cloud cover resulted in missing observations. 
Bottom right: Worldview-2 image of the same area inserted for reference. 
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DISCUSSION AND CONCLUSIONS 

The purpose of the experiments was to get some indication of the suitability of a time series 
approach for forest change mapping, and to identify possible improvements. Many of these 
possible improvements will be addressed in the present project. 

The experiments demonstrate that the method is able to detect changes from forest to non-forest, 
but that the total forest area seems to be overestimated. This may be due to limited training and 
some model assumptions. First of all, a more rigorous training of the method needs to be done. We 
will get access to a land cover map, in the form of ESRI shape file polygons, that was created by 
visual inspection of Landsat images from around 1995. We also expect to get access to a land 
cover map, based on field inspection and Landsat images from 2010, that will be completed near 
the end of 2011. This will make automatic training of the method possible, based on Landsat 
images from 1995 and 2010 and the land cover polygons.  

Another potential improvement is better atmospheric correction. The current approach could be 
replaced by a more advanced method, e.g., by using the LEDAPS preprocessing tool to obtain 
ground surface reflectance (18). Further, the current cloud and cloud shadow detection method 
needs improvement.  

Clearly, there are details in the Worldview-2 image, like individual trees, that cannot be seen in the 
Landsat image. One cannot expect the method to capture details that are not visible in the Landsat 
images. On the other hand, very high resolution images from Quickbird and Worldview-2 reveal 
that many Landsat pixels are mixed pixels of tree canopies, soil, low vegetation, etc. Very high 
resolution images are essential to identify mixed and pure Landsat pixels for training and testing of 
the methods  

Due to varying cloud cover across a scene, and missing pixels (SLC-off) in Landsat 7 due to 
sensor failure, the different pixels may have different time series of observations. The hidden 
Markov model automatically compensates for this. However, the accuracy will increase with more 
observations, so it is important to have access to a dense time series of past observations, and 
guaranteed access to future acquisitions at regular and relatively short time intervals. The 
upcoming Landsat-8 and Sentinel-2 optical satellites will be important in this respect. 

We observe that many of the Landsat images in the time series used in this study are 
contaminated with clouds. To overcome this, the Landsat time series could be supplemented with 
synthetic aperture radar (SAR) images, since the radar signals can penetrate all but the thickest 
clouds. However, SAR images are more difficult to interpret than optical images. Also, SAR 
backscatter is affected by humidity on the ground cover, and, for short wavelengths like C-band 
and X-band, whether deciduous trees have leaves or not. Consequently, forest cover mapping is 
not expected to perform well on individual images, calling for time series analysis of repeated SAR 
acquisitions. The time series analysis is expected to produce more accurate change detection and 
land cover classification than the processing of individual images. Further, since SAR and optical 
sensors measure different qualities of the land cover, they provide complementary information. 

Thus, it can be expected that combining optical and SAR images will produce more accurate 
results than using only optical or only SAR. Several studies have confirmed this (e.g., see (19,20). 
The hidden Markov model approach is well suited for a mixture of optical and SAR observations 
(Figure 9). 

In conclusion, we have demonstrated that time series analysis of each pixel based on a hidden 
Markov model is a promising method for forest change mapping. The Viterbi algorithm is used to 
find the most likely sequence of land cover classes for each pixel. The hidden Markov model 
handles missing observations due to cloud cover. The proposed method needs to be improved, 
both by more thorough training and by estimating the state transition probabilities from the data. 
Also, better pre-processing methods for atmospheric correction and cloud and cloud shadow 
detection are needed. Further, to reduce the impact of cloud cover, the method could be extended 
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to accept a mixture of optical and SAR images in the time series. We plan to do all this within the 
project. 

 

 
Figure 9. Extension of the hidden Markov model to multi sensor observations. 
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