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1 Introduction

The main objective of the avalRS project is to provide the Norwegian Public Roads Authority
with avalanche inventories based on remote sensing data captured briefly after major avalanche
events. The service is to be demonstrated in specific service case areas defined on-the-fly (i.e.
depending on where major avalanche events will occur during the project phase) within the
mountains of South-, West- and Central Norway.

AvalRS aims at demonstrating that such a service is possible and that it will provide decision
support during avalanche-imposed road closures, and to help validate the issued avalanche
forecasts. Overview over the affected problem area, specifically the length of the avalanche-
affected road section and the volume of snow on the road, are essential for the authorities
during road closures.

The avalRS project is a joint project between the Norwegian Geotechnical Institute (prime
contractor), the Norwegian Computing Center (sub-contractor) and the Norwegian Public
Roads Authority (end-user). The project is funded by the ESA DUE (Data User Element)
Innovator II programme (Contract No. 22139/08/I-EC).

Each year, dry and wet snow avalanches hit populated areas and parts of the Norwegian
transport network in the mountain regions of Norway, leading to the loss of lives and the
damaging of buildings and infrastructure. When avalanches hit a road the goal of the
authorities is to reopen the road as fast as possible. To do this they must first obtain an
overview of the problem, specifically the length of the avalanche-affected road section and the
volume of snow on the road. Traditionally, this has been done by flying over the assumed
affected stretch of road with a helicopter. This method has the following two major drawbacks:
1) flight reconnaissance must be possible, i.e. the weather must permit good visibility and
relatively low wind speeds. After a snow storm it may typically take some time, often several
days, before such conditions are fulfilled, 2) a helicopter flight may give good information along
the (linear) flight path but does not give a good spatial cover age of an area.

Satellite based remote sensing may remedy these drawbacks and act as an additional source of
information for the road administration (NPRA) immediately after road closures.

In the literature, only the work by Biihler et al. (2009), has considered automatic detection of
avalanches using remote sensing data. Biihler et al. (2009) proposed a methodology for
automated detection and mapping of avalanche deposits in the Swiss Alps using optical aerial
imagery. A processing chain integrating directional, textural and spectral information was
proposed, and though certain limitations exist, encouraging detection and mapping accuracies
was reported.

We will also, as Biihler et al. (2009), apply texture as a feature for detection and mapping
avalanches, but our approach will be designed for high resolution satellite based imagery.
Texture has often been utilized to segment and classify objects in images (Fogel and Sagi, 1989;
Jain et al., 1997; Haralick et al., 1973; Varma and Zisserman, 2004). To detect and map the
avalanches, we demonstrate two different texture segmentation methods; one based on gray-
level co-occurrence matrices (Haralick et al., 1973) and one based on directional filters (Varma
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and Zisserman, 2004). In particular, for directional filters, we will utilize that the avalanche
textures are oriented in the same direction as the aspect of the terrain. Even if the texture
segmentation is efficient in order to detect potential avalanche segments, further processing is
necessary in order to reduce the number of false detections and to refine the avalanche
mappings. We therefore propose to extract shape and context features from the detected objects,
in addition to texture features, and perform an object based classification of the detected objects.
Such approach has been applied successfully in other projects NR has carried out on pattern
recognition in satellite data, including oil spill detection in radar images (Solberg et al., 2007)
detection of remains of cultural heritage in optical imagery (Trier et al., 2009) and detection of
vehicles in optical imagery (Larsen et al., 2009).
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2 The general approach

In other projects with similar type of challenges, i.e., automated object detection from satellite
images, we have obtained good results using an approach consisting of image segmentation
into objects, followed by feature extraction and classification (Figure 2-1). Examples include oil
spill detection in SAR images (Solberg et al., 2007), and detection of cultural heritage sites (Trier
et al., 2009) or vehicles (Larsen et al., 2009) in high-resolution optical images. We propose using
a similar approach for automated avalanche detection and mapping. Each processing step must
of course be adjusted to meet the requirements for object recognition of the specific type, here
the objects are avalanches.

satellite
image \
. image
—_
segmentation objects
mask

image/vector data l

feature
extraction

output/visualization of - feat
detected objects DE— — eature
vectors

of interest

Figure 2-1. Processing flow of the general approach.
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3 Experimental data set

Initially, two SPOT images were ordered from the Tyin area in central Norway. The images
were acquired February 12 and 15, 2008, about two weeks after several large avalanches were
released in the period of January 24-26. The pixel resolution of the images is 20 m. The images
were orthorectified using a digital elevation model (DEM) of 25 m resolution together with
manually selected ground control points. There are no weather stations on site, but the nearest
weather stations showed some snow fall in the first week of February. It was not possible to
visually detect the avalanches in the SPOT images, most likely because the resolution is too
coarse, although weather conditions between the event and image acquisition also seem to have
played a role. Further details on this are reported in the Service Demonstration Document of the
project (cf. Frauenfelder et al., 2010).

We have analyzed one QuickBird image from the Hellesylt area, also Central Norway, acquired
on April 16, 2005 (Figure 3-1), and one QuickBird image from the Dalsfjorden area, acquired on
April 3, 2005 (Figure 3-2). Several avalanches are visible in the images, which has a resolution of
0.6 m in the panchromatic band and 2.4 m in the multispectral bands (blue, green, red, and
near-infrared). The avalanche detection methods are developed on the Hellesylt image, and all
training data needed is also extracted from this image. The Dalsfjorden image is used as a
validation/demonstration image, in sense that all processing of the Dalsfjorden images is
performed using methods and training data extracted from the Hellesylt image.

10 m% Automatic detection of avalanches in high resolution satellite data



Figure 3-1. Panchromatic QuickBird image over the Hellesylt area. Avalanches are outlined in blue. Source: Norwegian
Geotechnical Institute

Automatic detection of avalanches in high resolution satellite data m% 11



Legend
Mapped avalanches
D depost

D path and deposit
[ patn

D release and path

Figure 3-2: Panchromatic QuickBird image over the Dalsfjorden area. Source: Norwegian Geotechnical Institute

For experiments, the Hellesylt image was orthorectified using a 15 m resolution DEM and
manually selected ground control points. We used the built-in ENVI function for
orthorectification. This tool also takes into account some sensor specific parameters. Slope and
aspect images with resolution corresponding to the panchromatic image were also calculated
based on the 15 m DEM. Orthorectification using a 25m resolution DEM were also investigated,
but the due to the high resolution of the Quickbird images the results were not sufficiently
accurate.

Forest and agriculture masks are extracted from a GIS vector layer (1:50’000) describing area

resource classes (AR50 data) provided by The Norwegian Forest and Landscape Institute
(Norsk institutt for skog og landskap).
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4 Segmentation of avalanche structures

Two different segmentation strategies have been tested: texture based segmentation and
segmentation based on directional filters. The two strategies will be described in Sections 4.1
and 4.2, respectively.

4.1 Texture based segmentation

Texture is one of the important characteristics that make it possible to visually discriminate
avalanche affected areas from non-affected areas in the image. Our first attempt is to use
textural measures for segmentation. This approach is inspired by Biihler et al. (2009), who
present a methodology for automated detection and mapping of avalanche deposits in the
Swiss Alps using optical aerial imagery. We will shortly summarize Biihler’s approach, before
we describe our work.

Biihler et al. first exclude regions not affect by avalanches based on three different criteria: 1)
The numerical simulation tool RAMMS (developed at WSL Institute for Snow and Avalanche
Research SLF in Switzerland), which predicts the potential area affected by avalanches, based
on automatic derivation of starting zones from digital elevation data. 2) Slopes with an
inclination (derived from a digital elevation model) of 35° or more are excluded, since it is
unlikely that an avalanche stops its flow within steep slopes, and their method aims to locate
avalanche deposits only. 3) Areas not covered by snow are excluded using spectral
thresholding. Next, they use the gray level co-occurrence matrix to compute textural measures
from the Normalized Difference Angle Index (NDAI), which is computed using
multidirectional, near-infrared (NIR) image data, more specifically, using nadir and backward
looking NIR bands. The entropy, which is one of the textural measures, is then thresholded to
extract rough snow surface areas, and an object-based classification approach is used to
separate avalanche deposits from other rough surfaces. The detected avalanches are separated
in three classes depending on their dimension.

As we are going to detect all avalanche affected areas, including starting zones, we do not want
to exclude steep slope regions. Nor do we exclude snow free areas based on spectral
thresholding, mainly because it is difficult to find an appropriate threshold in the Hellesylt
image, due to varying illumination conditions, shadows, etc.

We compute various textural features from the panchromatic image based on Haralick’s
approach (Haralick et al., 1973), using the gray-level co-occurrence matrix (GLCM). This matrix
describes the gray-level intensity variation between pixels located with a given direction and
distance with respect to each other. The distance and direction can be specified using offsets in
the x- and y-directions, i.e., (Ax, Ay). The gray levels must be quantized to L levels, say {1, ..., L}.
Given an MxN image I, the GLCM can be defined as the LxL-matrix Pax, 4y whose (i,j)’th entry is
given by

b ')—AZAJ N (L if I(p,q)=iand [(p+Ax,q+Ay) =]
axay ] _p=l g-1 |0, otherwise.

Equation 4-1. Gray-level co-occurrence matrix.
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Haralick et al. suggest a set of 28 textural features which can be extracted from the GLCM, one
of which is the entropy, defined as

_‘Z

L
i=1

L
2 plisj)log pli, j),
j=

Equation 4-2. Entropy.

where p is the normalized version of the GLCM, i.e., p(i,j) = P(i,j) / ( Li;j P(i,j) ). For many
applications, such as ours, it is natural to compute one GLCM for each pixel neighbourhood in
the image, since the image consists of many different textures. The textural features can then be
defined in each pixel using a GLCM computed in a neighbourhood centered at this pixel.

We compute eight different textural features over the image using the built-in ENVI function
for texture based co-occurrence filters, which is consistent with the Haralick-approach. These
eight features are: mean, variance, homogeneity, contrast, dissimilarity, entropy, second
moment, and correlation (cf. (Haralick et al., 1973) for the specific formulas). We experiment
with different values of Ax and Ay and different sizes (M,N) of the neighbourhood image for the
GLCM computations, and found that suitable values are M=N=9, Ax=1, and Ay=-1. For gray
level quantization, we apply the default value L=64. The small values of Ax and Ay indicate that
the texture information is contained in the neighbouring pixels of a given pixel.

For illustration of some of the features, the entropy and homogeneity images are shown in
Figure 4-1, and the correlation and variance images are shown in Figure 4-2. Note that the
entropy is well suited for extraction of avalanche affected areas (cf. avalanche outlines in Figure
3-1), as these areas have high entropy. Unfortunately, there are other areas with high entropy as
well. These areas correspond to sparse forest or areas with large intensity variations due to
material changes or shadows; see Figure 4-3 for some examples.

Before thresholding, we apply a forest mask, i.e., we exclude forested regions, as avalanches are
not likely to be present in dense forest. The entropy image is thresholded using the threshold

thigh entropy = [non-forest + 1.70'nonfurest,

where pnonforest is the mean entropy of the pixels not included in the forest mask, and guonforest is
the corresponding standard deviation. This threshold was found based on trial and error as a
compromise between not including too many non-avalanche pixels while at the same time
including as many avalanche pixels as possible. After thresholding (entropy image > thigh entropy)
we extract the high entropy segments, i.e., each connected set of foreground pixels. Segments
whose area is less than 1000 pixels (=360 m?) are discarded. However, this threshold was chosen
by inspecting a single Quickbird image. If more images are available, the threshold may need to
be adjusted.
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Figure 4-1. Entropy (left) and homogeneity (right). Dark areas correspond to low entropy and low homogeneity, whereas
light areas correspond to high entropy and high homogeneity.
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Figure 4-2. Correlation (left) and variance (right). Dark areas correspond to low correlation and low variance, whereas light
areas correspond to high correlation and high variance.
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Figure 4-3. Examples of high entropy areas. Both the upper images are extracted from avalanche affected regions. The
image below on the left is extracted from a sparse forest area, while the image below on the right is from an area with large
intensity variations due to material changes between dark stone and bright snow.

4.2 Avalanche segmentation using directional filters

Extracting textural features by convolving the image with a given filter is often applied in
texture segmentation and classification (see e.g., Varma and Zisserman, 2004; Fogel and Sagi,
1989; Bovik et al., 1990; Jain et al., 1997). Typically, a set of convolved images are created by
applying a bank of filters, each with given characteristics (e.g., scale, orientation, frequency,
etc.). Then each filtered image is combined into a multi-dimensional image, which is further
analyzed to stratify the image into segments with similar texture patterns.

The approach we apply is based on the work by Varma and Zisserman (2004). First we select a
set of region of interests (ROlIs), each corresponding to the following texture types or content
classes: avalanche, smooth snow, rugged snow, sparse trees, and rock. We do not select ROIs
corresponding to dense forest and agriculture areas since forest and agriculture masks are
available.

Automatic detection of avalanches in high resolution satellite data m%
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In the learning stage, each ROl is convolved with a filter bank to generate filter responses. The
filter responses corresponding to the same class are then clustered using a K-means clustering
algorithm, and the resulting cluster means are chosen as fextons (Figure 4-4). For each class, 10
textons are generated, resulting in a dictionary of a total of 50 textons. The corresponding
cluster covariances are also estimated, and each pixel in the training ROISs are labelled by
classifying each pixel to one of the textons using a maximum likelihood classifier based on a
Gaussian distribution. The histogram of texton frequencies is then used to form models
corresponding to the training ROIs (see Figure 4-5). To perform a segmentation or pixel
classification of the image we create a texton map of the whole image by classifying each pixel.
Then, for each pixel, we select a local neighbourhood, compute the texton histogram, and then
compare with the models learnt during training (Figure 4-6). A nearest neighbour classifier is
used and the y” statistic is employed to measure the distances. The histograms are normalized
to sum to unity.

Textons learnt from
other textures

Filter . -

The New
Oxford
Dictionary

Filter )
>

K-Means
Texton

Dictionary

7S ;‘;{\JZ Filter I -
i,
Multiple, unregistered Filter responses
images of the same
texture

Figure 4-4. Generating the texton dictionary. Figure taken from Varma and Zisserman (2004).
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Figure 4-5. Model generation. Figure is taken from Varma and Zisserman (2004).
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Figure 4-6. Model classification. Figure is taken fra Varma and Zisserman (2004).

The filter bank we apply is based on the so-called MRS filter bank (Varma and Zisserman, 2004).
The MRS filter bank (Figure 4-7) consists of 38 filters but only 8 filter responses. The shape of
the filters is determined by scale parameters, and the filters may be designed to enhance linear
structures. The filter bank contains filters at multiple orientations but their outputs are
“collapsed” by recording the maximum filter response across all orientations. An avalanche
typically results in a texture pattern that has linear structures in the same direction as the aspect
of the hill side. We have therefore modified the MRS filter bank approach by selecting the same
orientation of the filters as the aspect of the DEM. Furthermore, since trees and tree shadows are
oriented vertically in the image, we extend the MRS filter bank by including 6 filters with
vertical orientation. Hence, our resulting texture segmentation is based on a 14 dimensional
image. The scale parameters selected are (1.5, 3.0, 6.0) and (0.5, 1.0, 2.0) for the major and minor
axis of the directional filters. The scale parameter for the isotropic filters is 5.0.
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5 Feature extraction and classification

We will now sketch some ideas regarding features to extract and how to perform object based
classification in order to rule out marked objects with low confidence. The features and
methods we present are preliminary, as we have just started with this activity. However, some
test results are very promising.

5.1 Feature extraction
For each potential avalanche region from the segmentation module, several shape and context
based features may be extracted. We propose to investigate:

¢ Maximum object length in averaged aspect direction. We expect that an avalanche has
some extent in the aspect direction of the hill (Figure 5-1).

Aspect direction

Figure 5-1: A typical avalanche stretched along the aspect direction of the hill.

e Complexity of shape (area/squared perimeter) is a descriptor of the avalanche shape,
and we do not expect that this feature is very low.

e Number of nearby regions in the aspect direction.
e Distance to nearest avalanche in aspect direction. For each potential region, the distance

and direction to all other segmented regions in the scene are calculated, and the
distance to each region is calculated as (Solberg and Trier, 2009)

s=[og|+a-r,
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where 00 is the direction differences, in radians, of the aspect direction and the
direction to the neighbouring avalanche, r is the distance, in pixels, to the neighbouring
avalanche region, and a is a constant to be determined.

e Area of avalanche region. Small regions are more likely to be noise; however, it might
be part of an avalanche.

e GLCM features. As shown in Sec. 4.1, GLCM indeed provides some information about
avalanche textures.

¢ Intensity. Avalanches occur in snow areas, and we expect that the intensity is large.
However, some local adjustment may be necessary to suppress the effect of shadows.

¢ Orientation of avalanche region with respect to aspect. The avalanche in Figure 5-1 has
an elliptical form with the major axis oriented along the aspect direction.

The proposed features are some suggestions, and it might be that other features are more
efficient.

The calculated features are then stacked into a feature vector, which is the input to the classifier.

5.2 Classification

Using the proposed features in Sec. 5.1, the potential avalanche regions may be classified using
a suitable classifier. Many methods may be used to construct the classifier, however, common
for most classifiers are that they require some amount of feature vectors in the learning phase.

For only a few avalanches available, knowledge-based rules is recommended. Such rules are

typically
IF region length in aspect dirction < threshold THEN remove region

Many such rules may be constructed, resulting in a decision-tree, in which the output is
detected avalanche regions. The design of a rule-based classifier is challenging, and care must
be taken in order to construct a classifier that generalizes the classification problem sufficiently.

Alternatively, we may compute a confidence score for each region (Solberg and Trier, 2009).
Hence, based on a multiple of the extracted features we estimate a score which expresses the
strength of our belief that the region is an avalanche. Potential avalanche regions may be
extracted by assigning a threshold to the confidence score, or we may just rank the regions
based on our score. The strategy to use depends on the user requirements.

5.3 Estimating avalanche boundaries, connection, and labeling

After the classification stage, connection of detected avalanche regions is necessary. Here
typically context based rules are applied. For instance, regions in the same path and close in
distance may be assigned to the same avalanche. Furthermore, a re-estimation of the avalanche
boundaries may be performed by growing the detected regions, under some context dependent
rules.
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6 Experimental results

6.1 Segmentation based on texture

The result of thresholding the entropy for the entire Hellesylt image is shown in Figure 6-2.
Some close-up images of avalanches and the corresponding entropy thresholding result are
shown in Figure 6-1, Figure 6-3, and Figure 6-4. Note that parts of some avalanches are not
segmented out since we apply the forest mask in order to reduce the number of false avalanche
detections.

Figure 6-1. Two smaller avalanches (upper left corner of the Hellesylt image, see Figure 3-1). The avalanches are outlined
in blue on the panchromatic image. On the right, high entropy segments overlay in pink.
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Figure 6-2. Result of thresholding the entropy image. Avalanches are outlined in blue. The pink segments are high entropy
segments. Note that since we apply a forest mask in the detection algorithm, parts of some avalanches are masked out.
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Figure 6-3. The starting zone area of two large avalanches in the lower right of the Hellesylt image (see Figure 3-1). The
avalanches are outlined in blue, and the high entropy segments are shown in pink on the lower image.
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Figure 6-4. The run-out area of two large avalanches in the lower right of the Hellesylt image (see Figure 3-1). The
avalanches are outlined in blue, and the high entropy segments are shown in pink on the lower image. Note that since we
apply a forest mask in the detection algorithm, parts of the avalanche are masked out.
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6.2 Segmentation based on directional filters

The results of applying a filter bank on various regions are that various image features are
enhanced depending on the type of filter applied (Figure 6-5). Typically, the avalanche is
enhanced by applying the aspect directional filters whereas sparse trees are suppressed (Figure
6-5, mid figures). By applying the vertical directional filters, we obtain the opposite response
(Figure 6-5, lower figures).

An overview of the segmented area of the Hellesylt image is shown in Figure 6-6, where red
areas correspond to avalanche, green areas to smooth snow, blue areas to rugged snow, yellow
areas to spares forest, and cyan areas corresponds to rock. Black areas are areas removed by the
tree mask. The white lines are an outline of the avalanches. As in Figure 6-2 parts of the
avalanches have not been segmented out since areas indicated by the tree mask are not
considered. Some close-up images of avalanches and corresponding segmented areas are shown
in Figure 6-7, Figure 6-8 and Figure 6-9.

Clearly the segmentation algorithm manages to extract areas corresponding to avalanches, and
also manages to correctly segment areas corresponding to sparse trees. Some erroneous areas
occur, but it is expected that they can be removed in the classification stage. Note also that the
“fingers” in the large avalanches in the lower left of the Hellesylt image (Figure 6-6 and Figure
6-9) are not segmented since they are removed by the forest mask. The segmentation algorithm
is not able to fully capture the shape of the avalanches, and some further improvements are
necessary in order to fulfil that. Furthermore, the algorithm tends to mix shadowed areas with
rock since both classes appear with low intensity values.

To visualize the power of one of the features, length along aspect direction, we have illustrated the
segmented areas by assigning a gray level value corresponding to the feature value (Figure
6-10). However, from the image we also note that this feature is not sufficient in order to classify
the segmented avalanche regions and multi-dimensional processing of the feature vectors are
necessary.

6.2.1 Analysis of the validation image

The results of applying the directional filter method on the Dalsfjorden image, where the texton
dictionary was learned from Hellesylt image worked very well (Figure 6-11 - Figure 6-14). As
for the Hellesylt image, the algorithm extracted areas corresponding to avalanches and
managed to separate spares forest and rugged snow from avalanches. Also for the Dalsfjorden
image, the algorithm was not able to fully capture the shape of the avalanches.

The validation image contained many shadow areas that introduced erroneous classifications.

Since the “rake” pattern was not present for some deposits; some avalanche deposits areas were
not detected by the algorithm (Figure 6-13 and Figure 6-14).
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Figure 6-5: Left figures: Filter responses of a typical avalanche (upper left) filtered with a directional filter along aspect direction
(mid figure left) and vertical direction (lower left). Right figures: Typical spares trees (upper right) filtered with direction filter
along aspect direction (mid figure right) and vertical direction (lower right).
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Figure 6-6. Segmented image Hellesylt. Red areas correspond to avalanches, green to smooth snow, blue to rugged snow,
yellow to sparse trees, and cyan to rock. Black areas are areas removed by the forest and agriculture mask, and the white
outlines are the avalanches.
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Figure 6-7: Example of detected avalanche in the Hellesylt image.

Figure 6-8: Example of detected avalanche near sparse forest in the Hellesylt image.

Figure 6-9: Example of detected avalanche close to forest area in the Hellesylt image. Note that the whole path of the avalanche
is not segmented due to the forest mask.
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Figure 6-10: Length along aspect image. Intensity corresponds to feature value.
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Figure 6-11: Segmented image Dalsfjorden. Red areas correspond to avalanches, green to smooth snow, blue to rugged snow,
yellow to sparse forest, and cyan to rock. Black areas are areas removed by the forest and agriculture masks.
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Figure 6-13: Example of detected avalanche in the Dalsfijorden image. Note that part of the avalanche deposit area has been
classified to rugged snow.

Figure 6-14: Example of detected avalanche in the Dalsfjorden image. Note that part of the avalanche deposit area has been
classified to rugged snow.
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7 Discussion and conclusions

The perhaps greatest challenge is to perform successful segmentation, i.e., to locate the image
regions that correspond to potential avalanche sites. However, both GLCM and directional filter
approaches were able to extract potential avalanche areas. The segmentation results indicate
that the GLCM approach extracts the boundaries better than the directional filter approach, but
struggles to separate sparse trees from avalanches. The strength of the directional filter
approach is that it is able to separate sparse trees from avalanches well. The major drawback is
that it often confuses shadowed areas with rock. Some further investigation is needed in order
to process shadowed areas successfully.

The analysis of the validation image (Dalsfjorden) using the directional filter approach, where
the texton dictionary was created from the Hellesylt image, performed in general very well. The
algorithm was still able to detected avalanche areas in the image. Some challenges occurred due
to many shadow areas in the validation images, and avalanche deposits without the
characteristic “rake” pattern. These characteristics introduced some false alarms and non-
detected avalanches. However, it is expected that a dictionary trained from several images
would result correct classifications for such areas as well. It is not expected that the directional
filter approach would work satisfactory if the validation image is covering a scene at another
geographical location than the training image, since the vegetation and terrain may be
completely different. However, this has not been explored yet.

It should also be considered to combine the two approaches, e.g., to include one or several
GLCM features as input to the texton dictionary, and model the data base generation steps of
the directional filtering approach. Actually, the directional filter segmentation approach
described in Section 4.2 consists of two main steps: 1) construct bands that enhance the texture
information content in the image by applying directional filters, and 2) use these bands as input
to an algorithm that classifies each pixel, based on its image neighbourhood, to a texture class.
The segments are then defined by grouping neighbouring pixels in the same texture class. By
combining the two segmentation approaches we believe that some of the texture features
produced from the GLCM matrices (Section 4.1) can be used as input to step 2) of the
directional filter approach.

To extract the shape of the avalanche is a challenging task. A region growing method was
suggested, but research needs to be conducted in order to find suitable criterions on how to
grow the avalanche region. The directional filter bank approach applied a model based
classification in order to classify a given pixel to one of the texture types. Other approaches may
be better in order to define the regions, for instance by weighting the pixels in the
neighbourhood of the pixel under investigation, or by applying a Markov random field as a
means for introducing contextual information.

The resolution of the images has an impact of the quality of segmentation results. Some brief
experiments indicated that for 2.4m resolution, the algorithms were more or less scalable, but
for resolutions lower than that new methods or large adjustments of the methods were
necessary.

In this work we have briefly demonstrated feature extraction of the mapped avalanche
segments. By combining shape related features with context related features, such as number of
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neighbouring objects, terrain aspect, etc., we believe that detection and mapping of avalanches
could be successfully performed.
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