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1 Introduction 

As a part of the NFR funded MonCO2 project is to integrate seismic-travel time data, seismic 

amplitude data, and gravimetric measurements with a stochastic rock physics model in order to 

obtain a best possible picture of the spatial distribution of the injected CO2.  Through the 

cooperation with UiB models for rock physics relations have been established. By assigning 

proper probability distributions to the rock parameters we establish a joint prior distribution of 

rock parameters (e.g. porosity and saturation), and 4D seismic parameters (i.e. pressure wave 

velocity, shear wave velocity, density, and changes in these). In the NR-Note Kjønsberg  and 

Kolbjørnsen  (2011), we discuss how to approximate the distribution of the seismic parameters 

using a Gaussian distribution.  In additional NR-notes we discuss the inversion methodology 

for separate data types, and how we can use 3D inversion technologies to perform 4D inversion, 

see Kolbjørnsen and Kjønsberg (2011). 

In this note we discuss how to interpret the results of Gaussian-linear inversion of seismic data 

in order to provide an approximate marginal likelihood for rock physics parameters such as 

porosity and saturation. 

2 Methodology 

We assume we have defined a joint probability distribution for rock physics parameters r  and 

seismic parameters m . We assume that this relation is valid for the full grid, i.e. that we have a 

stationary marginal distribution; we do not have any other local knowledge of the parameters 

under study.  The target is to use results from Bayesian inversion methodologies to assess local 

information about rock-physics parameters r . Define a grid covering the region, and let the 

variable m  denote all the seismic parameters in the grid, i.e.  1 2[ , ,..., ]Nm m m m , where im  

is the seismic parameter in a specific location; and N is the number of grid cells. The seismic 

parameter is observed through an indirect measurement with a linear or linearized relation 

between the seismic parameter and data, i.e.  

 

 d Gm ε , 

 

where d  is the data; G is the forward map which describes the relation between the seismic 

parameter and the observation; and  ε is the observation error.  Below this will be assumed to 

have a Gaussian distribution, unless otherwise mentioned. We consider first the situation where 

our interest is in a linear combination of the parameters,  L m Am . For simplicity of the 

presentation (and because this will be of primary interest)  we fill out the details only for the 

case where our parameter is the variable itself in one grid cell, say cell i . We separate the 

variable vector into two parts; the component in cell i and the rest, i.e. [ , ]i im m m . The latter 

component is  1N   times the size of the former.   

Since our interest is in the local variable, we want to evaluate the local likelihood, i.e. ( | )ip d m

or the local posterior distribution ( | )ip m d keeping in mind that the dimension of data might 
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be several million, whereas  
im  has low dimension typically less than 10.   To solve this 

problem we will develop the concept of local marginal likelihood. 

 

2.1 Approximate marginal likelihood for large-scale inverse 
problems 

The marginal likelihood is obtained by marginalizing all but the target variable:  

 

( | ) ( )
( | ) ( | ) ( | ) .

( )
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i i i i
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The integral over im  being over all seismic parameters except the target variables has millions 

of dimensions.  Below we first present an intuitive approximation of the marginal likelihood 

through the use of Gaussian-linear inversion. Next we argue that this approximation has a 

wider applicability than the framework of Gaussian-linear inversion. 

 

2.1.1 An intuitive presentation of the approximate marginal likelihood 

 

The marginalization in the integral of section 2.1 cannot in general be of performed analytically, 

but if we assume that the elastic parameters follow a Gaussian distribution we are able to 

compute the posterior analytically.   Thus by using the approximation 

                                                                    
*( ) ( ),p pm m  

where the star indicates a Gaussian distribution, we are able to compute the posterior 

distribution by standard Gaussian-linear relations.  Thus 
*( | ),p m d is a known quantity, and 

so is also
*( | )ip m d . This gives us the possibility to compute the approximation of the local 

marginal likelihood. 
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Thus the approximate marginal likelihood is proportional to the ratio of the Gaussian posterior 

distribution to the Gaussian prior distribution for the local parameter, the resulting likelihood is 

hence Gaussian as well. The approximate likelihood should be used in the local computations, 

discussed in section 2.3.  Note that the computations above are general, but in contrast to the 

situation for most other prior models, the Gaussian assumptions make it possible to evaluate 

both the prior and the posterior distribution in the ratio above.  
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2.1.2 Argument through bounding assumptions 

 

The Gaussian assumption is not universally applicable, but by analyzing the approximation we 

might find features of distributions that make the approach suited. For the true local posterior 

distribution we find: 

 

In this expression, we see that the ratio of the prior distributions for the target variable and data 

factors out, thus what remains is the local likelihood: 

                  
*

* *

* *

( ) ( | )
( | ) ( ) ( | , )d .

( ) ( | )

i i i
i i i i

i i i

p p
p p p

p p


 



 
m | d m m

d m d m m d m
m m m

 

The local likelihood consists of three factors: a normalizing constant; the ratio of the prior to the 

posterior Gaussian-linear approximation; and an additional integral factor which is disregarded 

in the Gaussian-linear approximation.  To assure that the error in the approximation is 

bounded, we must control the last integral factor:  

                                               *
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Analyzing this factor we see that it consist of a ratio between the true and the Gaussian prior 

distribution given the target parameter integrated over the Gaussian approximation of the 

posterior for the non-target variables given the target.  It is thus sufficient to put an upper 

bound of the ratio in order to limit the error in the local likelihood. This simple expression 

discloses some situations where the approximation has limited value.  If the prior distribution 

has heavier tails (or rather skirts) than the Gaussian approximation, the integral can be 

unbounded. On the other side, if the distribution of the parameters have compact support (i.e.  

there exist upper and lower limits for the parameters), the approximation will have a bounded 

error, in the sense that there exist lower and upper limits Lc and Uc such that:  

                             * *( | ) ( | ) ( | ),L i i U i ic p p c p  d m d m d m m . 

Independence of the target variable and non-target variables in the prior distribution are in 

general not sufficient for the integral factor to collapse to a constant,  since the non-target 

variables and target variables in general are dependent  in the posterior distribution; 

                             
* *( | ) ( )i i ip p  m m m

* *( | , ) ( | )i i ip p m m d m d
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2.1.3 Argument through linear estimation 

 

We assume that the observations have the form:    

, d Gm ε  
and use linear predictions to assess the influence of the target variable  on data. From linear 

prediction theory (i.e. kriging) we know that the full parameter can be written as:
 

 1

, | ,m m i i i i m i

   m μ Σ Σ m μ ε
 

where 
mμ  is the expected value of m ; 

,m iΣ is the covariance between m and 
im ;

iΣ  is the 

covariance of
im ;

iμ  is the expected value of  
im ; and |m iε  is a random variable which is 

uncorrelated with im . Inserting this into the data expression we find that: 

 1 1

, , | ,m i i i m m i i i m i

     d GΣ Σ m G μ Σ Σ μ Gε ε
 

The observed data has four terms. The first shows a linear dependence to the target parameter, 

the second is constant, the third and fourth are terms that are uncorrelated to the target 

parameter. Thus we may write 
* * *,i i d G m ε  

where: 
* 1

, ,i m i i

G GΣ Σ  
* * ,m i i  d d Gμ G μ  

 * 1

* , ,Cov( ) .T

m m i i i m 

   ε Σ G Σ Σ Σ Σ G Σ  

The expression is merely a rewrite of the original equation, but where the prior distribution of 

the non- target parameters are interpreted as a part of the likelihood model, and not as a part of 

the prior model. The system above is a standard regression setting where the error covariance is 

known. Following the regression approach the solution to the problem is given by the unbiased 

estimator: 

                                            
1

* 1 * * 1 *

* *
ˆ T T

i i i i 


 m G Σ G G Σ d ,

 
which has the variance: 

                                                          
1

* 1 *

*
ˆCov T

i i i


m G Σ G

 
Thus defining a projection matrix: 

                                       
 

1
* 1 * * 1

* *

T T

i i i 


 P G Σ G G Σ

 
 

we may transform the problem to a system of equations having a dramatically reduced 

dimension:  
** **,i d m ε  

where: 
** *,d Pd  

 
1

* 1 *

** *

T

i i 


Σ G Σ G  

 

 

 

The matrix 
* 1 *

*

T

i i


G Σ G  is central in the projection which reduces the data dimension. This is the 

precision matrix of the projected observations, as seen above.  The matrix might however not be 

invertible, which in turn imply that the covariance matrix of the data does not exist. If the 



8 

matrix 
* 1 *

*

T

i i


G Σ G  has reduced rank this means that there are linear features in 

im which are 

unidentified by the data.  By factoring out these features, we might proceed as if the matrix has 

full rank, keeping in mind that some features of our parameter are unidentifiable.  Section 2.2 

discusses this situation.  

 
The assumption of the approximate local marginal likelihood through the Gaussian 

approximation is equivalent with assuming a multi-normal distribution for the error 
**

|m i ε PGε Pε . 

The error 
**
ε consists of a sum of multiple errors sources, thus there is an averaging effect 

which makes the multi normal distribution plausible. Limiting properties are however not 

available in the general case. The computations show that the marginal approximate likelihood 

approach which we propose preserves the linear information of the target-parameter in the 

data. 

 

 

2.1.4 Argument through information theory 

It is since long established that the nature does not comply with a Gaussian assumption, more 

over the parameters of the Gaussian- distribution is hard to assess.  We still argue that the 

Gaussian distribution is a reasonable choice for the marginalization.  First it is easy to claim that 

the nature is non-Gaussian, but it is hard to come up with an alternative. In spatial statistics and 

through geostatistical approaches there exist multiple alternatives to the Gaussian approach, 

but many alternative models can be discredited for the same reasons as the Gaussian, other   

models display specific characteristics that are desirable, but it is often hard to assess which 

types of structures that are excluded by these models.  Also parameterization of distributions 

which are alternatives to the Gaussian is even harder than for the Gaussian distribution.  

 

The argument from information theory is that the Gaussian distribution is the least structured 

distribution among any distributions which have the same first two moments. We make the 

least amount of additional assumptions regarding the structure in the problem, (i.e. the 

Gaussian distribution has the maximum entropy among all distributions.)  This off course has 

the drawback that sharper conclusions can be drawn if more information is put into the prior 

distribution. But one might claim that the Gaussian choice gives a conservative estimate of the 

local information content. 

 

 

2.2 Influence of information on local variables 
The previous section gives the argument for the marginal local likelihood approximation. In 

this section we discuss how we should parameterize this information. Thus we assume the prior 

and posterior distributions of seismic parameters are given under the Gaussian approximation.  

 

For any selection of linear combinations of seismic parameters, we consider the prior and 

posterior distribution of the Gaussian approximation, given by: 

 

 | |

( ) ,

( | ) ,

L L L

L L d L d

p N

p N





m μ Σ

m d μ Σ
 

 

Through these relations we find that the likelihood is given by the relations: 
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                                                          

   

1
1 1

|

1
1 1 1 1

obs | | |

Cov{ }

.

L

L d L

L d L L d L d L L


 


   

 
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  

d m ε

ε Σ Σ
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However as commented in section 2.1.3 the matrix 
1 1

|L d L

 Σ Σ  need not be invertible.  To better 

investigate the information present in the data with respect to the target parameter, we identify 

linear combinations of the target parameter, say
T

j j Lf  v m , which are statistically 

independent both in prior and posterior distribution.  This is obtained by solving a generalized 

eigenvalue problem. That is by identifying jv  and j  such that: 

| .T T

j L d j j L  v Σ v Σ  

The factors
T

j j Lf  v m   are independent in both the prior and posterior distribution, but the 

variance is a factor 0 1j   lower than the prior.  Now note that if 1j  this means that the 

prior and posterior distribution has identical variance, thus a feature corresponding to a 

generalized eigenvalue of 1 is unidentifiable and should be left out in the computations.   On 

the other side if 0j  this means that the feature is fully identified by the data.  The linear 

features better control of the observations, and gives an equivalent set of independent 

observations.  We might identify the local likelihood approximation as independent 

observations of features jf . When the prior and posterior distribution of if  is denoted:  

 

   

2

2 2

| | |

( ) , ,

( | ) , , ,

j j j

j j d j d j d j j

p f N

p f N N

 

    



 d
 

where 
2,T T

j j L j j L j  v μ v Σ v , and 2

| | | |,T T

j d j L d j d j L d j  v μ v Σ v ,  

we find the equivalent observation to be:  

                                                                 
|obs .
1

j d j j

j

j

f
  







 

where  
obs ,j j jf f    

and 

20, .
1

j

j j

j

N


 


  
       

 

From this expression we also see the interpretation of the observation  of a feature with  1j  , 

which means that is has zero precision (the uncertainty of the observation is infinite). By only 

including features with 1j    we avoid problems with precision matrix of the likelihood 

being of reduced rank.    

 

In seismic inversion the information content in some factors will be very low.  If 1j  , this 

means that the data carries marginal information about the factor (the error variance tends to 

infinity as lambda goes to one). It is natural to exclude factors which correspond to a lambda 

larger than a threshold, e.g. 0.99.  When a limited number of parameters carry the information, 

this will simplify the complexity of the computations.  
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2.3 Approximations for rock physics  
 

Assume the local likelihood is given ( | )ip d m , and that we have samples from the joint 

distribution ( , )i ip m r .  The simplest approximation is to include  ir  in the Gaussian 

approximation, whereas a more detailed approach uses importance sapling. There is also a 

third option which is used in Buland et al (2008) where some of the calculations can be done in a 

pre-process, this does however require that the dimension of the factors that carry information 

is small (preferably  three or less) .  

2.3.1 Full linearization 

In this approximation we make a Gaussian distribution   

Thus we have:  

Since the posterior distribution of the elastic parameters in the target location is given in the 

inversion we get: 

Thus we find the marginal Gaussian likelihood for ir : 

 

This likelihood is identical to the one in section 2.2, and can be interpreted similarly.   

 

2.3.2 Importance weighting 

An alternative approach which only uses the linearization for the elastic parameters is the 

importance weighting. This is in particular of interest if one is interested in detailed analysis of 

the parameters. It is however more time consuming to compute. In this approach we use the 

local likelihood of the elastic parameter to compute the importance weight of samples from the 

prior distribution. Assume that the local marginal likelihood is given by the relations above, 

and assume we have S samples from the prior distribution. 

     1 1 2 2, , , ,..., ,S S

i i i i i im r m r m r  

For simplicity we further compute factors from section 2.2 giving: 
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     1 1 2 2, , , ,..., ,S S

i i if r f r f r  

We now assign a weight to each sample being, proportional to the local marginal likelihood. 

That is the weight of    , ,k k k k

i i i im r f r  is: 

Thus properties of the local posterior distribution of  
ir  can be evaluated using the importance 

weight of the sample. Thus if we want to find the expected value of a function, say ( )g  , of the 

rock physics parameters
ir  this is approximated  by the standard weighted sum:   

The local posterior distribution itself can be approximated with a kernel estimate: 

 

3 Conclusions 

The proposed approach for retrieving the local likelihood in linear inversion is simply to use a 

Gaussian- linear inversion approach, and derive the local likelihood as the ratio of the prior 

distribution to that of the posterior.   
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