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1 Introduction

This note will describe the Bayesian inversion of gravimetric data. Gravimetric measurements
give constraints on subsurface density variations. For the purpose of learning we first describe
in simple terms the contributions to the gravimetric measurements. Next, we relate gravimetric
data with subsurface parameters in a Gaussian-linear framework and find expressions for the
conditional inverse problem. Due to large memory and computational costs of the inverse prob-
lem, the need for upscaling appears. Thus upscaling by use of convolution and subsampling in
the Fourier domain is described. Most descriptions are accompanied by illustratory MATLAB
examples. Finally, a MATLAB example with synthetic data and gravity inversion is included.

2 Setting the scene

The Sleipner Project has introduced use of gravimetric data to constrain density of injected CO2

as a complement to the use of seismic data. Generally, 4D seismic surveys give a good image of
the subsurface. Particularly in the Sleipner Project it gives a good image of the geometry of the
CO2 plume. However, there are large uncertainties related to the density of the CO2 in the subsur-
face which the seismic surveys do not resolve. Gravimetric observations over a time span detect
changes in density and are thus used as a complement to the seismic surveys. Gravimetric obser-
vations are measured at different times, here referred to as vintages, and the changes observed
at different vintages are assigned to changes in mass of injected gas. Thus the relative changes in
gravimetric observations hold the information used to constrain the mass and density.

Published literature using gravimetric data to estimate large scale properties of injected CO2 in-
clude (Nooner et al., 2007), (Alnes et al., 2008), and (Alnes et al., 2011).

In the seismic setting vertical depth below sea bed is measured in terms of two-way-travel time
of seismic waves and the velocity of the P-wave. This convention will be used in the following.

The 4D inversion scheme consists of 3D AVO (amplitude) inversion of seismic data that has been
extended to include time (4D) by use of rock physics relations to evolve seismic quantities in time
(Kolbjørnsen and Kjønsberg, 2011). Seismic parameters solved for are velocities for P-wave and
S-wave and rock density. Inversion of two more data sets, two-way-travel time and gravity, are
added in the time sequence.

Working with seismic inversion the unknown variables that are solved for are probability distri-
bution functions. More particularly, the seismic parameters are log-normally distributed. How-
ever, in the following of this note we write all expressions and calculations with the assumption
that the seismic parameter itself is normally distributed. See Appendix A.

3 Gravimetric observations

A gravimeter is the instrument used to measure gravity. The term gravimetry denotes the mea-
surement of the strength of the gravitational field. In this note we will consider gravimetric mea-
surements and relate it to the subsurface mass.

We first consider a gravimeter located at the seabed above a subsurface reservoir. Each point in the
earth, thus both in the reservoir and surrounding areas, contributes to the measurements in the
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Figure 1. Sketch of reservoir, sea bed and gravimetric observations points.

gravimeter, henceforth referred to as gravimetric observations. The contribution from each point
is proportional to m/r2 , where m is the mass of the point and r is the distance from the point in
the subsurface reservoir to the gravimeter located at the seabed. (Newton’s law of gravitation).

Applied to a reservoir model consisting of a regular grid, where each grid cell has dimensions dx×
dy × dz, the grid cell representing the position (xi, yi, zi) has a contribution to the gravimeter
located at position (x0, y0, z0):

γ
miρi
r2i,0

= γ
(dxdy dz)ρi

r2i,0
= γ

dxdy dt
vp
2 ρi

r2i,0
(1)

where γ is a gravitational constant, ρi is the density, dt is the two-way-travel time of the seismic
wave, vp is the P-wave seismic velocity, and r2i,0 = ||(xi, yi, zi)− (x0, y0, z0)||2. The vertical length
of a grid cell dz is expressed in terms of two-way-travel time and seismic P-wave velocity, vp2 dt .
When relating this contribution from the reservoir and observed data we consider both the den-
sity and the P-wave velocity as unknowns. Thus the unknown variable is vpρ and will be referred
to as seismic parameter in the following.

The contribution from the outside of the reservoir (U \ R) follows the same expression as the
contribution from the reservoir (R). The total contribution to the gravimetric observations from
the whole subsurface volume is thus the sum of the contributions of all single points:

γ

∫
R

ρ
vp
2

r2
dxdy dt+ γ

∫
U\R

ρ

r2
dxdy dz (2)

The integral over the volume outside of the reservoir is considered a confounding factor and we
assume it is either constant or that the non-constant part has been removed in preprocessing of
the gravimetric data for all vintages in a time sequence.

To linearize the expression above, Eq. (1), we do not express the vertical component zi, in the
distance measure r, in terms of the unknown values vp. The vertical component zi is determined
as the integral of expected values of the prior distribution of vp

zi =
1

2

∫ ti

0

E(vp) dt (3)

In the discrete case we let index i = 0, . . . , NR run through all reservoir grid cells and the index
j = 0, . . . , Nd run through all gravimetric observations points. We write the contribution of one
point (xi, yi, zi) to the gravimeter in position (xj , yj , zj) as

gi,j = γ
ρivp,i
2r2

dtdx dy =
γ

2

ρivp,i
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

dtdxdy (4)
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We let dj be the observation in the gravimeter located at position(xj , yj , zj). The total contribution
to this observation is the sum of the contributions of all reservoir grid cells

dj =

NR∑
i=0

gi,jρivp,i + gj,U\R + εj (5)

where εj is the observation error, gj,U\R is the constant contribution from the outside environment
of the reservoir, and the elements in a matrix G are given as

Gi,j =
γ
2 (dx dy dt)

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
(6)

4 Forward model in Gaussian-linear settings

We now consider all observations points and contributions from all grid cells in a linear ex-
pression. We set d = [d1, . . . , dND

] and ε = [ε1, . . . , εNd
] and we define the seismic parameter

m = [m1, . . . ,mNR
], mi = ρivp,i. In Gaussian-linear settings the relation between data d and

seismic parameters m = ρvp is described by

d = Gm + gc + ε (7)

where the seismic parameter has a normal distribution

m ∼ N (µm,Σm) (8)

and the error term has a normal distribution

ε ∼ N (0,Σε) (9)

The time-independent constant contribution from the outside environment of the reservoir is
given in gc and G is a matrix with entries as described above. From the above linear expression,
it follows that the data also has a normal distribution, that is d ∼ N(µd,Σd) with

µd = Gµm (10)

Σd = GΣmG
T + Σε (11)

In the following calculations we eliminate the constant contribution gc by considering the first
observation d0 at time t = 0 as a base case with the following observations dk as deviations from
this base case, with k = 1, . . . , T . We thus use ∆m = ∆(ρvp) as the unknown parameter. In the
following superscripts denote time indices.

d0 = Gm0 + gc + ε0 (12)

d1 = Gm1 + gc + ε1 (13)

d1 − d0 = G(m1 −m0) + (ε1 − ε0) = G∆m1 + ∆ε1 (14)

dk+1 − dk = G∆mk+1 + ∆εk+1 (15)

For ease of notation we only use m when referring to the unknown seismic parameter in the
following, even though we consider the change in the parameter.
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5 Conditional inverse problem

We assume that data observations at one time step depend only on the seismic parameters at the
same time step. This is conditional independece and is expressed by the relation:

p(dk|m0, . . . ,mT ) = p(dk|mk), k = 1, . . . , T (16)

We want to compute the distributions of our unknown mk conditioned by the gravimetric
data dk:

p(mk|dk) ∼ N(µmk|dk ,Σmk|dk) (17)

By standard Bayes rule we have the two relations

p(dk|mk) = p(dk, mk)
p(mk)

p(mk|dk) = p(dk, mk)
p(dk)

Combining these two relations gives us the conditional expression

p(mk|dk) =
p(dk|mk)p(mk)

p(dk)
(18)

In Bayesian terms this can be written as a posterior model equal to a constant times the prior
model multiplied with a likelihood model:

p(mk|dk) = const · p(mk)p(dk|mk) (19)

For the rest of the description we disregard the time superscript. Each inversion of gravity data is
done independently at each vintage. We repeat the distributions for the seismic parameter

m ∼ N (µm,Σm) (20)

and the error term
ε ∼ N (0,Σε) (21)

From the linear relationship between data and the seismic parameters, Eq. (7), it follows that the
data has the following distribution

d ∼ N (Gµm, GΣGT + Σε) (22)

The joint distribution of the seismic parameters and the data, is by standard terms given by[
m

d

]
∼ N

([
µm

Gµm

]
,

[
Σm ΣmGT

GΣT
m GΣmGT + Σε

])
(23)

For better readability in the following expressions, we rewrite this as[
m

d

]
∼ N

([
µm

Gµm

]
,

[
Σm Σmd

ΣT
md Σd

])
(24)

By standard results the conditional distribution for the seismic parameters given data is then

m|d ∼ N (µm + ΣmdΣ
−1
d (d− µd), Σm −ΣmdΣ

−1
d ΣT

m) (25)
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Thus the conditional mean and covariance is given by

µm|d = µm + ΣmGT(GΣmGT + Σε)
−1(d−Gµm) (26)

Σm|d = Σm −ΣmGT(GΣmGT + Σε)
−1GΣm (27)

A central part in the computations of the mean and covariance is the expression GΣGT. This
matrix product is of dimensions Nd×Nd. However, since the matrix Σ has dimensions NR×NR,
the product involves nested sums over the number of grid cellsNR. With a potential large number
of grid cells, this matrix multiplication is potentially computationally very expensive.

6 Upscaling of the conditonal inverse problem

To handle the computationally expensive matrix product we upscale the inverse problem to a
coarse reservoir grid with fewer grid blocks. In the following we will use the term block for the
collection of fine grid cells that make up a grid cell, that is a grid block, in the coarse grid. For
ease of notation and explanation we upscale a regular grid. We denote the number of fine grid
cells as NR and the number of coarse grid blocks NC . Each grid blocks consists of NB fine grid
cells, that is NCNB = NR. The upscaling presented here is not restricted to regularly upscaled
grids, although we do assume that the thickness of grid cells (the vertical distance) is uniform, or
at least close to uniform.

In the current setting, we need to upscale the conditional inverse problem given by Eq. (26) and
(27). The gravimetric observations given in d are kept unchanged while the quantities related to
the reservoir model are upscaled. More particularly, we need to upscale the prior mean µm, prior
covariance matrix Σm and the gravity matrix G. Upscaling the latter matrix follows straight-
forward upscaling based on coarse grid quantities. The stochastic variable m is upscaled by
smoothing and subsampling. The following sections will give both explanations through formu-
las as well as examples.

6.1 Upscaling the gravity matrix
The gravity matrix G is upscaled directly by calculating the entries in Eq. 6 with coarse grid block
dimensions and coarse grid block center positions. The observation positions running over index
j are the same. We thus get the expression

GI,j =
γ
2 (dX dY dT )

(xI − xj)2 + (yI − yj)2 + (zI − zj)2
(28)

with coarse indices I to denote grid block indices in the upscaled grid and capitalization of dX ,
dY and dT to denote coarse grid quantities.

To consider the error introduced in the coarse expression compared to the fine grid expression, we
assume for now that the density is constant within a coarse grid cell. This a good basis for com-
parision since the density change has high continuity. We consider the gravimetric contribution
of one coarse grid block to one observation point using the fine scale grid:

NB∑
i=1

γ
mi

r2i,j
=

NB∑
i=1

γ
(dxdy dz)ρ

r2i,j
= γ(dxdy dz)ρ

NB∑
i=1

1

r2i,j
(29)

Here the subscript i denotes fine grid quantities. For a regular grid we have constant grid cell
dimensions, that is dxi = dx, dyi = dy, dzi = dz. We write out the corresponding expression for
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Figure 2. Mnemonic illustration of upscaling of a stochastic parameter, introducing subscripts and terms for
the operations.

the coarse grid block with index I , using the coarse grid quantities:

γ
mIρ

r2I,j
= γ

Sdxdy dzρ

r2I,j
= γS(dxdy dz)ρ

1

r2I,j
(30)

Here the coarse grid block dimensions give

dX dY dZ = dxNBX dyNBY dzNBZ = NBdxdy dz

with the scaling factor NBXNBYNBZ = NB and rI is the distance from the center point in the
coarse grid block I to the observation point. In the upscaling we thus approximate the above fine
scale sum of the inverse square distances with the coarse scale inverse square distance:

NB∑
i=1

1

r2i,j
≈ NB

1

r2I,j
(31)

For the cases where the coarse distance is a good approximation to the sum of fine scale dis-
tances, we introduce a small upscaling error. For cases where the coarse distance is not a good
approximation, we introduce potentially significant upscaling error.

One possible refinement in the upscaled gravity matrixG is to keep the fine grid resolution of the
distance measure instead of using the upscaled distances.

r2I,j =
1

NB

1∑NB

i=1
1
r2i,j

(32)

The square of the coarse distance corresponds to the harmonic average of the squares of fine-scale
distances.

Exemplification of the upscaling of coarse grid quantities will be included in the MATLAB exam-
ple in Section 7. We do not consider exactly upscaling of the gravity matrix. We rather consider
the gravimetric response that a coarse grid gives. This involves computing the same quantities
as in the gravity matrix, summed up for each row to give the contribution to each gravimetric
observation point.

6.2 Upscaling the stochastic seismic parameter
Upscaling the stochastic seismic parameter m means upscaling the mean and covariance function
describing the normal distribution

m ∼ N (µ,C) (33)

To describe the upscaling we start with a mnemonic illustration in Figure 2 to give a overview
of the required steps and the subscript notation that will be used. As Figure 2 schematizes, we
separate the upscaling into two steps:

1. Smoothing by use of convolution

12 Inversion of gravimetric data



2. Sub-sampling to reduce size of cube/parameter

The reshaping step in the illustration refers to the change in representation of the parameter.
We vary between three dimensional cubes, and vectors and two-dimensional matrices. This is not
included as a step in the upscaling process, as it is a matter of representing the variable, regardless
of being upscaled or not.

The inverse operation to this upscaling has the corresponding two steps:

1. Backsampling the sub-cube into the smoothed fine-scale cube

2. Inverse smoothing by use of pseudo-deconvolution

We introduce the term backsampling instead of the conventional term upsampling from signal
processing, since we do this backsampling in the Fourier domain and use a previous variable in
the upscaling chain as basis into which we put back upscaled and conditioned frequencies.

We start with describing upscaling of the mean. For the sake of completness, subsampling both
in the Fourier domain and in the real domain is described. The reverse process of smoothing and
backsampling is subsequently described. Vectorization of the mean is carried out as a straightfor-
ward reshaping from a three dimensional cube to a vector. This will not be described in any more
detail. Upscaling steps for the covariance function are generally identical to the ones for the mean,
and therefore only repeated in short. Steps that are different than for the mean, as in the case of
double convolving the covariance function and reshaping with respect to circularity, is described
in more detail.

All calculation using the Fourier transform can be performed using the Fast Fourier Transform
(FFT).

Smoothing the prior mean
For ease of notation we neglect subscript m from Eq. (26) and (27) and introduce subscripts de-
scribing in which state in the upscaling process the variable currently is: s for smoothed and us

for upscaled (realized as subsampled from the smoothed variable). Figure 2 uses this notation.

We want to average cells in a coarse grid block I

µI =
1

NB

∑
i∈B(I)

µi, I = 1, . . . , NC

B(I) = {i : Fine cell i is contained in coarse block I}.
(34)

In words this is the averaged sum over the fine grid cells that make up coarse block I . For the sake
of completness, we write the above sum with µ being represented as a three dimensional cube of
dimensions Nx × Ny × Nz . Hence, the block B(I) is a cube of dimensions NBX × NBY × NBZ ,
where NBX denotes the number of fine grid cells in the x direction the block consists of, and NBY
and NBZ denotes the number of fine grid cells in direction y and z, respectively. The coarse grid
is regularly subdivided into NCX ×NCY ×NCZ blocks. We thus have the relations

NCXNBX = Nx, NCYNBY = Ny, NCZNBZ = Nz.

The averaging sum can be written as

µl1,l2,l3 =
1

NB

NBX∑
i=1

NBY∑
j=1

NBZ∑
k=1

µ(l1+i−1),(l2+j−1),(l3+k−1) (35)

with the three indices indicating the cubic representation. Local averaging for all coarse grid
blocks can be written as a sum corresponding to convolution with an appropriate convolution

Inversion of gravimetric data 13
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Figure 3. Convolution process on a 2× 6 grid (dotted lines). Coarse grid of dimension 1× 3 is outlined with
full lines. The subset of configuration that corresponds to coarse grid blocks consists of the configurations
(1, 1), (1, 3) and (1, 5), hence the first fine grid cell in the grouping of cells to a coarse grid block.

kernel:

µl1,l2,l3 =

NBX∑
i=1

NBY∑
j=1

NBZ∑
k=1

µ(l1+i−1),(l2+j−1),(l3+k−1)hi,j,k,

for l1 = 1, . . . , NCX , l2 = 1, . . . , NCY , l3 = 1, . . . , NCZ

(36)

The convolution kernel that we use is defined as

hi,j,k =

{
1
NB

if (i, j, k) is a cell in the first coarse grid block B(1)

0 otherwise
(37)

This function can be viewed as a block filter or moving average, and when used in convolution
corresponds to taking the local average of the fine grid cells within the coarse blocks that is de-
fined by the function.

For ease of notation, we introduce the multi-index i = (i, j, k) and l = (l1, l2, l3) and write

µl =

N∑
i=1

µl−ihi ≡ µ ∗ h (38)

We thus define smoothing the prior mean as the convolution of the mean with the function h:

µs = µ ∗ h (39)

Transforming the convolution to the Fourier domain, let us take advantage of the convolution the-
orem stating that the Fourier transform of a convolution is the point wise product of the Fourier
transforms:

F{f ∗ g} = F{f} · F{g} (40)

Thus the smoothing step can be expressed as

F{µs} = F{µ} · F{h}
µs = F−1{F{µ} · F{h}}

(41)

with complex conjugate denoted with overline over the variable.

Subsampling the prior mean
To reduce the size of a smoothed variable we subsample it. In signal processing the conventional
term is downsample. To indicate that the process we perform is to reduce a full cube into a sub-
cube, we rather apply the term subsampling.

In the real domain subsampling a smoothed variable may be visualized by Figure 3. Here we can
imagine the blue region (corresonding to the convolving kernel h) to slide across the 2 × 6 grid
(outlined with dashed lines) forming a 2×6 smoothed grid. This grid is furthermore coarsened to
a 1× 3 grid (full lines) and the blue region thus corresponds to the first coarse grid block. As the
blue block slides across the grid, we observe that only every second configuration corresponds
to a averaging of a coarse grid block. The other configurations correspond to averaging fine grid

14 Inversion of gravimetric data



cells from two coarse blocks and are not of interest in this case. Thus subsampling to obtain a
coarse grid corresonds to selecting every element in the full cube corresponding to the first fine-
grid cell in a coarse grid block. In other words, in the real domain subsampling corresponds to
picking elements from the variable with a certain interval. Using a MATLAB-style notation for
subset of indices, this will be for our three-dimensional cube the following indices:

[1 : NBX : Nx, 1 : NBY : Ny, 1 : NBZ : Nz] (42)

On the other hand, subsampling in the Fourier domain corresponds to filtering out high-frequent
information. This is because smoothing in the Fourier domain can be considered as a keeping
information in the low frequencies, while high frequencies are disregarded. One subsampling
scheme is therefore to only consider the low frequencies in the Fourier domain.

Explicit exemplification of convolution and subsampling in one dimension is included in Ap-
pendix B.

Note that in practical use the convolving kernel given in Eq. (37) together with the subsampling
introduce scaling into the expressions. This is because the forward and inverse Fourier transforms
work on different grids. In the expression below the forward Fourier transform applied on µs
works on a grid of original dimensions, while the inverse Fourier transform in this case works
on the upscaled grid. In MATLAB to obtain correct scale of the inverse Fourier transform of the
smoothed and subsampled mean, we scale with the inverse of the upscaling factor:

µus =
1

NB
F−1{F{µs}(ωlow)} (43)

This scaling factor is dependent on the formulation of the transform used.

Backsampling the posterior mean
We now assume that Bayesian inversion or some other changes have been done to the variable
and refer now to the variable as the posterior mean. Figure 2 introduces superscript + used for
denoting a change in the varibable (conditioning from Bayesian inversion). Hence µ+

us denotes
upscaled posterior mean.

In the current context, we denote the reverse process of subsampling as backsampling. In signal
processing the conventional term is upsampling. The term backsampling is meant to denote the
process of using the smoothed prior variable and replace or put back possibly updated low fre-
quencies in the Fourier domain. These low frequencies are the ones that have been kept for the
upscaled variable. Backsampling is thus meant to refer to the process in the Fourier domain of
updating some frequencies in the smoothed prior mean and then putting them back into the orig-
inal variable which now becomes the posterior. The ulitmate purpose is to extend the subsampled
(upscaled) variable to the original size.

F{µ+
s }(ωhigh) = F{µs}(ωhigh)

F{µ+
s }(ωlow) = F{µ+

us}(ωlow)
(44)

where ωlow are the low frequencies selected in the subsampling.

In the real domain this backsampling is better viewed as upsampling, as it corresponds to stan-
dard upsampling in signal processing. In other works, upsampling in the real domain means
increasing the elements of a variable by inserting interpolated or kriged values in between the
upscaled values, to extend - upsample - the variable.

As written above, due to the fact that the Fourier transforms work on different grids, we scale the
upscaled prior mean after taking the inverse Fourier transform of the subsampled variabale in the
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Figure 4. Slice of the convolution kernel. Blue equals 0.

Fourier domain, Eq. (43). Likewise, returning to the Fourier domain from the upscaled posterior
mean, we need to remove this scaling. We assume now that the change done to the upscaled
variable has been done in the real domain. In MATLAB the appropriate scale is to multipy with
NB :

F{µ+
us} = F{µ+

us ·NB} (45)

Reverse smoothing of the posterior mean
The reverse smoothing operation is performed as pseudo-deconvolution defined as pointwise
division in the Fourier domain:

F{µ+} = F{µ+
s }./F{h} (46)

As large parts of F{h} consists of 0, special treatment for division by 0 has to be done. For the
elements where F{h} = 0 we simply insert the value of the Fourier transform of the prior mean
corresponding to the current frequency ω:

F{µ+}(ω) = F{µ}(ω) (47)

We have referred to the process as pseudo-deconvolution due to the special treatment for handling
0’s in the convolution kernel. However, it is actually nothing else than Bayesian update, since zero
in the kernel means no information added.

MATLAB example of upscaling mean
Firstly, a simple and intuitive one-dimensional example is included in Appendix B to document
practical use of the steps described above. Here we include an example more directed toward use
in gravimetric inversion, that is we illustrate the significant steps needed for upscaling the mean
of a stochastic parameter. The two examples may unfortunately appear as repetetative and thus
tedious. However, realization of the upscaling in MATLAB has been a good source of verifying
the logic of the upscaling and are therefore included for the sake of complete documentation and
later reference.

We assume a 3D random Gaussian field, called mu, with dimensions 32 × 32 × 32, upscaled to a
8× 8× 8 coarse grid. The leftmost plot in Figure 5 shows a slice of the variable.

We introduce an averaging convolving kernel, corresponding to values in the first coarse block,
and zero elsewhere. Figure 4 shows a 2D slice of the function, with blue region equalling 0 and
red a constant.

We start the upscaling by applying the Fourier transform on the random variable and the convo-
lution kernel

fft_mu = fftn(mu);

fft_h = fftn(h);
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Applying the convolution theorem let us do convolution as point wise multiplication in the
Fourier domain. Note that we use the complex conjugate of the convolution kernel. The second
left plot in Figure 5 shows the result of this smoothing step.

fft_mu_s = fft_mu.*conj(fft_h);

Subsampling in the Fourier domain corresponds to keeping the low frequencies. Here we consider
the eight subcubes in the corners, collapsed into one subsampled variable. The third plot from the
left side in Figure 5 shows a slice of the subsampled variable.

%fft_mu_us = fft_mu_s([1:nx_up/2, (nx-(nx_up/2)+1):nx], ...

% [1:ny_up/2, (ny-(ny_up/2)+1):ny], ...

% [1:nz_up/2, (nz-(nz_up/2)+1):nz]);

i_start = 1:nx_up/2;

j_start = 1:ny_up/2;

k_start = 1:nz_up/2;

i_end = nx-nx_up/2+1:nx;

j_end = ny-ny_up/2+1:ny;

k_end = nz-nz_up/2+1:nz;

i_end_us = nx_up-nx_up/2+1:nx_up;

j_end_us = ny_up-ny_up/2+1:ny_up;

k_end_us = nz_up-nz_up/2+1:nz_up;

fft_mu_us = zeros(nx_up, ny_up, nz_up);

fft_mu_us(i_start, j_start, k_start) = fft_mu_s(i_start,j_start,k_start);

fft_mu_us(i_end_us,j_start, k_start) = fft_mu_s(i_end, j_start,k_start);

fft_mu_us(i_start, j_end_us,k_start) = fft_mu_s(i_start,j_end, k_start);

fft_mu_us(i_end_us,j_end_us,k_start) = fft_mu_s(i_end, j_end, k_start);

fft_mu_us(i_start, j_start, k_end_us) = fft_mu_s(i_start,j_start,k_end);

fft_mu_us(i_end_us,j_start, k_end_us) = fft_mu_s(i_end, j_start,k_end);

fft_mu_us(i_start, j_end_us,k_end_us) = fft_mu_s(i_start,j_end, k_end);

fft_mu_us(i_end_us,j_end_us,k_end_us) = fft_mu_s(i_end, j_end, k_end);

When taking the inverse Fourier transform of the upscaled variable, we only keep the real com-
ponent. Note the scaling of the transformed variable.

mu_us = real(ifftn(fft_mu_us));

mu_us = mu_us*(nx_up*ny_up*nz_up)/(nx*ny*nz);

The alternative subsampling is in the real domain. Note no scaling here.

mu_s = real(ifftn(fft_mu_s));

mu_us2 = mu_s(1:(nx/nx_up):nx, 1:(ny/ny_up):ny, 1:(nz/nz_up):nz);

fft_mu_us2 = real(fftn(mu_us2));

For the purpose of a simple example, we change the upscaled variable by adding the constant 10
to the whole field. We point out that this has no relation to Bayesian inversion, which is the change
we are interested in in the actual gravimetric inversion. The third plot from the right side in
Figure 5 shows a slice of the changed upscaled variable. Note the change of scale in the plot from
the previous step.

mu_us_changed = mu_us + 10;

In the reverse process of upscaling, we Fourier transform the upscaled and changed random
variable. Note that we remove the scaling introduced of the inverse Fourier transformed upscaled
variable.

fft_mu_us = fftn(mu_us_changed*(nx*ny*nz)/(nx_up*ny_up*nz_up));

We put back the 8 subcubes making up the upscaled variable into the 8 corners of the original
smoothed variable. We reuse the indices from above. The second right plot in Figure 5 shows the
backsampled variable.

fft_mu2_s = fft_mu_s; % Copy smoothed variable, original size

fft_mu2_s(i_start, j_start, k_start) = fft_mu_us(i_start, j_start, k_start);

fft_mu2_s(i_end, j_start, k_start) = fft_mu_us(i_end_us, j_start, k_start);

fft_mu2_s(i_start, j_end, k_start) = fft_mu_us(i_start, j_end_us, k_start);

fft_mu2_s(i_end, j_end, k_start) = fft_mu_us(i_end_us, j_end_us, k_start);

fft_mu2_s(i_start, j_start, k_end) = fft_mu_us(i_start, j_start, k_end_us);

fft_mu2_s(i_end, j_start, k_end) = fft_mu_us(i_end_us, j_start, k_end_us);

fft_mu2_s(i_start, j_end, k_end) = fft_mu_us(i_start, j_end_us, k_end_us);

fft_mu2_s(i_end, j_end, k_end) = fft_mu_us(i_end_us, j_end_us, k_end_us);

mu2_s = real(ifftn(fft_mu2_s));
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Next, we carry out pseudo-deconvolution. Note the special treatment where the Fourier trans-
form of the convolving kernel is 0. For those frequencies we keep the original values from Fourier
transform of the original variable. Note also the use of the complex conjugate of the Fourier tran-
form of the convolution kernel.

fft_mu2 = fft_mu2_s./conj(fft_h);

I = find(fft_h==0); % Handle zeros in the fft_h properly

fft_mu2(I) = fft_mu(I);

Lastly, we take the inverse Fourier tranform of the backsampled and deconvolved variable to find
the fine-scale representation of the changed variable.

mu2 = real(ifftn(fft_mu2));

The rightmost plot in Figure 5 shows the final result of the upscaling.

The desired difference between the final variable and the original variable is the constant added
to the upscaled random variable.

mean(mean(mean(mu2-mu)))

ans =

10.0000

Note that this difference is only a check of correctness of the process and is a direct result of the
change in the example, that was addition of constant 10 to the whole field.

Figure 5 shows 2D slices of the variables at the different steps. Note the change in scale between
the two middle plots. This change in scale reflects the addition of the constant 10.

Figure 5. Upscaling µ in MATLAB. The plots show 2D slices at the different steps in the upscaling. Note the
change in scale between the two middle plots, that is the two upscaled variables.

Smoothing of the prior covariance function
For upscaling the covariance matrix Σm in Eq. (26) and (27), we use double convolution of the
covariance function with the same convolution kernel as for the mean, reflecting local averaging.
We assume the covariance to be stationary meaning that the standard deviation of the seismic
parameters m is constant, that is σ(x) = σ for all x. Considering the fine-scale reservoir grid, we
can express the covariance between m(xi) and m(xj) as a function c of the distance between the
points xi and xj :

C(m(xi),m(xj)) = C(xi,xj) = σ(xi)σ(xj)ρ(xi − xj) = c(xi − xj) = c(xi,xj) (48)

Here σ(xi) is the standard deviation of m and ρ(xi − xj) is the correlation coefficient between
m(xi) and m(xj) only depending on the distance between the two points. The distance (xi − xj)
is what is later referred to as lag.

We define smoothing of the covariance given by the function c(xi − xj) as a convolution:

c̄(xi, xj) =

∫
c(xi, x)h(xj − x) dx = σ2[h ∗ ρ](xi, xj) (49)

18 Inversion of gravimetric data



where we define the function h(x) as an averaging function, identically as in Eq. (37):

h(x) =

{
1
NB

if x is within the first coarse grid block
0 otherwise.

(50)

For the double convolved covariance we have

¯̄c(xi, xj) =

∫
c̄(x, xj)h(x− xi)dx = σ2[h ∗ ρ ∗ h](xi, xj) (51)

Applying the convolution theorem on the double convolved covariance gives pointwise multipli-
cation in the Fourier domain:

¯̄c(xi, xj) = σ2F−1 · [F{h} · F{ρ} · F{h}](xi, xj) (52)

Note the overline above the second Fourier tranform of the kernel which denotes the complex
conjugate.

This is then the smoothed covariance function we are interested in:

Cs = ¯̄c(xi, xj) (53)

We introduce spectral density ρ̃ as the Fourier transform of the correlation function ρ:

F{ρ}(ω) = ρ̃(ω) (54)

Subsampling the prior covariance function
Subsampling the covariance function follows the same procedure as described for the mean. In the
real domain, subsampling consists of selecting values from the smoothed variable corresponding
to the first cell in each coarse grid block. Subsampling in the frequency domain corresponds to
keeping the low frequencies only. Formulas are identical as for the mean, thus not repeated here.

Backsampling with truncation of the posterior covariance function
Likewise as for the subsampling, the backsampling process is the same for the covariance function
as for the mean. Again, the formulas are identical as for the mean, thus not restated here.

Reverse smoothing of the posterior covariance function
The reverse smoothing operation on the covariance function is performed as double pseudo-
deconvolution defined as pointwise division in the Fourier domain:

F{C+} = F{C+
s }./

(
F{h}F{h}

)
(55)

Note again the complex conjugate of the Fourier transform of the kernel.

Again as for the deconvolution of the mean, we include special treatment for division by 0. For
the elements where F{h} = 0 we again insert the value of the Fourier transform of the prior
covariance corresponding to the current frequency ω:

F{C+}(ω) = F{C}(ω) (56)

Reshaping of the covariance function to a covariance matrix
Reshaping of the mean is a straightforward vectorization of a three dimensional cube. Reshaping
the three-dimensional upscaled covariance matrix to a two-dimensional matrix on the other hand,
needs more consideration.
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First of all, note the dimensions of the covariance function and covariance matrix: The upscaled
covariance function forms a 3D matrix (often referred to as cube) of size NCX ×NCY ×NCZ and
reflects the covariance of one position to all the other positions in the grid. The matrix product in
the conditional inversion expressions (Eq. (26) and (27)) requires a covariance matrix of size NC×
NC . The covariance matrix reflects the covariance between two positions in the reservoir grid.
In other words, the element in the covariance matrix in position (i, j) is the covariance between
position i and j.

The reshaping of the function to the matrix is done with respect to the lag, that is the distance of
one point to another point. Computation of the lag index is sketched in Algorithm 1 and actual
MATLAB code is attached in Appendix C.1.

According to the lag index, values from the covariance function is spread out to one or more po-
sitions in the covariance matrix. This process is sketched out in Algorithm 2 and actual MATLAB
code is attached in Appendix C.2.

The reverse process of forming a covariance function from the covariance matrix, consists of loop-
ing through the set of all lag indices and for each set average all contributions in the covariance
matrix that correspond to this lag index. Algorithm 3 sketches this process and actual MATLAB
code is in Appendix C.3.

MATLAB example of upscaling covariance
We generate a covariance function of dimensions 64×64×64 cells and upscale to a 8×8×8 coarse
grid. The top leftmost plot in Figure 7 shows a 2D slice of the covariance function.

We define the lag as the index distance between two cells. Here we include an example of lag
index grid for a 4×4×4 grid in Figure 6. Colors indicate the numbers from 1 to 4. White color/no
color means not defined lag index.

Figure 6. Example of the indices defining the lag index grid for a 4 × 4 × 4 grid. The colors indicate the
numbers from 1 to 4. No color means not defined lag index.

Smoothing the covariance function is done by double convolution. Here we include the MATLAB
code for this step. Note the use of absolute value for the Fourier tranform of the convolution
kernel.

fft_covFunc3D_s = fft_covFunc3D.*abs(fft_h).^2;

Second left plot in the top row in Figure 7 shows a slice of this smoothed variable.

We subsample and scale the subsampled variable as in the case for upscaling of the mean. The
second right plot in the top row in Figure 7 shows the slice of this variable. Note no change in
scale from the smoothed variable, and note the reduction in number of cells.

Reshaping of the covariance function to a two-dimensional covariance matrix is done according
to the algorithmic descriptions in the above section. The matrix is shown in the top rightmost plot
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for cell (i1, j1, k1) do
Define global index I
for cell (i2, j2, k2) do

Define global index J
Define lag: (∆i,∆j,∆k) = (i2, j2, k2)− (i1, j1, k1)

if |(∆i,∆j,∆k)| ≤ (nx

2 ,
ny

2 ,
nz

2 ) then
if (∆i,∆j,∆k) > (0, 0, 0) then

Lag index for (I, J) = (∆i+ 1,∆j + 1,∆k + 1)

else
Lag index for (I, J) = (nx + ∆i+ 1, ny + ∆j + 1, nz + ∆k + 1)

end if
else

Lag index for (I, J) undefined
end if

end for
end for

Algorithm 1. Find lag index

for cell (i1, j1, k1) do
Define global index I
for cell (i2, j2, k2) do

Define global index J
if Lag index of(I, J) is defined then

Covariance matrix position (I, J) = element from covariance function in lag index for
(I, J)

else
Covariance matrix position (I, J) = 0

end if
end for

end for

Algorithm 2. Reshape according to lag

for cell (i1, j1, k1) do
Define global index I
for cell (i2, j2, k2) do

Define global index J
if Lag index of (I, J) defined then

Sum(lag index) += cov matrix(I, J)
Count(lag index) += 1

end if
end for

end for
for cell (i1, j1, k1) do

covariance function (i1, j1, k1) = sum(i1, j1, k1)/count(i1, j1, k1)

end for

Algorithm 3. Reshape back to 3D covariance function
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in Figure 7. Note the elements are of the same scale as the upscaled covariance. For the interested
reader we include the MATLAB code of the functions in Appendix C.2 and C.3

The reshaped covariance matrix is now denoted Sigma in the MATLAB code. For the purpose of
a simple example of upscaling, we introduce a simple modification of the variance: A reduction
of the variance to half of the origianl values. We point out that in an actual case of upscaling the
covariance, the modification of the covariance will be Bayesian inversion.

Sigma_changed = Sigma*0.5;

This matrix is shown in the lowest leftmost plot in Figure 7. Note the change of scale from the top
rightmost plot, reflecting that the changed covariance matrix has reduced the values to half of the
original values.

Likewise as for reshaping from covariance function to covariance matrix, the reverse reshap-
ing is described in algorithmic form above and we only include the MATLAB functions in Ap-
pendix C.3. The 2D slice is shown in the second left in the lower row in Figure 7.

The reverse process of upscaling includes again removing scaling of the upscaled (and modified)
covariance function before applying the inverse Fourier transform, with subsequent backsam-
pling in the Fourier domain. This is done as for the mean. The backsampled slice is shown in the
second right plot in the lower row in Figure 7.

Lastly, the reverse smoothing operation is done as a double pseudo-deconvolution. Again, note
the use of absolute value of the Fourier transformed convolution kernel.

fft_covFunc3D_ss = fft_covFunc3D_backsampled./abs(fft_h.^2);

I = find(fft_h==0); % Handle zeros in the fft_indexGrid properly

fft_covFunc3D_ss(I) = fft_covFunc3D(I);

covFunc3D_ss = real(ifftn(fft_covFunc3D_ss));

The rightmost lower plot in Figure 7 shows the final variable.

Figure 7. 2D slices of the covariance at the different steps in the upscaling process. Note different resolutions
and scales of the colorbars of the plots.
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6.3 Adjustment of the upscaled inverse problem to a positive definite sys-
tem

Σus,v

Reshaping

Σus,v
* Σus,v

*+

Reshaping

Bayesian

inversion

Adjusting to

positive definite

usC

Cus
*+

Subsampling

C s

Smoothing

by convolution

Selection

C s
+ C ++

usC

Backsampling Deconvolution

C

Figure 8. Mnemonic illustration of the process of adjusting the covariance matrix. Superscript star denotes
adjustment to the matrix, while superscript + denotes conditioning by Bayesian inversion.

In Figure 2 the mnemonic sketch indicates Bayesian inversion of the upscaled covariance matrix
with no other changes than just reshaping. However, the covariance function is defined on a cyclic
domain so when the covariance matrix is created lags extending half of the padded grid are set to
zero. This might result in a covariance matix which is not positive definite.

Hence, Figure 8 illustrates the detour in the upscaling chain to obtain positive definiteness and the
way back to the downscaled steps needed for a complete solution. This subsection will describe
the two added steps of adjusting the upscaled inverse problem to a positive definite system and
reverting the effect to obtain "true" inverted covariance function. We point out that these adjust-
ments described here are tailored for use with upscaled Bayesian inversion of gravimetric data,
due to the low frequent content of the data.

For adjusting the upscaled covariance matrix Σus,v to a positive definite matrix, we first find the
eigendecomposition

Σus,v = XΛX−1 (57)

where Λ is diagonal and consists of the eigenvalues. If the eigenvalues are negative then the co-
variance matrix is not positive definite. The simple solution is then to replace these values with
a small positve value. However the size of this positive number might depend on the case con-
sidred. In order to get a number which is generic, we study the eigenvalues of the cyclic covari-
ance function. These eigenvalues are found as the Fourier transform of the covariance function,
which is known to be positive definite. Thus a natural selection for the smalest eigen value of the
reshaped covariance matrix is the smallest eigen value of the cyclic covariance function.

We define λmin as the smallest magnitude in the Fourier domain of the smoothed and upscaled
covariance function

λmin = min (|F{Cus}|) (58)

We replace all small and possibly non-positive eigenvallues of Σus,v with λmin:

Λ∗ = max (Λ, λmin) (59)

The adjusted covariance matrix is set to be

Σ∗us,v = XΛ∗X−1 (60)

This matrix has the property of being positive definite with all eigenvalues positive. Now the
matrix can be used in Bayesian inversion.
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Reverting effects of positive definiteness to obtain "true" inverted covariance matrix
The reverse process of modifying eigenvalues in the eigendecomposition for obtaining a positive
definite matrix, is not of interest in this context. We are rather interested in removing the effects
of the adjustment on the solution of the problem, and only keeping the effects of the Bayesian
inversion. Considering the inverse problem for the covariance function in the Fourier domain, we
note that Bayesian inversion only affects low frequencies, and mostly effects the average level of
the covariance function. Thus the largest reduction in uncertainty should be seen in the level of
the parameters, i.e in the first component in the Fourier domain.

We thus define a reference value as the difference in the Fourier domain between the first ele-
ment in the covariance function with adjusted eigenvalues and the first element in the posterior
covariance function:

mreference = F{C∗us}(1, 1, 1)−F{C∗+us }(1, 1, 1) (61)

If the change reduction in the variance is not more than a certain precentage og this reduction
then the contribution of the inversion to this component is considered to be negeligable.

Then looping through all cells, we consider the difference in the Fourier domain between the
elements in the adjusted covariance matrix and the elements in the posterior covariance matrix:

m = F{C∗us}(xi, yj , zk)−F{C∗+us }(xi, yj , zk) (62)

If the difference is larger than a certain limit, here set to be νmref, ν = 0.05 (corresponding to
a reduction larger tna 5% of the base value), we find a factor to multiply the original upscaled
covariance function, to incorporate the effects of the Bayesian inversion:

m > ν mreference

Define the wanted ratio

r =
F{C∗+us }(xi, yj , zk)

F{C∗us}(xi, yj , zk)
(63)

However, to avoid increase of variance this ratio should never be larger than 1:

R(xi, yj , zk) = min (r, 1) (64)

R is now a matrix consiting of factors. To incorporate the effect of the Bayesian inversion we
use the factors in the matrix R to multiply the upscaled prior covariance function in the Fourier
domain:

F{C+
us} = R. · F{Cus}
C+
us = F−1{R. · F{Cus}}

(65)

For small differences in the Fourier domain between the element in the adjusted covariance matrix
and the posterior covariance matrix, we keep the element from the prior covariance matrix, hence
the factor in the R matrix is set to 1. Algorithm 4 summarizes these steps.
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for cell (xi, yj , zk) do
m = F{C∗us}(xi, yj , zk)−F{C∗+us }(xi, yj , zk)

if m > νmref then
r =

F{C∗+
us }(xi,yj ,zk)

F{C∗
us}(xi,yj ,zk)

R(xi, yj , zk) = min (r, 1)

else
R(xi, yj , zk) = 1

end if
end for
F{C+

us} = R. · F{Cus}

Algorithm 4. Algorithm for finding factors to multiply the prior covariance matrix to incorporate effects of
Bayesian inversion.

7 Example with synthetic data

We include a MATLAB example with synthetic data to illustrate the gravimetric inversion de-
scribed in the above sections. We also want to show that the upscaling of the inversion problem
does not add significant errors and can be used to overcome the possibly large computational and
memory costs of the original fine scale problem.

In the example we mimic the geometric outline of observations points above Utsira formation
in the Sleipner Project. We model a reservoir at the depth of 1000 m below sea bed, extending
about 1 km in easting direction and about 2 km in northing direction. Observations points are
placed mainly on a line in easting direction, with the majority of points outside the outline of the
reservoir. The geometry is shown in Figure 9.

We discretize the reservoir with 128 × 256 × 64 grid cells in east, north and vertical direction
respectively. The physical dimension of one grid cell is 8 m×7.5 m×5 m. We assign a density value
for each grid cell. Note that this is a total density of the subsurface, not density of for instance CO2.
Density values are generated by a Gaussian random field with mean 2 g cm−3 and variance 0.05.
The front page illustration shows the gravity response from the reservoir (outlined with dotted
lines) in the observation points, marked with black circles. This computed gravity response from
the reservoir is used as synthetic data for the gravimetric inversion in this example.

Figure 9. Observations points marked with blue relative to outline of reservoir. Note that most of the obser-
vations points are outside the region that is right above the reservoir.
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Figure 10. Plot of synthetic gravity data (red line) as well computed gravimetric response from upscaled
reservoir grid models. The plot shows very small differences in gravimetric response from upscaled reser-
voirs, also when the upscaling factor is very high.

7.1 Upscaling of the forward model
We first use the forward model, Eq. (7), however without error term and contribution from vol-
ume outside the reservoir to compute gravity response of a set of upscaled reservoir models. We
upscale the density field and the grid cell dimensions and for all observation points compute
the gravity response contribution. Figure 10 shows how overlapping the gravity reponses for the
upscaled models are with the fine grid gravity response (the synthetic data). This result is quite
reasonable since the density field is indeed close to a constant, and the distance from the sea bed
to the top of the reservoir (1000m) is relatively large, such that the approxmiation in Eqaution (32)
is indeed satisfactory.

7.2 Upscaled Bayesian inversion
Recall that the gravimetric observations in themselves do not provide stand-alone data for the
seismic parameters due to the unknown contribution to the response from the volume outside
the reservoir. Instead, we use the difference between two gravimetric observations to obtain the
difference in the seismic parameter, refer Equation (15). We therefore generate a second synthetic
gravimetric respons on the fine grid, such that we can use the difference between the two data sets
in the conditinal inverse problem. We assign the difference in gravimetric response to arise from
the reservoir. This difference is plotted as slices in all three directions in Figure 11, Figure 12 and
Figure 13, as the lower rightmost plot. We see that the difference is a small increase in the middle
of the reservoir along the y-direction.

We upscale the reservoir to dimensions 8 × 16 × 4 (upscaling factor of 16 in all directions). Prior
mean is a constant field of value 0.00004. The prior covariance function has correlation range
2000, 500, 400 in the three directions. A small error term, Σε, is added as in Eq. (22), with diagonal
elements equal to 1% of the mean of GΣGT in Eq. (22).

The results are plotted as slices in all three directions, for both the mean and covariance function,
with the latter plotted both in the real domain and Fourier domain. For each variable we plot the
prior, the smoothed prior, the upscaled prior and then the upscaled posterior, smoothed posterior
and final posterior. Refer to the mnemonic scheme in Figure 2. For the covariance function in the
real domain, the upscaled covariance matrix is also included in the plots.

26 Inversion of gravimetric data



Figure 11. xy-slices of the stochastic mean. Upper row shows the upscaling of the prior mean, with the
leftmost plot being on the origianl scale, the second left being the smoothed mean, while the rightmost is
the upscaled mean. The lower row shows the reverse upscaling of the posterior mean. Second rightmost is
the upscaled posterior, second left is the backsampled posterior mean, and the leftmost is the final posterior
mean on the original scale. Lower rightmost plot shows the corresponding gravimetric data.

Figure 12. xz-slices of the stochastic mean. The order of the different stages of the variable is described in
the caption to Figure 11.

Figure 13. yz-slices of the stochastic mean. The order of the different stages of the variable is described in
the caption to Figure 11.
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Figure 14. xy-slices of the stochastic covariance function. Upper row shows the upscaling of the prior covari-
ance, with the leftmost plot being on the origianl scale, the second left being the smoothed covariance, while
the second right is the upscaled covariance function. The rightmost plot is the upscaled prior covariance
matrix. The lower row shows the reverse upscaling of the posterior covariance. The rightmost plot is the up-
scaled posterior covariance matrix. Second rightmost is the upscaled posterior covariance function, second
left is the backsampled posterior covariance, and the leftmost is the final posterior covariance function on
the original scale.

Figure 15. xz-slices of the stochastic covariance function. The order of the different stages of the variable is
described in the caption to Figure 14.
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Figure 16. yz-slices of the stochastic covariance function. The order of the different stages of the variable is
described in the caption to Figure 14.

Figure 17. xy-slices of the stochastic covariance function in the frequency domain. The order of the different
stages of the variable is described in the caption to Figure 14. The covariance matrix is not reported in this
figure.
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Figure 18. xz-slice of the stochastic covariance function in the frequency domain. The order of the different
stages of the variable is described in the caption to Figure 14. The covariance matrix is not reported in this
figure.

Figure 19. yz-slice of the stochastic covariance function in the frequency domain. The order of the different
stages of the variable is described in the caption to Figure 14. The covariance matrix is not reported in this
figure.
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8 Gravimetric inversion in the 4D inversion setting

In the joint 4D seismic inversion loop, the seismic parameters are conditioned by different inver-
sion steps in a sequential order. The inversion steps consist of the seismic inversion, travel time
inversion and gravimetric inversion. These are all performed sequentially in a time loop and per-
formed for suitable vintages for all data types. The final posterior model of the seismic parameters
is the outcome of the sequence of inversions at different time steps.

The gravimetric inversion needs therefore to be incorporated in the framework of seismic amplil-
tude and traveltime inversion. The actual realization of the framework is in CRAVA.

9 Conclusions

We document inversion of gravimetric data in a geomodel. The approach is fittet into the gen-
eral framework of 4D inversion documented in separate notes. In order to overcome the com-
putational compexity, we apply upscaling to reduce the number of unknown parameters in the
inversion. We preform an geostatistical inversion on the upscaled grid, and back transforms the
estimates and uncertainty to the original scale of the geomodel. The full inversion scheme is in-
tegrated in a framework of stationary observations such that the posterior uncertainty is repre-
sented with a stationary covariance function. The approach has been tested in an example, which
shows that the data carry information about low-frequent components in the density change.
Thus the results from gravimetric inversion alone is not suited for inferring local details about the
density, but can substantiate claims to be made on a larger scale. This is in good agreement with
previously published results which generally use the gravimetric data to estimate properties on a
larger scale, such as the average density of CO2 in the formation where it is injected.
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A Lognormality of the seismic parameters

The seismic parameters given in m follow a lognormal distribution. That means that it is the
logarithm of the variables that follows a normal distribution:

logm = [log vp, log vs, logρ] ∼ N (µm,Σm) (A.1)

For small standard deviations compared to the expectations for all components in the multinor-
mal distribution, we can assume for a lognormal distribution

log [m ∼ N (µm,Σm)] (A.2)

that also the parameter itself is approximately normally distributed

m ∼ N (µ∗m,Σ
∗
m) (A.3)

with the following transformations between the expectations and variances:

µ∗m = expµ+0.5σ2

, σ2 = diag(Σm)

Σ∗m = (expΣm −1). · µ∗(µ∗)T
(A.4)

In the explanations in this note, we write all expressions using only the seismic parametersm and
its normal distribution. However, in the final calculations in the CRAVA software, which is where
the gravimetric inversion eventually will be implemented, the inversion will be done using the
logarithm of the seismic parameters.

B MATLAB example of one-dimensional upscaling

For the sake of intuitive visualization and verification of the upscaling steps, we include a sim-
ple one-dimensional example with complete MATLAB code. Following what happends in the
smoothing and subsampling for a one-dimensional line is easier than for a multi-dimensional
example, and thus documenting the example has been a good source of learning.

We have a original fine grid of 128 cells and want to upscale the grid to have 8 coarse grid blocks.
Each coarse grid block thus consists of nb = 16 cells.

nx = 128; % original grid

nx_up = 8; % Upscaled grid

nb = nx/nx_up;

We have a one dimensional random variable A, plotted with blue color in Figure B.1. Next, the
convolving kernel is defined as an averaging function

h = zeros(1,nx);

h(1, 1:nb) = 1/nb;

We Fourier transform the random variable and the convolution kernel

fft_A = fftn(A);

fft_h = fftn(h);

Applying the convolution theorem lets us do convolution as point wise multiplication in the
Fourier domain. Note that we use the complex conjugate of the convolution kernel.

fft_A_s = (fft_A).*conj(fft_h);

To find the representation of the smoothed random variable, we take the inverse Fourier trans-
form of the smoothed random variable. Note that we expect the variable to only have real num-
bers, hence we take the real part of the inverse Fourier transform. The smoothed variable is plotted
with green color in Figure B.1.

32 Inversion of gravimetric data



A_s = real(ifftn(fft_A_s));

Subsampling in the Fourier domain corresponds to keeping the low frequencies. Here we consider
the first nx_up/2 frequencies as low frequencies as well as the last nx_up/2-1 frequencies in the
MATLAB representation

fft_A_us = fft_A_s([1:nx_up/2, (nx-(nx_up/2)+1):nx]);

We take the inverse Fourier transform of the subsampled variable. Again we only keep the real
component of the transform.

A_us = real(ifftn(fft_A_us));

In the process above, we have done two forward FFT operations and one inverse FFT. In addition,
the averaging convolution kernel introduces scaling into the expression. We therefore need to re-
scale the inverse Fourier tranform to get comparable values to plot. In Matlab the scaling is 1/nb.
This variable is plotted in red color in Figure B.1.

A_us = A_us*1/nb;

To exemply both strategies for subsampling, we now subsample in the real domain. We select
every cell in the smoothed random variable that corresponds to the first cell in each coarse grid
block to obtain the subsampled variable. The black line in Figure B.1 shows this variable.

A_us2 = A_s([1:nb:nx]);

In Figure B.1 note the shift in plotting of the smoothed values. Even though smoothing gives one
value for each of the original values, then the first value does indeed correspond to the first cell
in the coarse grid block. The first cell in the coarse grid block is best represented by the position
of (approximately) the mid-cell of the coarse grid block. We therefore shift the smoothed variable
to match up this representation. Also note the stair-plotting of the upscaled values.

figure;

plot(1:nx, A, ...

nx/nx_up/2+1:(nx+nx/nx_up/2), A_s, ’g-’, ’LineWidth’, 2);

hold on;

stairs(1:nx/nx_up:(nx+nx/nx_up), [A_us A_us(end)], ’r-’, ’LineWidth’, 2);

stairs(1:nx/nx_up:(nx+nx/nx_up), [A_us2 A_us2(end)], ’k-’, ’LineWidth’, 2);

legend(’Original A’, ’Smoothed A_s’, ...

’Upscaled in FFT domain: A_{us}’, ...

’Upscaled in real domain: A_{us2}’, ...

’Location’, ’Best’);

xlabel(’x’); ylabel(’A(x)’);

Figure B.1. One dimensional example: Blue line is the original variable, the green line is the smoothed
variable, the red line is the upscaled variable with subsampling in the Fourier domain, and lastly, the black
line is the upscaled variable with subsampling in the real domain.
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We now "do something" in the upscaled domain. In this case we add a constant to the variable.
The changed variable is plotted as the red line in Figure B.2. Note the scale of the y-axis compared
to Figure B.1.

B_us = A_us + 10;

Firstly, in the reverse process of upscaling, we Fourier transform the upscaled and modified ran-
dom variable. Note that we reverse the scaling introduced of the inverse Fourier transformed
upscaled variable.

fft_B_us = fftn(B_us*nb); % Scale before doing fft

Backsampling in the Fourier domain consists of putting back modified low frequencies in the
smoothed (unchanged) variable. The backsampled variable is plotted as the green line in Fig-
ure B.2.

fft_B_s = fft_A_s;

fft_B_s([1:nx_up/2, (nx-(nx_up/2)+1):nx]) = fft_B_us;

B_s = real(ifftn(fft_B_s));

We carry out pseudo deconvolution. Note the special treatment where the Fourier transform of the
convolving kernel is 0. For those frequencies we keep the original values from Fourier transform
of the original variable. Note also the use of the complex conjugate of the Fourier tranform of the
convolution kernel.

fft_B = fft_B_s./conj(fft_h);

I = find(fft_h == 0);

fft_B(I) = fft_A(I);

Lastly, we take the inverse Fourier tranform of the backsampled and deconvolved variable to find
the fine-scale representation of the changed variable. Note no scaling.

B = real(ifftn(fft_B));

Plotting of the changed and down-scaled variable is shown in Figure B.2 as the blue line. Note
the identical shape of the line compared to the original variable in Figure B.1.

figure;

stairs(1:nx/nx_up:(nx+nx/nx_up), [B_us B_us(end)], ’r-’, ’LineWidth’, 2);

hold on;

plot(nx/nx_up/2+1:(nx+nx/nx_up/2), B_s, ’g-’, ...

1:nx, B, ’b-’, ’LineWidth’, 2);

legend(’Upscaled: B_{us}’, ...

’Backsampling in FFT domain: B_s’, ...

’Deconvolved: B’,...

’Location’, ’Best’);

xlabel(’x’); ylabel(’A(x)’);

To verify the process, we subtract the original random variable from the changed random vari-
able. The desired result is that the difference is the constant added to the upscaled variable.

mean(B-A)

ans =

10.0000
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Figure B.2. The 1D example after a change has been done to the variable. The red line is the changed
upscaled variable, the green line is the variable that is backsampled in the Fourier domain, and finally,
the blue line is the deconvolved fine-scale variable. Note the identical shape of the blue line compared to
Figure B.1 and the shift on the y-axis.

C MATLAB functions

C.1 Find lag index
function lag_index_grid = MakeLagIndexGrid(nx_up, ny_up, nz_up)

lag_index_grid = zeros(nx_up*ny_up*nz_up, nx_up*ny_up*nz_up, 3);

for k1 = 1:nz_up,

for j1 = 1:ny_up,

for i1 = 1:nx_up,

I = i1 + (j1-1)*nx_up + (k1-1)*nx_up*ny_up;

for k2 = 1:nz_up,

for j2 = 1:ny_up,

for i2 = 1:nx_up,

J = i2 + (j2-1)*nx_up + (k2-1)*nx_up*ny_up;

lag = [i2, j2, k2] - [i1, j1, k1];

if(abs(lag(1)) <= nx_up/2 && abs(lag(2)) <= ny_up/2 && abs(lag(3)) <= nz_up/2)

if(lag(1) >= 0)

ind1 = lag(1) + 1;

else

ind1 = nx_up + lag(1) + 1;

end

if(lag(2) >= 0)

ind2 = lag(2) + 1;

else

ind2 = ny_up + lag(2) + 1;

end

if(lag(3) >= 0)

ind3 = lag(3) + 1;

else

ind3 = nz_up + lag(3) + 1;

end

lag_index_grid(I,J,:) = [ind1, ind2, ind3];

else

lag_index_grid(I,J,:) = [-1,-1,-1];

end

end

end

end
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end

end

end

C.2 Reshape according to lag
function A = ReshapeAccordingToLag(A_3D, nx_up, ny_up, nz_up, lag_index)

A = zeros(nx_up*ny_up*nz_up, nx_up*ny_up*nz_up);

for k1 = 1:nz_up,

for j1 = 1:ny_up,

for i1 = 1:nx_up,

I = i1 + (j1-1)*nx_up + (k1-1)*nx_up*ny_up;

for k2 = 1:nz_up,

for j2 = 1:ny_up,

for i2 = 1:nx_up,

J = i2 + (j2-1)*nx_up + (k2-1)*nx_up*ny_up;

if(lag_index(I,J,1)==-1 && lag_index(I,J,2)==-1 && lag_index(I,J,3)==-1)

A(I,J) = 0;

else

A(I,J) = A_3D(lag_index(I,J,1),lag_index(I,J,2),lag_index(I,J,3));

end

end

end

end

end

end

end

return;

C.3 Reshape back to 3D
function A_3D = ReshapeBackTo3D(A, nx_up, ny_up, nz_up, lag_index)

A_3D = zeros(nx_up, ny_up, nz_up);

sum_A = zeros(nx_up, ny_up, nz_up);

count = zeros(nx_up, ny_up, nz_up);

for k1 = 1:nz_up,

for j1 = 1:ny_up,

for i1 = 1:nx_up,

I = i1 + (j1-1)*nx_up + (k1-1)*nx_up*ny_up;

for k2 = 1:nz_up,

for j2 = 1:ny_up,

for i2 = 1:nx_up,

J = i2 + (j2-1)*nx_up + (k2-1)*nx_up*ny_up;

if(lag_index(I,J,1) > 0 && lag_index(I,J,2) > 0 && lag_index(I,J,3) > 0)

i = lag_index(I,J,1);

j = lag_index(I,J,2);

k = lag_index(I,J,3);

sum_A(i,j,k) = sum_A(i,j,k) + A(I,J);

count(i,j,k) = count(i,j,k) + 1;

end

end

end

end

end

end

end

for k1 = 1:nz_up,

for j1 = 1:ny_up,

for i1 = 1:nx_up,

if(count(i1,j1,k1)>0)

A_3D(i1,j1,k1) = sum_A(i1,j1,k1)/count(i1,j1,k1);

end

end

end

end
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