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1 Introduction 

A major part of the NFR funded MonCO2 project is to integrate seismic-travel time 
data, seismic amplitude data, and gravimetric measurements with a stochastic rock 
physics model in order to obtain a best possible picture of the spatial distribution of the 
injected CO2.  

This note describes how to use the underlying rock physics model to determine a 4D 
prior model for seismic parameters. The main 4D-framework for the inversion and 
summary of the workflow is documented in the note Joint 4D inversion of multiple data 
sources for CO2 monitoring (Kolbjørnsen and Kjønsberg, 2011). Details regarding other 
individual steps are documented in separate notes. We start this note with a short 
review of the main ideas expressed in Joint 4D inversion, and then describe how to 
obtain the desired quantities from the rock physics model. 

1.1 Prelude 
As described in Joint 4D inversion of multiple data sources for CO2 monitoring, the 
unknown parameters seen from the point of view of data inversion are a set of seismic 

parameters defined at each time step, {  }   
 . We use a prior model for these 

parameters that is a Markov chain. The Markov property is expressed as 

 (               )   (       )  

and it implies that the joint distribution for all time steps can be written in terms of the 
probability distribution at the initial state and the transition probabilities for each 
successive state:   

                                       (          )   (  )∏  (       ) 
 
    

This joint distribution is thus defined by the distributions:  

   (  )     (       )        

The model we will use is formulated in a Gaussian-linear framework, in which case the 
statistical model for the forward transitions is described by the relations 

                       

where    ,         are matrices; and    and                are independent 
random vectors with the distributions:  

    (     ) 

     (      )         

It follows that at any time instance   the seismic parameters have a multi-normal 
distribution 

    (     )   

The mean and covariance are obtained from the recursive relations: 

             , 
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    . 

Thus what is needed for the 4D prior model for the data inversion is to specify the 
mean and covariance of the seismic parameters at the initial time, 

     ; 

the transition matrices for all later time steps,  

                       

and the mean and covariance of the error term for each time step, 

                         . 

The following sections describe how to do this from the rock physics model and 
statistical rock physics parameters. 

2 Methodology  

2.1 4D model for seismic and rock physics parameters 
Figure 1 illustrates the model that relates 4D seismic parameters to rock physics 
relations. At each time step         we have a set of point-wise rock physics 

parameters denoted   . These are related by a Markov chain, hence the joint 
probability is 

 (          )   (  )∏  (       )
 
   . 

The relation  (       ) is represented by the horizontal, yellow arrows in Figure 1. We 
assume locality in time, meaning that  

 (             )   (     ). 

This is represented by the vertical (red) arrows in the figure. We presume there is a 
well-defined rock physics model that at any time step allows us to compute the seismic 
parameters from the rock physics parameters: 

    (  )  

The rock physics relations expressed by this function can be of many kinds, for 
instance a differential effective medium model. At this point we do not need to specify it 
any further, just presume that it is known. 

The Markov property in the rock physics parameters and locality in time imply a Markov 
property for the seismic parameters: 

 (               )   (       )  

This is in Figure 1 represented by the horizontal, faint red arrows. This Markov property 
is approximated by a linear model: 
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For any given   the matrix    is a fixed transition matrix, while the term     describes 
additional stochastic variability.  

 

Figure 1 Seismic 4D prior from rock physics. The Markov property for rock physics parameters is shown with yellow arrows, the 

locality in time in the relation between seismic parameters and rock physics parameters is shown by red, vertical arrows. The 

implied Markov property for the seismic parameters is indicated with dashed, faint red, horizontal arrows. 

2.2 Splitting into static and dynamic seismic parameters 
Typically, the seismic parameter vector   represents the seismic wave velocities for 
pressure and shear waves,    and   , in addition to the density  . That is,   

          , a 3-dimensional vector. As discussed in Joint 4D inversion of multiple data 

sources for CO2 monitoring, we choose to separately model the dynamic and static 

components of the seismic parameters. That is,        , where the static and 
dynamic components of    ,   , and   are sorted into     and    , respectively. From 

now we represent this as the 6-dimensional vector  

  [
  

  
]  

This implies that 

   [
  

    
] 

and 

   [
        

          
]  

The static and dynamic components of these vectors and matrices are to be found from 
the rock physics model. Typically, the rock physics parameters    can be sorted into 
static and dynamic parameters. But the relation that calculates seismic parameters 
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from rock physics parameters,          (  )  generally does not separately 

compute    and     , only their sum. Hence there is some freedom in what we define 

as the static and dynamic parts of the seismic parameters. We will come back to this 
later. 

2.3 Time correlated samples  
 
For a given reservoir there will typically be some rock physics parameters for which it is 
unphysical to consider variations with time. These are classified as static rock physics 
parameters. An example of this might be, but need not be, clay density. Other 
parameters may clearly be time dependent. In a setting of monitoring CO2 injection into 
an aquifer, the saturation of CO2 versus brine is going to depend on time, and there 
may also be geochemical changes to the rock. Quite generally, we can assume that 
any rock physics parameter can be classified as either dynamic or static. Thus if    is 

the vector of all rock physics parameters at time instance  , it can be written in the 
separated form  

   [
  

    
]  

The static rock physics parameters    are time independent. 

We can use the distinction between dynamic and static parameters to establish time 
correlations in a set of sampled rock physics parameters 

{     [
    

      
]}

   

 

  

Here   {       } labels the set, and at each time instance   we have a sample of 
each rock physics parameter. Time correlations can be obtained as follows: At the 
initial time instance,    , sample all the static parameters      (they are static, but can 

very well be stochastic), and at the time steps           also sample the dynamic 
parameters. The latter can be sampled independently at each time step, although a 
physically more feasible way is to sample the conditioned parameter                . The 

set  

                                                        

then has time correlations arising from two sources: 1) the use of the same sampled 
values for the static parameters at all time instances; 2) the conditioning done when 
sampling the dynamic parameters. For given   and   compute the seismic parameters 
according to 

             (                     )  

If no static rock physics parameters exist, time correlations must be obtained through 
conditioned sampling of                 in order to obtain time correlations. This relation 

typically will be of a stochastic nature. 

Doing this for         we obtain the matrix 

[

                       

   
                       

]  
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where each column represents a set of time correlated seismic parameters. Each row 
represents a series of independent samples for a given time. Two neighboring rows 
have pairwise (column-wise) time correlated samples. For instance is             

correlated with              . The sampled values of this matrix will in the following 

three sections be used to estimate to desired quantities  

     ;                                    

2.4 Point-wise prior for seismic parameters at time t = 0 
In section 1.1 we saw that it is necessary to establish the mean and covariance that 
describe the Gaussian distribution at the first time,    . That is, we need to establish 

   [
  

    
],    [

        

          
]  

these being the parameters that define the distribution function for the seismic 
parameters at time t = 0 , 

    (     )  

In our model the same distribution function is used for all cells of the gridded reservoir. 
Any spatial trends in the seismic parameters are treated separately, and will be 
discussed in section 3.1. Spatial correlations between the seismic parameters are also 
handled separately. More on this can be found in Buland et al., 2003.  

We define the seismic parameters for the first time instance, t = 0 (   ), to be all 
static. That is,  

   [
  

 
],    [

    
  

]  

For the matrix of correlated samples from section 2.3, this means that the dynamic part 
of each sample for     is zero, i.e.          for all        . Estimation of the 

mean and covariance is then done by 

   
 

 
∑     

 

   

  

       (     )  
 

 
∑         

 

 

   

     
   

2.5 Transition matrices 
The relation               implies that 

      (       )    
                    (         )  

We start by estimating 

   [
  

    
],    [

        

          
]  
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and treat the static and dynamic parts separately, for clarity. Our choice of defining the 
seismic parameters for the first time instance to be all static, means that for t = 0 the 
dynamic part of the matrix of correlated samples in section 2.3, is zero, 

          

and for any sample                  ,    , we identify the dynamic parts as the 

difference between this sample and the corresponding (same  ) sample at t = 0: 

                            

Estimation of the mean and covariance elements is then: 

     
 

 
∑       

 

   

  

         (       )  
 

 
∑           

 

 

   

       
   

         
   

         (         )  
 

 
∑             

 

 

   

         
   

We can furthermore write the covariance between two consecutive time instances as 

          (       )  [
          

              
]  

with 

             (           )  
 

 
∑               

 

 

   

           
   

Now all elements needed for finding the transition matrices are estimated from rock 
physics parameters, and the calculation of the matrices    for         is 
straightforward: 

             
    

In the appendix of section 5.1 we prove that the matrix    is on the form 

   [
  

          
]  

This means that 
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       [
  

          
] [

  

      
]  [

  

                   
]  

The static component of the seismic parameters is unchanged, but the new dynamic 
part gets contributions from both the static and dynamic part of the seismic parameter 
    . 

2.6 Correction term 
What is left now is to establish the mean and covariance of the correction term    , 
that is to find 

        

The expression               implies that              . Hence 

   (       )
    (     )     (       )  

       (       )

      (         )  
 

          (    
  )

 
      

            
        

 

           
      (    

  )
 
      

             
   

That is, with the estimations of the previous section we also have estimated 

      (       )             
           (    

  )
 
      

   

In addition to the covariance between the two time steps, held by the matrix       , the 

covariance of the correction term includes the covariance matrices for both time steps 

separately. In the appendix of section 5.2 we prove that the matrix    is on the form 

   [
  
      

]  

We can also find the mean of the correction term: 

              [
 

                        
]  

The correction term, as estimated by means of the formula              , is 
thus concerned only with the dynamic part of the seismic parameters, not the static 
part. 

In addition to the contributions from the rock physics model, as computed above, we 
might also let     contain an element independent of the rock physics. This would 
then represent an independent error term. There is little reason to let this error provide 
any bias or additional correlations to    . Hence we would model it in terms of  

   (     )  

alternatively with separate variance for the static and the dynamic part of the seismic 
parameters. 
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Let us also mention that it would be possible to use a slightly different model. If we 
insist that the correction term has zero mean, i.e. does not itself change the mean 
value of the seismic parameter, it is necessary to make up for this by a changed 

covariance. This can be achieved by a model             ̃ , where the new 
correction term is normally distributed with mean and covariance given by 

  ̃            ̃  [
  
            (     )

 ]  

3 Special issues 

3.1 Trends 
As notes above, our model for seismic parameters, as built from the underlying rock 
physics model, is stationary. That is, the same distribution function is used for all cells 
of the gridded reservoir. This might be an unphysical assumption, as it is not 
uncommon to have for instance depth trends in temperature and pressure. In the case 
of CO2 injection there might also be horizontal trends. The CO2 will, because of 
buoyancy, naturally move upwards, but to some extent some horizontal movement will 
also occur. The latter is enhanced by shale layers and other obstacles hindering the 
vertical flow. At Utsira there are publications reporting on a (horizontal) temperature 
difference of 10°C from the central plume to its outskirts. 

It is important to find out to which extent such non-stationary effects should be included 
in our model. It seems clear that if for instance a temperature gradient is to be included, 
the reason must be that it has a significant effect on what can be detected. I first 
analysis of this is to study to which extent the gradient has any effect on the seismic 
parameters as predicted by the forward rock physics models. The sensitivity to 
parameter changes will typically differ among rock physics models. A second question 
is to which extent the data inversion will be able to distinguish between the seismic 
parameters obtained by the various, say, temperatures. 

The physical existence of trends should be studied for each storage site and injection 
case. Subsequently the need to take into account these trends, if present, in the model 
should be investigated for each rock physics model.  

If the outcome of such an analysis is that trend(s) should be included, this needs to be 
handled outside the prior model building described in these notes. As long as the 
trends do not change the correlations of the seismic parameters, the effects of any 
trend can be added to the mean value   . 
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5 Appendix: Technical issues 

5.1 Proof for the form of the transition matrices 
We prove here that the transition matrices have the form 

   [
  

          
]  

Using the relations of section 2.5 , and the short-hand notation 

  (                  
         )

  
  

we have: 

             
   [

          

              
] [

          

              
]
  

 [
          

              
] [

   
  (                    

  )     
          

            
   

]

 [
  

          
]  

with 

              
  (                    

  )                      
    

              
                       

5.2 Proof for the form of the correction term covariance  
We prove here that the correction term covariance matrices have the form 

   [
  
      

]  

Using the relations of section 2.5 and 2.6 we have 

              
  [

        

          
]  [

          

              
] [

      
 

      
 ]

 [
        

          
]  [

           
              

 

               
                

 ]  

Since  

      (                  )   
   

We find 

   [
  
           

                
 ]  


