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1 Introduction 

A major part of the NFR funded MonCO2 project is to integrate seismic-travel time 
data, seismic amplitude data, and gravimetric measurements with a stochastic rock 
physics model in order to obtain a best possible picture of the spatial distribution of the 
injected CO2. This note defines the main 4D-framework for the inversion and 
summarizes the workflow. Details regarding the individual steps are documented in 
separate notes. A key component in the workflow is the inversion of 4D data into the 
seismic parameters. Here we describe the general model in detail and show how we 
use inversion schemes developed for 3D to achieve results also in 4D. The basic 
assumptions in our approach, discussed in details below are, 1) Markov property in 
time; 2) Linear evolution in time; 3) Local impact of data in time, 4) Linear or 
approximately linear model for data conditioning; 5) Spatial stationarity or approximate 
spatial stationarity of forward map in the problem. 
 
 
Section 2 below recapitulates the general theory of filtering and smoothing in Markov 
fields, and the special linear-Gaussian case. In section 3 we summarize the formulas 
for the linear-Gaussian case, section 4 contains a discussion of special cases of the 
model. In section 5 we outline the workflow of the project and highlight specific choices 
we make in this process.  

2 Methodology 

In this section we present the statistical model for seismic parameters and observations 
and define how our problem is solved. A key point in the work is that in the model/data 
regime we use, our model always obeys a Markov property in the time steps. This 
implies that analyzing the joint distribution of all time-neighbors will give us the 
information we need.  

2.1 The prior model  
 
The seismic parameters defined at each time step  {  }  1

 , are the unknown 

parameters in our present problem.  The prior model is assumed to obey a Markov 
property in time. In a Markov chain the joint distributions are defined by the probability 
distribution at the initial state, and the transition probabilities for all successive states.    

                                        ( 1  2     )   ( 1)∏  (     −1)
 
  2 . 

Thus the distributions to be defined are: 

   ( 1)     (     −1)         

The graphical picture of the situation is described by the figure below: 

 

 
 

𝒎1 

𝒎1𝒎1

 
𝒎2 𝒎3 𝒎𝑛−1   14 𝒎𝑛 
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A property of the Markov process is that this relation also can be inverted.  This 
situation is illustrated in the figure below. 

 

 

This is described by the relation: 
 

                                       ( 1  2     )   (  )∏  (      1)
 −1
  1 .  

In the general case, the reverse relation can be obtained from the direct relation, by 
inverting the joint distribution 
 

 (      1) (   1)   (   1   ) (  ). 

The models we will use are formulated in a linear-Gaussian framework, in which case 
the statistical model for the forward transitions is described by the linear expressions 
 

     ⃗⃗⃗⃗  ⃗  −1     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗           

Where the arrow denotes the direction of the chain;   ⃗⃗⃗⃗  ⃗ ,         are matrices; and 

  1 and    
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗            are independent random vectors with the distributions:  

 

 1   ( 1  1)                                  

   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   (   ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗)          

In this model all seismic parameters have a multi-normal distribution, 

    (     )  

The mean and covariance is obtained from the recursive relation: 

     ⃗⃗⃗⃗  ⃗  −1     ⃗⃗ ⃗⃗ ⃗⃗  ⃗           

     ⃗⃗⃗⃗  ⃗  −1  ⃗⃗⃗⃗  ⃗
 
   ⃗⃗⃗⃗  ⃗      

Thus the reverse chain is defined as:  

     ⃖⃗ ⃗⃗⃗⃗    1    ⃖⃗⃗⃗⃗⃗⃗⃗               

Here the arrow denotes the direction of the chain;   ⃖⃗ ⃗⃗⃗⃗  ,           are matrices; 

and    and    
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗             are independent random vectors with the distributions:  

    (     )                                   

   
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (   ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗    ⃖⃗ ⃗⃗⃗⃗ )          

𝒎1 

𝒎1𝒎1

 
𝒎2 𝒎3 𝒎𝑛−1   14 𝒎𝑛 
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By defining the joint distribution of     and    1 in terms of left and right relations, we 
get the two expressions: 

[
  

   1
]  ([

  

   1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗       1
]  [

       1
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

   1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗     1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗     1
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗     1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

])  

[
  

   1
]  ([  

⃖⃗ ⃗⃗⃗⃗    1     ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗

   1
]  [
  ⃖⃗ ⃗⃗⃗⃗    1  

 ⃖⃗ ⃗⃗⃗⃗    ⃖⃗ ⃗⃗⃗⃗   ⃖⃗ ⃗⃗⃗⃗    1

   1  
 ⃖⃗ ⃗⃗⃗⃗    1

])  

Since these two are identical, this gives the properties of the reverse relations from the 
direct properties:   

  ⃖⃗ ⃗⃗⃗⃗       1
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   1

−1   

   ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗       ⃖⃗ ⃗⃗⃗⃗     1           1
 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    1

−1    1  

  ⃖⃗ ⃗⃗⃗⃗       ⃖⃗ ⃗⃗⃗⃗    1  
 ⃖⃗ ⃗⃗⃗⃗          1

 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   1
−1    1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗    

 

2.2 Observations 
 
The next important element in the model is the connection between data and seismic 
parameters. Data observed at one time step is assumed to depend only on the seismic 
parameters at the same time step. The situation is described by the graph below. 

 

 

 

 

 

 
This is the property of locality in time, which is expressed by the relation:  

 (    1     )   (     )          

In the linear-Gaussian setting the model is described by the following relations 

                     

Where            are matrices; and    are independent error vectors with a normal 
distribution;  

    (    )          

𝒎1 

𝒎1𝒎1

 
𝒎2 𝒎3 𝒎𝑛−1   14 𝒎𝑛 

𝒅1 

𝒎1𝒎1

 
𝒅2 𝒅3 𝒅𝑛−1 𝒅𝑛 
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The conditional distribution of seismic parameters at the first time step is a standard 
inverse relation: 

 ( 1  1)   ( 1) ( 1  1)  ( 1)⁄   

In the Gaussian framework the update of one parameter, given the data at the time 
step, can be found through standard linear-Gaussian inverse framework (Hansen et al. 
2006). In order to avoid mixing this relation with the recursive one, we look at the 
inversion for the first time step only. In this case we have the expressions: 

 ( 1  1)   ( 1 1  1 1)  

 
 1 1   1   1 1

 ( 1 1 1
   1)

−1(   1 1)  

 
 1 1   1   1 1

 ( 1 1 1
   1)

−1 1 1  

 

2.3 Bayesian network and the Kalman filter  
 
The Markov chain prior and the localized observations defines a Bayesian network. 
When we use a linear-Gaussian relation this situation is identical to that of a Kalman 
filter, see Künsch, H.R. (2001). In a filtering approach we compute the distribution of 
the seismic parameter at the current time conditioned to data prior to and including this 

time, that is   (    1     ), for        .  For short we adapt the notation 

          1      

when it is convenient. The filtering solution is found by alternating updating 
(conditioning to data) and predicting (advancing the model according to the Markov 
chain). In the updating step we compute the conditional distribution of the seismic 
parameter given the data. The first conditioning step is discussed in section 2.2.  

2.3.1 Prediction step 

The next step is a generic step for          where the distributions of seismic 

parameter at a time step,   , conditioned to data from all previous time 
steps,   1     −1  is computed, that is  (    1     −1). This is denoted the 
prediction step in filtering theory.  A key property of this computation is that  

 
 (     −1  1     −1)   (     −1)  

 
This property follows from the locality in time assumption, and it means that   −1 
masks data from prior time steps. The joint distribution of a seismic parameter at one 
time step and the seismic parameter of the previous step conditioned to data from all 
previous time steps is therefore factored as: 
 

                    (     −1  1     −1)   (  −1  1     −1) (     −1)   
 
To compute the sought of quantity,  (    1     −1)  we reduce the joint distribution 

by integrating out the seismic parameter at the previous time step   −1.  
 

                    (    1     −1)  ∫ (  −1  1     −1) (     −1)    −1   
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Data from the past influence the seismic parameters at present only through the 
influence it has on the seismic parameter at the previous step. The reverse relation 
 (      1  1     ) plays an important part in the backwards iterations. It is obtained 
from the filter distributions and the prior transitions, using the identity: 

  

 

In the linear-Gaussian theory we simplify notation by introducing the conditional mean 
and covariance for the seismic parameter conditioned to data up to a given time step,  

  (  | 1     )   (         )  

The prediction step in then simply to compute      −1  and     −1 from   −1  −1 

and    −1  −1  . This is given as: 

  

    −1    ⃗⃗⃗⃗  ⃗  −1  −1        

 

    −1    ⃗⃗⃗⃗  ⃗   −1  −1    ⃗⃗⃗⃗  ⃗
 
     

The reverse relation in this step plays an important part in the backward iteration. Using 
the notation,  

         ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   1     ⃖⃗⃗⃗⃗⃗⃗⃗                 

we find the relevant quantities for the backward iteration as: 

 

 

 

It is in particular the matrix     ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ which helps us sort things out below. Note that the 

significance of the result is that we have defined a backward relation in a step where all 
data in the past is taken into account. From the joint distribution 
 

 

  
we find the reverse conditional distribution 
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2.3.2 Updating step 

In the updating step we update our prediction by the data observed at the same time 
step. The general relation is 

 (    1     )   (    1     −1) (     )  (    1     −1) ⁄  

The distribution  (    1     − ) obtained in the prediction step, is used as a basis to 
update seismic parameters at the time step  , with the data observed at the same time 
step.  

Keeping the notation from above,  (  |       )   (         ), the inversion in the 

linear-Gaussian framework is given by the relations: 

         −1       −1  
 (      −1  

    )
− 
(         −1)  

 

         −1      −1  
 (      −1  

    )
− 
      −1  

After the inversion step we have obtained the distribution of seismic parameters at the 
current time, conditioned to observations at all times, the current included.      
                                               
 

2.4 Smoothing  
 
In the filtering approach we have a way to compute the distribution of the seismic 
parameter at a given time conditioned to all data up to and including the time step, i.e. 

 (    1     ). In the smoothing approach we compute the distribution of the seismic 
parameter at a given time conditioned to data of all time steps  (    1     ). 

The expression that gives the most insight to this relation is to consider the joint 
distribution of the elastic parameters at two consecutive time steps, conditioned to all 
data: 

 
The validity of this relation follows from the locality in time assumption in section 2.2.  
 
The expression consist of a prior term,  (       ), which is the joint distribution of the 

seismic parameters at the two time steps; two likelihood terms,  (          )  (  ) 
and  (              )  (    ), which summarize the data impact to the left and 

right, respectively; and a normalization term  (       ) (         )  (       ).  

This proposes an approach for computing all transitions. First perform filtering for both 
the forward chain and the backward chain, then combine the results using the 
expression above. This is however not the common approach.  

The standard approach is to first perform a forward filtering, then use the results of this 
relation to form a backward smoothing with a new set of recursion relations. A key 
identity for the backward computations is the identity: 

 
1 1 1 1 1 1( , | ,..., ) ( | ,..., ) ( | , ,..., )k k n k n k k kp p p  m m d d m d d m m d d

1 1 1 1 1
1 1 1

1 1

( | ,..., ) ( | ,..., ) ( ,..., ) ( ,..., )
( , | ,..., ) ( , )

( ) ( ) ( ,..., )

k k k k n k k n
k k n k k

k k n

p p p p
p p

p p p

  
 




m d d m d d d d d d

m m d d m m
m m d d
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Note that the distribution  (      1  1     ) is known from the forward 
computations, see section 2.3.1. Using the latter, and integrating the joint distribution, 
we find: 
 

 

The distribution  (          ) is the final output of the forward iteration, and gives a 
starting point for the backward recursion. 

In the linear-Gaussian case we have already established the distribution 
  (      1  1     ), thus we only need to integrate out  (   1  1     ) in order to 

find the distribution  (    1     ). It is done by using the rules of double expectation 
and double variance to the conditional expression in section 2.3.1. Summarizing the 
results we have:  

      (         )  

              ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(   1      1  )  

              ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(   1      1  )    ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
 
  

We can now also establish the conditional forward Markov chain  

[
    

   1  
]  ([

    
   1  

]  [
        ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   1  

   1      ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
 

   1  
])   

[
    

   1  
]  ([

    
   1  

]  [
           1  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 

   1  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗       1  
])   

   1  ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 
     

−1     ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   1       
−1        1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

 
   1  
−1    1    

3 Formulas in linear-Gaussian case 

Prior distribution 

1.1 Model (forward)      ⃗⃗⃗⃗  ⃗  −1     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗           

1.2 Distribution initial 
state (forward) 

 1   ( 1  1)                               

1.3 Distribution 
increments 
(forward) 

   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   (   ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗)          

1.4 Mean state k (forward 
recursive) 

     ⃗⃗⃗⃗  ⃗  −1     ⃗⃗ ⃗⃗ ⃗⃗  ⃗           

1.5 
Variance state k      ⃗⃗⃗⃗  ⃗  −1  ⃗⃗⃗⃗  ⃗

 
   ⃗⃗⃗⃗  ⃗    

1 1
1 1 1 1

1 1

( | ,..., )
( | ,..., ) ( | ,..., ) ( | )

( | ,..., )

k n
k n k k k k k

k k

p
p p p d

p


 



 
m d d

m d d m d d m m m
m d d
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(forward recursive) 

1.6 Model (backward)      ⃖⃗ ⃗⃗⃗⃗    1     
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗            

1.7 Progress 
(backward)   ⃖⃗ ⃗⃗⃗⃗      ⃗⃗⃗⃗  ⃗

 
   1
−1   

1.8 Distribution initial 
state (backward) 

    (     )                               

1.9 Distribution 
increments 
(backward) 

   
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    (   ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗    ⃖⃗ ⃗⃗⃗⃗  )            

1.10 Mean increment k 
(backward recursive) 

   ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗       ⃖⃗ ⃗⃗⃗⃗    1         

1.11 Variance increment k 
(backward recursive)   ⃖⃗ ⃗⃗⃗⃗        ⃖⃗ ⃗⃗⃗⃗    1  ⃖⃗ ⃗⃗⃗⃗

 
  

Data 

2.1 Model                       

2.2 Error Distribution     (    )           

2.3 Initial update mean  
 1 1    1   1  

 (   1  
    )

  (       )  

2.4 Initial update variance  
 1 1    1   1  

 (   1  
    )

     1  

Forward iteration 

3.1 Mean 
prediction 
(recursive) 

    −1    ⃗⃗⃗⃗  ⃗  −1  −1         

3.2 Variance 
prediction 
(recursive) 

    −1    ⃗⃗⃗⃗  ⃗   −1  −1    ⃗⃗⃗⃗  ⃗
 
     

3.3 Mean update          −1       −1  
 (      −1  

    )
− 
(         −1)  

3.4 Variance 
update          −1      −1  

 (      −1  
    )

− 
      −1  

3.5 Inverse 
transition for 
data up to k  

    ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗           1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
 
   1  
−1   
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3.6 Conditional 
expectation 

 (        1  )           ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(   1      1  )  

3.7 Conditional 
co-variance    (        1  )           ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗   1      ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

 
  

Smoothing 

4.1 Expected value 
(recursive 
backward)               ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(   1      1  )  

4.2 Covariance 
(recursive 
backward)               ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(   1      1  )    ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗

 
  

4.4 Updated model 
         ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    −1        

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗             

4.3 Updated 
transition     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 
   −1  

−1   −1  −1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗        −1  
−1   −1  −1  ⃗⃗⃗⃗  ⃗

 
     −1
−1       

 Distribution 
updated  
increment 
(forward) 

     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )          

4.4 Expectation 
updated  
increment 
(forward) 

     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗           ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    −1    

4.5 Covariance 
updated  
increment 
(forward) 

    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗            ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    −1      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 
  

 

4 Special cases  

4.1 Types of variables 
 
The unknown parameters are a set of seismic parameters defined at each time 
step  {  }  1

 . , and we use a Markov chain prior model for our parameters.  

In forward-backward type of algorithms we classify the variables as static or dynamic. 
There are often both static and dynamic variables in a chain. Typically a set of 
parameters will have the form 

  
  [  

      
 ]  
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where    (without index k) is the static variable, and        is the dynamic variable at 

time  . The propagation matrix (dropping for convenience the forward arrows here) will 
then have the form  

   [
  

  −     −   
]   

and the incremental mean and variance be on the form  

    [
 

     
]        [

  
     

]  

During time propagation        −1        the static variable remains the same, 
due to multiplication with unity and absence of incremental variance. The static variable 
may influence the dynamic variable through the propagation matrix.  

4.2 Correlated errors 
 
An assumption that might be invalid is that the errors at each time step are 
independent. A simple way of introducing correlations in the errors is to assume that 
there is one common underlying error, and apart from this the errors are independent. 

              

This model is solved by including an error term as a static state variable: 

  
   [     

 ]  

In this case the forward model also must be extended,  

  
  [    ]  

4.3 Multiple data sources 
 
There are two different approaches that can be carried through in the inversion.  Either 
we do one pass of the chain for each data type, or we do one pass of the chain where 
all data types are used in the update step. Which method to prefer, will depend on 
effects that are external to the mathematical calculations. It also depends on the time of 
data collection.  

5 The 4D workflow  

In this section we outline the full workflow, and include some comments related to the 
choices made. 

5.1 Basic choices 
 
When focusing of seismic and gravimetric data inversion, the variables in question are 
seismic parameters, represented by        . These are in turn related to rock physics 
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parameters like saturation   , porosity   , dry matrix bulk modulus    , shear 

modules    , pressure   and temperature  , through rock physics relations. 

In the 4D workflow we chose to use explicit modeling of static and dynamic 
components of the seismic parameters, and it gives the opportunity to study how the 
static parameters affect the dynamic parameters as time passes; 

[
  

    
]  [

  

  −         −       −1
]  [

 
     

]  

We choose to use a filtering algorithm, i.e. calculate     . All necessary information will 

however be stored, such that      can be calculated in a post-process, if we find that 

this is desired later.  We use one pass of the chain, and condition to all data types in 
the update step. This gives the simplest framework, since the update step between 
time instances   and     is done only once. The propagation matrix    then needs to 
be set only once. 

5.2 The 4D workflow for data and rock physics inversion 
 
The full workflow for the inversion is as follows, but notice that some of the points 
below will be further developed in separate notes: 

1) List relevant rock physical parameters ( ) with associated uncertainty, and 
correlations between parameters and in time (          ). (Note 1) 

2) Establish rock physical relations for computing the seismic parameters ( ) from 

rock physical parameters ( ). (Note 1) 

3) Establish the joint distribution of elastic parameters (          ) by 
sampling the rock physical distribution from 1), where    consist of one static 

component and one dynamic component,   
  [  

      
 ].  (Note 1) 

4) Approximate the joint distribution of elastic parameters (          ) by a 
linear-Gaussian Markov process, assuming spatial stationarity, i.e. 

   (       ). Use the relation   ⃗⃗⃗⃗  ⃗     (     −1)  −1
−1  to compute the 

propagation matrix. (Note 1) 

5) For     to number of time steps 

a. Identify the distribution of static and dynamic seismic parameters 
conditioned to the data up to, but not including, the current time. 

b. Compute the distribution of the current seismic parameter as the sum of 
static and dynamic variables, conditioned to the data up to the current 
time.        −1      −1        −1 

c. Save the joint distribution of     −1 and       −1 

d. For     to the number of data types at time   
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i. Compute the conditional distribution of current seismic 
parameter given dataset  , using the appropriate inversion 
methodology. (Note 2, Note 3) 

e. Save the distribution of the current seismic parameter, given all data 
including the current time step,        . 

f. Compute the joint conditional distribution of static and dynamic variables 
given all data including current time, i.e.      and       , by using the 

joint distribution saved in c, and the posterior distribution of the current 
seismic parameter       . (Note 4). 

6) For the last time step, extract the joint posterior distribution of the seismic 
parameters,      and       , and the corresponding  prior distribution (with no 

data conditioning).  

7) For each vertical profile at the last time step, extract prior and posterior 
distributions, then re-compute the posterior distribution in each trace with a 

new, non-stationary Gaussian prior  (       ) that is conditioned to shale 

layers (Note 5). That is, find  
 

 (           )  
   (           )

   (       )
 (       )  

8) For the last time step, for each position in the studied volume extract prior and 
posterior distribution of seismic parameters as computed in step 7), and use 
these to compute the distributions of rock physics properties in the given 
location. (Note 6) 

The notes 1 through 6 are not yet all complete, but Table 1 contains a list of the 
working titles of the notes, and when they are planned to be completed. 

Table 1:  Planned internal project notes for the MonCO2 project. 

Note Title Complete 

1 4D-Prior model from rock physics  2011 

2 4D-Traveltime-inversion 2012 

3 4D-Gravimerty 2012 

4 Using 3D inversion schemes to solve 4D inverse 
problems 

2012 

5 Adjusting the posterior model for shale layers 2012 

6 Interpretation of saturation and porosity from inverted 
4D seismic parameters 

2011 
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7 Appendix:  Modeling assumptions 

The following definitions and assumptions are the basics from which everything else 
can be derived:  

1) Markov property in time: 

 (     −1   −2     )   (     −1). 

2) Linear model in time:  

     ⃗⃗⃗⃗  ⃗  −1     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗            

3) Locality in time for data:  

 (       1     )   (     ). 

4) Linear or approximate linear model for data conditioning: 
 

           
 

5) Spatial stationarity or approximate spatial stationarity of forward map in the 
problem. 

 

8 Appendix: Technical issues 
 
The discussion in the previous section is not fully accurate. When we set up the 

propagation matrix   ⃗⃗⃗⃗  ⃗ in the forward process we interpret the matrix equations in terms 

of point-wise relations, that is matrixes of dimension    . When we discuss the 
inversion part we consider the spatial component as well, thus the dimension of the 

problem is   x  , where   is the size of the grid cells. In this section we show that 
this deliberate slip is indeed justified. 

 

8.1 Point-wise to spatial relations 
 
Focusing on point-wise seismic parameters and point-wise time development, we see 

that the vectors {  }  1
  are 6-dimensional, and the matrices {  ⃗⃗⃗⃗  ⃗}  2

 
 are of dimension 
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   .  When solving real case problems the reservoir in question has   grid cells, and 

we need to consider seismic parameter vectors of length   . The seismic parameters 
at different grid cells are in general correlated. The number of grid cells is typically 

     . In the following we explain how the change in view from small point-wise to 
large correlated seismic parameter vectors affects the time evolution of the loop in 
section 5.2. 

Notation: 

   (  ) is the 6-dimensional vector for the seismic parameters at spatial position 

   and (data sampling) time   ; 

    [  ( 1)
       ( 2)

      (  )
 ]  is the   -dimensional, spatially 

coupled seismic vector of the reservoir; 

 Seismic parameters are normally distributed,     (     ). Now    is a    x 

   matrix that contains the spatial correlations of the seismic parameters. 

Time evolution of the seismic vectors will now be according to the expression  

     
⃗⃗ ⃗⃗ ⃗⃗    −1     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 

where   
⃗⃗ ⃗⃗ ⃗⃗    is a    x    dimensional block-diagonal matrix given by 

  
⃗⃗ ⃗⃗ ⃗⃗   

[
 
 
 
 
   
⃗⃗⃗⃗  ⃗  

   ⃗⃗⃗⃗  ⃗
 

  
  

   

  
  

 
  ⃗⃗⃗⃗  ⃗  

   ⃗⃗⃗⃗  ⃗]
 
 
 
 
 

, 

and 

   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   (   ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗)         

It is important to realize that at all discrete positions    the same 6 x 6 matrix   ⃗⃗⃗⃗  ⃗ is used 

for time development in all locations. The matrix   ⃗⃗⃗⃗  ⃗ is identical to the     matrix 
discussed above. 

With time evolution given by      
⃗⃗ ⃗⃗ ⃗⃗    −1     

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and standard linear-Gaussian 
assumptions the time evolution follows expressions analogous to the expressions listed 
in Chapter 3. In particular,  

    −1    
⃗⃗ ⃗⃗ ⃗⃗    −1  −1        

    −1    
⃗⃗ ⃗⃗ ⃗⃗     −1  −1    

⃗⃗ ⃗⃗ ⃗⃗  
 
   , 

where the vectors are    and the matrices are    x   . 
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The covariance matrix   −1  −1  describes all spatial correlations between seismic 

parameters, and hence is in general a dense matrix. From a practical point of view, 
handling these large matrices and computing the necessary matrix products is difficult, 
given limited computer resources. In the next section we describe how this is solved by 
means of assuming translational invariant correlations and use of the Fourier 
transform.  

8.2 Using Fourier transforms 
 
The simplifying assumption that enables efficient computation is that the spatial 
correlations are on the form 

   (  −1  −1(  )   −1  −1(  ))   (     ). 

This stationarity assumption implies that the Fourier transformed covariance is block 
diagonal, i.e. 

   ( ̃ −1  −1(  )  ̃ −1  −1(  ))  {
   ( ̃ −1  −1(  )  ̃ −1  −1(  ))         

                                                                           
 

where the tilde indicates the Fourier transformed function  ̃   ( ). The Fourier 

transformed covariance matrix  ̃ gets the form (skipping for the moment the subscript 

       ): 

 ̃  

[
 
 
 
 
 
 ̃1 1  

  ̃2 2
 

           
           

   

  
  

 
 ̃ −1  −1  

  ̃   ]
 
 
 
 
 

, 

where  

 ̃       ( ̃(  )  ̃(  )) 

is the 6x 6 matrix for the Fourier component    

With the block diagonal form of  ̃ we are ready to return to the time development 

formula      −1    
⃗⃗ ⃗⃗ ⃗⃗     −1  −1    

⃗⃗ ⃗⃗ ⃗⃗  
 
   . In its Fourier transformed form it reads 

 ̃   −1    
⃗⃗ ⃗⃗ ⃗⃗    ̃ −1  −1    

⃗⃗ ⃗⃗ ⃗⃗  
 
  ̃ . 

Using block indices for the matrices we now have 

 ̃   −1     ∑∑      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  ̃ −1  −1            

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 

 

  1

 

  1

  ̃      
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 ∑∑  ⃗⃗⃗⃗  ⃗      ̃ −1  −1            ⃗⃗⃗⃗  ⃗
 
    

 

  1

 

  1

  ̃      

       ⃗⃗⃗⃗  ⃗ ̃ −1  −1      ⃗⃗⃗⃗  ⃗
 
  ̃     . 

 

That is, the matrix  ̃   −1 is block diagonal (given that  ̃  is also block diagonal), and 

the computation of the time development is done for each frequency component 
independently by a simple multiplication of three 6 x 6 matrices. 

The paper Buland et al. (2003) has a thorough discussion of how the prior seismic 
covariance matrix   can be expressed in terms of the zero-lag correlations between the 
three seismic parameters and a spatial correlation function so that the assumption of 
translational invariance is fulfilled. The paper also shows how the splitting in the Fourier 
domain is used in the data conditioning. 
 

 


