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1 Introduction 
We analyze biological samples that consist of a large number of different types of cells. 
One example is the distribution of T-cell clonotypes in blood. In particular, we study 
how the distribution of clonotype frequencies changes between different samples. We 
consider this as a multinomial sampling problem.  

The multinomial distribution is classically formulated in terms of an urn containing a 
number of balls with different colors, where balls are drawn with replacement. Also 
other standard discrete/categorical statistical models, like the Bernoulli, binomial, 
geometric and negative binomial distribution may be formulated as a specific sampling 
scheme from such an urn. Classical urn problems concern estimation of parameters of 
such models, and testing hypothesis based on samples from the same or different 
urns. See e.g. Johnson and Kotz (1977) for various applications of urn problems. We 
consider the comparison of clonotypes over time as an urn problem. Christophersen, et 
al. (2017) also describes the problem with clonotypes instead of colors and T-cells 
instead of balls.  

What distinguishes our problem from classical urn problems is that we in principle have 
no knowledge about which or how many different clonotypes (i.e. colors) are in the urn. 
As an example, one might expect a compartment like blood or duodenum to typically 
contain 200-2000 unique clonotypes specific to gluten. However, in general there are in 
the order 1018 different possible clonotypes (Venturi, V. et al. 2007), of which millions or 
billions would likely be specific to gluten, and are a priori equally likely to be in our 
samples. This means that we cannot explicitly list the potential clonotypes that could be 
found in the sample from a specific patient. In a context of gluten-specific T-cells, the 
total number of T-cells in each sample will typically be in the range 5-150. Thus, the 
sample size is generally small compared to the number of clonotypes in the underlying 
compartments, such that we are only able to observe a small number of the 
clonotypes. Each new sample consists mainly of new clonotypes that has not been 
observed earlier. Instead of a standard approach for multinomial distribution, it is 
necessary to reduce the number of parameters and estimate parameters using a 
variant of M-estimation (Wilcox, R. R. 2012), i.e. by optimizing a function that is not the 
likelihood. 

2 Notation and models 
Our approach consists of a statistical model for the frequency of the different 
clonotypes. We want to compare a set of 𝑘𝑘 different samples from a single patient, i.e. 
how the distribution has changed between the samples. Let 𝑋𝑋.,. = {𝑋𝑋𝑖𝑖,𝑗𝑗}𝑖𝑖=1,…,𝑁𝑁𝑇𝑇,𝑗𝑗=1,…,𝑘𝑘 
denote all the observations from a patient where 𝑋𝑋𝑖𝑖,𝑗𝑗 is the number of T-cells of 
clonotype 𝑖𝑖 in sample 𝑗𝑗 from the patient for 𝑖𝑖 = 1, … ,𝑁𝑁𝑇𝑇 and 𝑗𝑗 = 1, … ,𝑘𝑘. Also, many of 
the clonotypes are only observed in some of the samples, i.e. the most frequent value 
is  𝑋𝑋𝑖𝑖,𝑗𝑗 = 0. Let also 𝑀𝑀𝑗𝑗,𝑇𝑇 =  ∑ 𝑋𝑋𝑖𝑖,𝑗𝑗𝑖𝑖  be the number of T-cells of sample 𝑗𝑗, i.e. its sample 
size, and let  𝑁𝑁𝑗𝑗,𝑇𝑇 denote the number of unique clonotypes in sample 𝑗𝑗.  The data may 
be considered as samples of 𝑘𝑘 different urns; the unobserved population of T-
cells/clonotypes in the blood at the time the sample was extracted. Let thus 𝑛𝑛𝑖𝑖,𝑗𝑗 be the 
(unknown) number of T-cells of clonotype 𝑖𝑖 in the blood at the time of sample 𝑗𝑗, for 
𝑖𝑖 = 1, … ,𝑁𝑁 and  𝑗𝑗 = 1, … ,𝑘𝑘, where 𝑁𝑁 denotes the total number of different clonotypes 
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which have ever appeared in the blood for this patient. Denote also by 𝑀𝑀𝑗𝑗 =  ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗𝑖𝑖  the 
total number of T-cells in the blood at the time of sample 𝑗𝑗.  

In correspondence with the standard urn sampling case, we assume that for each 
sample the 𝑀𝑀𝑗𝑗,𝑇𝑇 T-cells are sampled randomly and independent with replacement from 
the 𝑀𝑀𝑗𝑗 T-cells in the blood with a probability 𝑀𝑀𝑗𝑗,𝑇𝑇/𝑀𝑀𝑗𝑗. Whether we assume that the 
sampling is performed with or without replacement is of minor importance here since 
𝑀𝑀𝑗𝑗,𝑇𝑇 ≪ 𝑀𝑀𝑗𝑗. Typical sizes for the above quantities are 𝑁𝑁𝑗𝑗,𝑇𝑇: 5 − 50 (unique colors in 
sample 𝑗𝑗), 𝑁𝑁𝑇𝑇: 15 − 100, (unique colors in all the samples from a patient), 𝑀𝑀𝑗𝑗,𝑇𝑇: 5 − 150 
(number of balls in sample 𝑗𝑗) and  𝑀𝑀𝑗𝑗: 30 000− 500 000 (number of balls in the urn 
when extracting sample 𝑗𝑗). It is difficult to quantify the size of 𝑁𝑁, but a rough guess is 
that it is in the range 200-2 000. That is, we have 𝑁𝑁𝑇𝑇 ≪ 𝑁𝑁.  

Our interest concerns the frequencies of the clonotypes in the blood, 𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑛𝑛𝑖𝑖,𝑗𝑗/𝑀𝑀𝑗𝑗, for 
the clonotypes 𝑖𝑖 = 1, … ,𝑁𝑁 and for samples  𝑗𝑗 = 1, … ,𝑘𝑘, for each patient, rather than the 
counts 𝑛𝑛𝑖𝑖,𝑗𝑗 themselves. It is easier to estimate the frequencies than the nominator and 
denominator of the fraction. The variables  𝑛𝑛𝑖𝑖,𝑗𝑗 for all values of 𝑖𝑖 may increase at the 
same time as a biological reaction and 𝑝𝑝𝑖𝑖,𝑗𝑗 seam to be more stable quantities. We are 
interested in the distribution of the frequencies and assume the ordered frequencies 
follow the parametric form 𝑝𝑝(𝑖𝑖),𝑗𝑗 =  𝑐𝑐𝑗𝑗/(𝑎𝑎𝑗𝑗 − 1 + 𝑖𝑖) for a constant 𝑐𝑐𝑗𝑗 set such that 
∑ 𝑝𝑝(𝑖𝑖),𝑗𝑗 = 1𝑖𝑖 . Here, we use the ordered variables, i.e. the frequencies satisfy 𝑝𝑝(𝑖𝑖),𝑗𝑗 ≥
𝑝𝑝(𝑖𝑖+1),𝑗𝑗 for all 𝑖𝑖, 𝑗𝑗. We have tested other functional forms of 𝑝𝑝(𝑖𝑖),𝑗𝑗 and found out that the 
above function fits the data best. This model describes the distribution of frequencies of 
clonotypes with one parameter, 𝑎𝑎𝑗𝑗. Here there are some highly frequent clonotypes and 
many clonotypes with low frequency. 

Our analysis of the data shows that it is not possible to estimate 𝑁𝑁, the number of 
clonotypes in the blood. For most samples we get an equally good fit with the data for 
any value of  𝑁𝑁 between the observed 𝑁𝑁𝑇𝑇 and more than 1000. There exists 
parameters such that  𝑚𝑚𝑎𝑎𝑚𝑚𝑖𝑖|𝑝𝑝(𝑖𝑖),𝑗𝑗,𝑁𝑁=200 − 𝑝𝑝(𝑖𝑖),𝑘𝑘,𝑁𝑁=1000| < 0.01, making it impossible to 
differentiate between samples from 𝑝𝑝(𝑖𝑖),𝑗𝑗,𝑁𝑁=200 and 𝑝𝑝(𝑖𝑖),𝑘𝑘,𝑁𝑁=1000. The reason for this is 
that we are not able to differentiate between many clonotypes with low frequencies and 
even more clonotypes with even smaller frequencies. Most of these clonotypes will not 
be observed, and if observed, they will only be observed once.  Therefore, we need to 
assume a total number of different clonotypes that have ever appeared in the blood for 
this patient, say 𝑁𝑁 = 500, and interpret the say 450 least frequent clonotypes as 
representatives of the low frequent clonotypes that we cannot expect to observe (and if 
observed, this will most likely be only once). It is not possible to classify this in one 
group since we are not able to distinguish between a T-cell from a medium frequent 
clonotype with one observation (among the 50 most frequent) and a very rare 
clonotype (not among the 50 most frequent).  A different value of 𝑁𝑁, would change the 
estimated 𝑐𝑐𝑗𝑗 and 𝑎𝑎𝑗𝑗, but only have marginal effect on the most frequent  𝑝𝑝𝑖𝑖,𝑗𝑗. This 
implies that the frequency distribution can be represented by one parameter 𝑎𝑎𝑗𝑗 for each 
sample. In the analyses we have conducted, we have also explored alternative values 
of N to assess robustness of any interpretations. 

Our data indicate that  0.01 < 𝑎𝑎𝑗𝑗 < 100. With only one parameter determining the 
frequency distribution, there is a functional relationship between the 𝑎𝑎𝑗𝑗 parameter and 
other diversity measures like Shannon entropy and D50. D50 is the fraction of the 
clonotypes that are necessary in order to include 50% of the T-cells. This may be 
measured both in the population and in a sample, see Figure 1.  
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We are mainly interested in the change of frequencies in the compartments between 
the time of the different samples of the same patient. We expect there to be some 
changes in the ordering, i.e. we may have 𝑝𝑝𝑖𝑖,𝑗𝑗 > 𝑝𝑝𝑖𝑖+1,𝑗𝑗 and  𝑝𝑝𝑖𝑖,𝑘𝑘 <  𝑝𝑝𝑖𝑖+1,𝑘𝑘 for some value 
of 𝑖𝑖. We are mainly interested in pairwise comparison of order and compare this with 
time between samples, simultaneous sampling of different compartments of the body 
etc. Let the subscript 𝑖𝑖 denote the ordering of sample 𝑗𝑗, i.e.  𝑝𝑝(𝑖𝑖),𝑗𝑗 = 𝑝𝑝𝑖𝑖,𝑗𝑗.  We model the 
sorting of the sample 𝑘𝑘 as the ordering by 𝑔𝑔𝑗𝑗,𝑘𝑘(𝑖𝑖)  i.e. 𝑝𝑝(𝑔𝑔𝑗𝑗,𝑘𝑘(𝑖𝑖)),𝑘𝑘 = 𝑝𝑝𝑖𝑖,𝑘𝑘.  We define 
𝑔𝑔𝑗𝑗,𝑘𝑘(𝑖𝑖)  as the sorting of 𝑉𝑉𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝑖𝑖 + 𝑏𝑏𝑗𝑗,𝑘𝑘𝑄𝑄𝑖𝑖,𝑗𝑗,𝑘𝑘 where 𝑏𝑏𝑗𝑗,𝑘𝑘 ≥ 0 are the parameters in the 
model and  𝑄𝑄𝑖𝑖,𝑗𝑗,𝑘𝑘 are independently distributed from the distribution 𝑄𝑄𝑖𝑖,𝑗𝑗,𝑘𝑘~N(0,1). For 
𝑏𝑏𝑗𝑗,𝑘𝑘 = 0, the ordering is the same. For  𝑏𝑏𝑗𝑗,𝑘𝑘 > 1500 and 𝑁𝑁 = 500 we consider the 
ordering of the two samples as independent or as close to independent that we are not 
able to identify a possible dependence. Our model of two samples is described with the 
parameters 𝜃𝜃 = {𝑎𝑎𝑗𝑗,𝑎𝑎𝑘𝑘 ,𝑏𝑏𝑗𝑗,𝑘𝑘}. The definition may be generalized to more samples by 
selecting one of the samples and make comparisons between the selected sample and 
the other samples. We have chosen this model for describing the change of ordering 
between the samples since it is easy to simulate from the model.    

  

Figure 1. The left panel shows 20 different 𝑝𝑝𝑖𝑖,𝑗𝑗 curves for 0.1 < 𝑎𝑎𝑗𝑗 < 100. We have 
𝑝𝑝(1),𝑗𝑗 = 0.61 for 𝑎𝑎𝑗𝑗 = 0.1. The right panel shows the D50 heterogeneity measures for 
the population (curve) and for a sample with 100 T-cells (dashed). N=300 in the figure. 

It is possible to measure the difference in ordering by the 𝐿𝐿1norm 

𝑑𝑑𝑗𝑗,𝑘𝑘 =  � |𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑝𝑝𝑖𝑖,𝑘𝑘|
𝑖𝑖

≥��𝑝𝑝(𝑖𝑖),𝑗𝑗 − 𝑝𝑝(𝑖𝑖),𝑘𝑘� = 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚 
𝑖𝑖

 

We have 0 ≤ 𝑑𝑑𝑗𝑗,𝑘𝑘 ≤ 2. If the ordering of the two samples are the same at the time of the 
two samplings, we obtain the minimum 𝐿𝐿1norm difference,  𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚. Then we have 
equality in the above formula, otherwise we have an inequality. Since most of the 
frequencies are very small, independence of the frequencies for sample 𝑗𝑗 and 𝑘𝑘 implies 
that 𝑑𝑑𝑗𝑗,𝑘𝑘 is close to 2, except when both 𝑎𝑎𝑗𝑗 and 𝑎𝑎𝑘𝑘 are large, giving 𝑝𝑝𝑖𝑖,𝑗𝑗 almost the same 
for all values of  𝑖𝑖. We have introduced the 𝐿𝐿1norm since it is easier to interpret 𝑑𝑑𝑗𝑗,𝑘𝑘 
than the variables 𝑏𝑏𝑗𝑗,𝑘𝑘 .  
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We define 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑖𝑖𝑚𝑚𝑖𝑖 as the value of 𝑑𝑑𝑗𝑗,𝑘𝑘 when the order of clonotypes is independent 
between the two samples. Further we calculate a ratio  𝑟𝑟 = (𝑑𝑑𝑗𝑗,𝑘𝑘 − 𝑑𝑑𝑗𝑗,𝑘𝑘,min )/(𝑑𝑑𝑗𝑗,𝑘𝑘,𝑖𝑖𝑚𝑚𝑖𝑖 −
𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚) as a measure for how close the order is. The ratio is equal to 0 for the same 
order and equal to 1 if the order is independent. If   𝑏𝑏𝑗𝑗,𝑘𝑘 = 1000, for 𝑁𝑁 = 500,  then 
𝑟𝑟 ≈ 0.9 which in practice is close to independent. In order to get a better intuition on the 
variable 𝑑𝑑𝑗𝑗,𝑘𝑘, we have made Table 1. 

 𝑎𝑎𝑗𝑗 0.1 1 10 100 

𝑎𝑎𝑘𝑘 𝑝𝑝(1),𝑗𝑗,𝑝𝑝(2),𝑗𝑗 0.60, 0.055 0.15, 0.074 0.025, 0.023 0.00557, 
0.00551 

0.1 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚,𝑑𝑑𝑗𝑗,𝑘𝑘,𝑖𝑖𝑚𝑚𝑖𝑖      0,    1.76 0.91,   1.65 1.23,  1.60   1.42,   1.56 

1 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚,𝑑𝑑𝑗𝑗,𝑘𝑘,𝑖𝑖𝑚𝑚𝑖𝑖  0.91, 1.65 0,         1.37 0.50,  1.24 0.89,   1.15 

10 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚,𝑑𝑑𝑗𝑗,𝑘𝑘,𝑖𝑖𝑚𝑚𝑖𝑖  1.23, 1.60 0.50,   1.24 0,        1.0 0.47,    0.86 

100 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚,𝑑𝑑𝑗𝑗,𝑘𝑘,𝑖𝑖𝑚𝑚𝑖𝑖  1.42, 1.56 0.89,   1.15 0.47,  0.86 0,          0.53 

Table 1 The second row shows the two highest probabilities 𝑝𝑝𝑖𝑖,𝑗𝑗. The four lowest rows 
show 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚, and 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑖𝑖𝑚𝑚𝑖𝑖. Here we assume N=500. 

3 Estimation 
From the data 𝑋𝑋.,., we observe the empirical frequencies  𝑝𝑝𝑖𝑖,𝑗𝑗,𝐷𝐷 = 𝑋𝑋𝑖𝑖,𝑗𝑗/∑ 𝑋𝑋𝑘𝑘,𝑗𝑗𝑘𝑘 . The 
probability for one of the samples, the observation 𝑋𝑋.,𝑗𝑗, is the sum of the multinomial 
distribution for all possible permutations 𝐻𝐻, 

𝑃𝑃�𝑋𝑋.,𝑗𝑗� =
1

#𝐻𝐻
 �

𝑀𝑀𝑗𝑗,𝑇𝑇!
𝑋𝑋1,𝑗𝑗! …𝑋𝑋𝑁𝑁𝑇𝑇 ,𝑗𝑗!

(𝑝𝑝1,𝑗𝑗)𝑋𝑋1,𝑗𝑗 … (𝑝𝑝1,𝑗𝑗)𝑋𝑋𝑁𝑁,𝑗𝑗

𝐻𝐻

 

The number of permutations, #𝐻𝐻, is very large. It is feasible to find the maximum 
likelihood estimate of 𝑎𝑎𝑗𝑗 since there is only one parameter and the most likely ordering 
of the high frequencies is close to the empirical ordering. However, the maximum 
likelihood estimate should be very close to the value 𝑎𝑎𝚥𝚥�  that minimize  

𝑇𝑇(𝑎𝑎𝑗𝑗) = 𝐸𝐸{  ��𝑝𝑝(𝑖𝑖),𝑗𝑗,𝐷𝐷 − 𝑝𝑝(𝑖𝑖),𝑗𝑗,𝑆𝑆(𝑎𝑎𝑗𝑗)�
𝑖𝑖

 } 

where 𝑝𝑝(𝑖𝑖),𝑗𝑗,𝑆𝑆(𝑎𝑎𝑗𝑗) are the frequencies from sampling using the distribution with the value 
𝑎𝑎𝑗𝑗. The use of (𝑖𝑖) in the subscript indicates that we use the ordered frequencies, i.e. 
each difference in the sum is not necessarily representing the same clonotype, i.e. we 
take the difference between the 𝑖𝑖’th most frequent clonotype in the data, 𝑝𝑝(𝑖𝑖),𝑗𝑗,𝐷𝐷, and 
the 𝑖𝑖’th most frequent clonotype from the sampling,  𝑝𝑝(𝑖𝑖),𝑗𝑗,𝑆𝑆(𝑎𝑎𝑗𝑗). The 𝑆𝑆(𝑎𝑎𝑗𝑗) sampling has 
the same number of T-cells as the original  𝐷𝐷 sampling from the data. The estimate 𝑎𝑎𝚥𝚥�  
is easily found by simulating from the multinomial distribution. We also find the 
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uncertainty in the estimate by assuming 𝑎𝑎𝚥𝚥�  is the correct value, simulating using this 
value, and then find 𝑎𝑎𝚥𝚥�  for each simulated data set. 

Similarly, it is possible to estimate 𝑏𝑏𝚥𝚥,𝑘𝑘�  for the change in order of each pairwise 
combination by minimizing     
                       𝑊𝑊(𝑏𝑏𝑗𝑗,𝑘𝑘) = (𝐸𝐸{  ∑ �𝑝𝑝𝑖𝑖,𝑗𝑗,𝑆𝑆(𝑎𝑎𝚥𝚥� ) − 𝑝𝑝𝑖𝑖,𝑘𝑘,𝑆𝑆(𝑎𝑎𝑘𝑘� )�𝑖𝑖  } -∑ �𝑝𝑝𝑖𝑖,𝑗𝑗,𝐷𝐷 − 𝑝𝑝𝑖𝑖,𝑘𝑘,𝐷𝐷�𝑖𝑖  )2 

Here we minimize the simulated 𝐿𝐿1 difference of the two samples with the observed 
difference of the empirical frequencies. We prefer to estimate 𝑎𝑎𝑗𝑗,  𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑗𝑗,𝑘𝑘 separately 
in order to avoid different estimates for 𝑎𝑎𝑗𝑗 for each pairwise combination and since this 
will only have minimum influence of the estimate. It is not feasible to use maximum 
likelihood estimate for 𝑏𝑏𝑗𝑗,𝑘𝑘 based on the multinomial distribution since the different 
ordering of the samples increases the number of permutations considerably. Based on 
the estimated 𝑎𝑎𝚥𝚥� , 𝑎𝑎𝑘𝑘� and  𝑏𝑏𝚥𝚥,𝑘𝑘�  we may calculate both 

𝑑𝑑𝑗𝑗,𝑘𝑘 =  � |𝑝𝑝𝑖𝑖,𝑗𝑗 − 𝑝𝑝𝑖𝑖,𝑘𝑘|
𝑖𝑖

 

and  
𝑑𝑑𝑗𝑗,𝑘𝑘,𝑚𝑚𝑖𝑖𝑚𝑚 =  � |𝑝𝑝(𝑖𝑖),𝑗𝑗 − 𝑝𝑝(𝑖𝑖),𝑘𝑘|

𝑖𝑖

 

describing the difference between the two samples using the parameter value  𝑏𝑏𝚥𝚥,𝑘𝑘� .  

We may estimate the uncertainty for these parameter estimates by assuming that the 
estimated values 𝑎𝑎𝑗𝑗 ,𝑎𝑎𝑘𝑘 ,𝑏𝑏𝑗𝑗,𝑘𝑘 are correct, and then simulate 𝑝𝑝𝑖𝑖,𝑗𝑗,𝑆𝑆(𝑎𝑎𝑗𝑗),𝑝𝑝𝑖𝑖,𝑘𝑘,𝑆𝑆(𝑎𝑎𝑘𝑘) based on 
these parameters and find the uncertainty in these estimates using the approach 
described above.  

 

Figure 2. Estimated diversity, 𝑎𝑎 in a log-log plot. The estimated quantile based on 300 
simulations and 20 different 𝑎𝑎 values. 



 

14 Statistical modeling of repertoire overlap in entire sampling spaces 

In the following we give some examples on the estimation from the model. In order to 
fully understand the model, it is necessary with a more thorough analysis. In all the 
examples we assume the sample consist of 100 T-cells. In all the figures we show the 
seven curves for the 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.95 quantiles for the estimated 
value. In Figure 2 we simulate only one sample with a fixed diversity value in the 
interval 0.1 < 𝑎𝑎1 < 100 and estimate the diversity value based on the sample. In Figure 
3 and 4 we simulate two samples of 100 T-cells and vary the change of order, i.e. the 
𝑏𝑏𝑗𝑗,𝑘𝑘 value in the interval 0.1 < 𝑏𝑏𝑗𝑗,𝑘𝑘 < 10.000.  We only search for optimal 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗,𝑘𝑘 
values in the same interval implying that the quantiles may be truncated in the ends. 
Note the plots for 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗,𝑘𝑘 are log-log since the values vary many orders of 
magnitude. In Figure 3 we show estimated 𝑏𝑏𝑗𝑗,𝑘𝑘 and 𝑟𝑟 values and in Figure 4 we show 
estimated 𝑑𝑑𝑗𝑗,𝑘𝑘  and 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑒𝑒𝑚𝑚𝑒𝑒  values. Note from the figures that we are able to estimate  𝑎𝑎𝑗𝑗 
quite accurately from a sample with 100 T-cells. Naturally, the uncertainty in the 𝑏𝑏𝑗𝑗,𝑘𝑘 is 
much larger. From Figure 4 we note that there is a large difference in the 𝑑𝑑𝑗𝑗,𝑘𝑘  and 
𝑑𝑑𝑗𝑗,𝑘𝑘,𝑒𝑒𝑚𝑚𝑒𝑒  values and these values depend strongly on the 𝑏𝑏𝑗𝑗,𝑘𝑘 value.  

  

 

Figure 3. Estimated change in order variable 𝑏𝑏𝑗𝑗,𝑘𝑘  in first three panels 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑘𝑘 = 0.2 in 
upper left panel, 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑘𝑘 = 1 in upper right panel and 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑘𝑘 = 10 in lower left panel     
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and 𝑟𝑟 in the lower right panel with 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑘𝑘 = 1. The estimation is based on 100 
simulations and 10 different 𝑏𝑏𝑗𝑗,𝑘𝑘 values.  

 

Figure 4. The estimated 𝑑𝑑𝑗𝑗,𝑘𝑘  in left panel and 𝑑𝑑𝑗𝑗,𝑘𝑘,𝑒𝑒𝑚𝑚𝑒𝑒  in right panel  𝑏𝑏 varies in the 
interval correspond to 0.1 < 𝑏𝑏𝑗𝑗,𝑘𝑘 < 10.000  and with 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑘𝑘 = 1. The estimation is 
based on 100 simulations and 10 different 𝑏𝑏𝑗𝑗,𝑘𝑘 values.  
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