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Introduction

In a discussion article on the application of mathematics in meteorology, Bigelow (1905)
describes the fundamentals of modeling in a timeless manner:

“There are three processes that are generally essential for the complete development of
any branch of science, and they must be accurately applied before the subject can be
considered to be satisfactorily explained. The first is the discovery of a mathematical
analysis, the second is the discussion of numerous observations, and the third is a correct
application of the mathematics to the observations, including a demonstration that these
are in agreement.”

The topic of this chapter are methods for carrying out the last item on Bigelow’s list, that
is, methods to demonstrate the agreement between a model and a set of observations.
Ensemble prediction systems and statistically postprocessed ensemble forecasts provide
probabilistic predictions of future weather. Verification methods applied to these systems
should thus be equipped to handle both the verification of the best prediction derived
from the ensemble and the verification of the associated prediction uncertainty.

Murphy (1993) argues that a general prediction system should strive to perform well on
three types of goodness: There should be consistency between the forecaster’s judgment
and the forecast, there should be correspondence between the forecast and the observa-
tion, and the forecast should be informative for the user. Similarly, Gneiting et al. (2007)
state that the goal of probabilistic forecasting should be to maximize the sharpness of
the predictive distribution subject to calibration. Here, calibration refers to the statistical
consistency between the forecast and the observation, while sharpness refers to the con-
centration of the forecast uncertainty; the sharper the forecast, the higher information
value will it provide. The prediction goal of Gneiting et al. (2007) is thus equivalent to
Murphy’s second and third types of goodness.

We focus on verification methods for probabilistic predictions of continuous variables
in one or more dimensions under the general framework described by Murphy (1993)
and Gneiting et al. (2007). Specifically, we denote an observation in d dimensions by
y = (y1, . . . , yd) ∈ Ωd for d = 1, 2, . . . where Ω denotes either the real axis R, the non-
negative real axis R≥0, the positive real axis R>0, or an interval on R. A probabilistic
forecast for y given by a distribution function with support on Ωd is denoted by F ∈ F
for some appropriate class of distributions F , with the density denoted by f if it exists.
For ensemble forecasts, we will alternatively use the notation x = {x1, · · · , xK} to de-
scribe the K ensemble members or F for the associated empirical distribution function.
Verification methods for deterministic predictions and other types of variables are dis-
cussed e.g. in Wilks (2011, Ch. 8) and Jolliffe and Stephenson (2012).

The chapter is organized as follows. Diagnostic tools for checking calibration are dis-
cussed in Section 2. The next Section 3 describes methods that assess the accuracy of fore-
casts where each forecast is issued a numerical score based on the event that materializes.
Scoring rules apply to individual events while divergence functions compare the empir-
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ical distribution of a series of events against a predictive distribution. The scores may
focus on certain aspects of the forecast, such as the tails, and it is important to also assess
the uncertainty in the scores. The properties of various univariate scores are compared
in a simulation study. While the methods in Section 3 provide a decision theoretically co-
herent approach to model evaluation and model ranking, they may hide key information
about the model performance such as the direction of bias. Additional evaluation may
thus be needed to better understand the performance of a single model. Approaches for
this are discussed in Section 4. The chapter then closes with a summary in Section 5.

Calibration

Calibration, or reliability, is the most fundamental aspect of forecast skill for probabilistic
forecasts as it is a necessary condition for the optimal use and value of the forecast. Cal-
ibration refers to the statistical compatibility between the forecast and the observation;
the forecast is calibrated if the observation cannot be distinguished from a random draw
from the predictive distribution.

Univariate calibration
Several alternative notions of univariate calibration exist for both a single forecast (Gneit-
ing et al., 2007; Tsyplakov, 2013) and a group of forecasts (Strähl and Ziegel, 2017). We fo-
cus on the so-called probabilistic calibration as suggested by Dawid (1984); F is probabilist-
ically calibrated if the probability integral transform (PIT) F (Y ), the value of the predictive
cumulative distribution function in the random observation Y , is uniformly distributed.
If F has a discrete component, a randomized version of the PIT given by

lim
y↑Y

F (y) + V
(
F (Y )− lim

y↑Y
F (y)

)
with V ∼ U([0, 1]) may be used, see Gneiting and Ranjan (2013). Here, we use y ↑ Y to
denote that the limit is taken as y approaches Y from below.

Assume our test set consists of n observations y1, . . . , yn. For a forecasting method issu-
ing continuous univariate predictive distributions F1, . . . , Fn, calibration can be assessed
empirically by plotting the histogram of the PIT values

F1(y1), . . . , Fn(yn).

A forecasting method that is calibrated on average will return a uniform histogram, a ∩-
shape indicates overdispersion and a ∪-shape indicates underdispersion while a system-
atic bias results in a triangular shape histogram. Examples of miscalibration are shown in
Figure 1, including a biased forecast (subfigure a), an underdispersive forecast (subfigure
b), an overdispersive forecast (subfigure c), and an example of a multiply mis-specified
forecast where the left tail is too light, the main bulk of the distribution lacks mass and
the right tail is too heavy (subfigure d).
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Figure 1. Probability integral transform (PIT) histograms for 100,000 simulated standard Gaus-
sian N (0, 1) observations and various mis-specified forecasts: (a) biased N (0.5, 1) forecast, (b)
underdispersive N (0, 0.752) forecast, (c) overdispersive N (0, 22) forecast, and (d) multiply mis-
specified generalized extreme value GEV(0, 1, 0.5) forecast. The theoretically optimal histograms
are indicated with dashed lines.

The discrete equivalent of the PIT histogram, which applies to ensemble forecasts, is the
verification rank histogram (Anderson, 1996; Hamill and Colucci, 1997). It shows the
distribution of the ranks of the observations within the corresponding ensembles and
has the same interpretation as the PIT histogram.

The information provided by a rank histogram may also be summarized numerically by
the reliability index (RI) which is defined as

RI =
I∑
i=1

∣∣∣ζi − 1

I

∣∣∣,
where I is the number of (equally-sized) bins in the histogram and ζi is the observed
relative frequency in bin i = 1, . . . , I . The reliability index thus measures the departure
of the rank histogram from uniformity (Delle Monache et al., 2006).

Multivariate calibration
For assessing the calibration of multivariate forecasts, Gneiting et al. (2008) formalized a
general two-step framework. Let S = {x1, . . . xK , y} denote a set of K + 1 points in Ωd

comprising an ensemble forecast with k members and the corresponding observation y.
The rank of y in S, rankS(y), is calculated in two steps,

(i) apply a pre-rank function ρS : Ωd → R≥0 to calculate the pre-rank ρS(u) of every
u ∈ S resulting in a univariate value for each u;

(ii) set the rank of the observation y equal to the rank of ρS(y) in {ρS(x1), . . . , ρS(xK), ρS(y)},

rankS(y) =
∑
v∈S

1{ρS(v) ≤ ρS(y)},

where 1 denotes the indicator function and ties are resolved at random.

Here, we focus on four different approaches that follow this general two-step framework.
Further approaches are discussed in Gneiting et al. (2008), Ziegel and Gneiting (2014) and
Wilks (2017). The difference between our four approaches lies in the definition of the pre-
rank function ρS in step (i). The multivariate ranking of Gneiting et al. (2008) is defined
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using the pre-rank function
ρm
S (u) =

∑
v∈S

1{v � u}, (1)

wehre v � u if and only if vi ≤ ui in all components i = 1, . . . , d. Gneiting et al. (2008)
further consider an optional initial step in the ranking procedure in which the data is
normalized in each component before the ranking. The average ranking proposed by Thor-
arinsdottir et al. (2016) provides a similar ascending rank structure and is given by the
average over the univariate ranks. That is, let

rankS(u, i) =
∑
v∈S

1{vi ≤ ui}

denote the standard univariate rank of the ith component of u among the values in S.
The multivariate average rank is then defined using the pre-rank function

ρa
S(u) =

1

d

d∑
i=1

rankS(u, i). (2)

Further two approaches assess the centrality of the observation within the ensemble. Un-
der minimum spanning tree ranking, the pre-rank function ρmst

S (u) is given by the length
of the minimum spanning tree of the set S \ u, that is, the set S without the element u
(Smith and Hansen, 2004; Wilks, 2004). Here, a spanning tree of the set S \u is a collection
of k − 1 edges such that all points in S \ u are used. The spanning tree with the smallest
length is then the minimum spanning tree (Kruskal, 1956); it may e.g. be calculated using
the R package vegan (Oksanen et al., 2017; R Core Team, 2016).

Alternatively, the band depth ranking proposed by Thorarinsdottir et al. (2016) uses a pre-
rank function that calculates the proportion of components of u ∈ S inside bands defined
by pairs of points from S. It can be written as

ρbd
S (u) =

1

d

d∑
i=1

[
rankS(u, i)

[
(K+1)−rankS(u, i)

]
+
[
rankS(u, i)−1

]∑
v∈S

1{vi = ui}
]
. (3)

If ui 6= vi with probability 1 for all u, v ∈ S with u 6= v and i = 1, . . . , d the formula in (3)
may be simplified to

ρbd
S (u) =

1

d

d∑
i=1

[
(K + 1)− rankS(u, i)

][
rankS(u, i)− 1

]
. (4)

This implies that the formula in (3) should be used for forecasts with a discrete compon-
ent, e.g. precipitation forecasts. The band depth in (3) is equivalent to the simplicial depth
proposed by Liu (1990) and thus also to the simplicial depth ranking proposed by Mirzar-
gar and Anderson (2017), see López-Pintado and Romo (2009) and Thorarinsdottir et al.
(2016).

While all four methods return a uniform rank histogram for a calibrated forecast, the in-
terpretation of the histogram shape for a misspecified forecast varies between the meth-
ods as demonstrated in the example below.
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Example: Comparing multivariate ranking methods
The four multivariate ranking methods are compared in Figure 2 for several different
settings where y ∈ Rd can be thought of as a temporal trajectory of a real valued variable
observed at d = 10 equidistant time points t = 1, . . . , 10. In the first two examples (row
one and two), y is a realization of a zero-mean Gaussian AR(1) (autoregressive) process
Y with a covariance function given by

Cov(Yi, Yj) = exp(−|i− j|/τ), τ > 0. (5)

The process Y thus has standard Gaussian marginal distributions while the parameter
τ controls how fast correlations decay with time lag. We set τ = 3 for Y and consider
ensemble forecasts with 50 members of the same type but with a different parameter
value τ . That is, we set τ = 1.5 in row one (too strong correlation) and τ = 5 in row two
(too weak correlation). It follows from this construction that a univariate calibration test
at a fixed time point would not detect any miscalibration in the forecasts.

While all four methods are able to detect the misspecification in the correlation structure,
the resulting histograms vary in shape. The shape of the average rank histograms and
the band depth rank histograms offer a similar interpretation as that of the univariate
rank histograms in Figure 1 with a ∪-shape when the correlation is too strong (under-
dispersion across components) and a ∩-shape when the correlation is too weak (overd-
ispersion across components). In these 10-dimensional examples, the pre-rank ordering
of the multivariate rank histograms (1) is only able to detect miscalibration related to the
highest ranks, see also the discussion in Pinson and Girard (2012) and Thorarinsdottir
et al. (2016). Under minimum spanning tree ranking, too many observations have high
ranks when the correlation in the forecasts is too strong and the opposite holds for the
example with too weak correlation in the forecasts.

In the latter two examples in Figure 2 (rows three and four), both observations and fore-
casts are i.i.d. variables in ten dimensions. However, the marginal distributions of the
ensemble forecasts are misspecified. The observations follow a standard Gaussian dis-
tribution, the forecasts in row three have a standard deviation of 1.25 (overdispersion)
and the forecasts in row four have a standard deviation of 0.85 (underdispersion). The
shape of the average rank histograms is exactly that of their univariate counterparts in
Figure 1, indicating that the ranking method cannot distinguish between miscalibration
in the marginals and the higher order structure. For the two ranking methods based on
centrality, the marginal overdispersion results in too many high ranks while the marginal
underdispersion results in too many low ranks. For this dimensionality, the multivariate
ranking is unable to detect the miscalibration.

Further comparison of the four ranking methods is provided in Thorarinsdottir et al.
(2016) and Wilks (2017). In general, it is a challenging task to represent and compare a
multi-faceted higher order structure with a single value. As the different methods vary
in their strengths and weaknesses, it is recommended to apply several of these meth-
ods when assessing multivariate calibration. The multivariate ranking of Gneiting et al.
(2008), for instance, does not satisfy affine invariance (Mirzargar and Anderson, 2017)
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Figure 2. Rank histograms for multivariate data showing various types of miscalibration under
different ranking methods: Average ranking (first column), band depth ranking (second column),
multivariate ranking (third column) and minimum spanning tree ranking (forth column). 10,000 sim-
ulated observations of dimension 10 are compared against ensemble forecasts with 50 members.
In the top two rows, the observations are realizations of a zero-mean Gaussian AR(1) process
with the covariance function in (5) where τ = 3. The forecasts follow the same model with τ = 1.5

(first row) and τ = 5 (second row). In the bottom two rows, the observations are i.i.d. standard
Gaussian variables while the forecasts have variance 1.252 (third row) and 0.852 (forth row). The
theoretically optimal histograms are indicated with dashed lines.
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while lower-dimensional positive and negative biases may cancel out under average
ranking (Thorarinsdottir et al., 2016).

Furthermore, a prior assessment of the marginal calibration may increase the information
value in the multivariate rank histograms and ease the interpretation of the resulting
shapes. As the multivariate methods perform a simultaneous assessment of the marginal
and the higher-order calibration, a specific non-uniform shape may represent multiple
types of mis-specifications. For example, depth-based approaches such as the band depth
ranking and the minimum spanning tree ranking are not able to distinguish between
underdispersive and biased forecasts (Mirzargar and Anderson, 2017).

Accuracy

In this section, we discuss methods for assessing forecast accuracy that are appropri-
ate for ranking and comparing competing forecasting methods. Alternative assessment
techniques that may provide additional insights for understanding the performance and
errors of a single forecasting model while not appropriate for forecast ranking are dis-
cussed in Section 4 below.

Univariate assessment
Scoring rules
Scoring rules assess the accuracy of probabilistic forecasts by assigning a numerical pen-
alty to each forecast-observation pair. Specifically, a scoring rule is a mapping

S : F × Ωd → R ∪ {∞} (6)

where for every F ∈ F the map y 7→ S(F, y) is quasi-integrable for every F ∈ F . In our
notation, a smaller penalty indicates a better prediction. A scoring rule is proper relative
to the class F if

EGS(G, Y ) ≤ EGS(F, Y ) (7)

for all probability distributions F,G ∈ F , that is, if the expected score for a random
observation Y is optimized if the true distribution of Y (G) is issued as the forecast. The
scoring rule is strictly proper relative to the classF if (7) holds with equality only if F = G.
Propriety will encourage honesty and prevent hedging, which coincides with Murphy’s
first type of goodness (Murphy, 1993). That is, the scores cannot be hedged to improve the
preceived performance by a willful divergence of the forecast from the true distribution,
see e.g. the discussion in Section 1 of Gneiting (2011).

Competing forecasting methods are compared based on a proper scoring rule by com-
paring the mean score over an out-of-sample test set, and the method with the smallest
mean score is preferred. Formal tests of the null hypothesis of equal predictive perform-
ance can also be employed, see Section 3.7. While average scores are directly comparable
if they refer to the same set of forecast situations, this may no longer hold for distinct sets
of forecast cases, for instance, due to spatial and temporal variability in the predictability
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of weather. For ease of interpretability and to address this issue, verification results are
sometimes represented as a skill score of the form

Sskill
n (A) =

1
n

∑n
i=1 S(FAi , yi)− 1

n

∑n
i=1 S(F ref

i , yi)

1
n

∑n
i=1 S(F

perf
i , yi)− 1

n

∑n
i=1 S(F ref

i , yi)
(8)

for the forecasting method A where F ref denotes the forecast from a reference method,
F perf denotes the perfect forecast and n is the size of the test set. The skill score is stand-
ardized such that it takes the value 1 for an optimal forecast and the value 0 for the
reference forecast. Negative values thus indicate that the forecasting method A is of a
lesser quality than the reference forecast. However, it is vital to select the reference fore-
cast with care (Murphy, 1974, 1992) as skill scores of the form (8) may be improper even
if the underlying scoring rule S is proper (Gneiting and Raftery, 2007; Murphy, 1973a).

The most popular proper scoring rules for univariate real valued quantities are the ignor-
ance (or logarithmic) score (IGN) and the continuous ranked probability score, see Gneiting
and Raftery (2007) for a more comprehensive list. IGN is defined as

IGN(F, y) = − log f(y), (9)

where f denotes the density of F (Good, 1952). It thus applies to absolutely continu-
ous distributions only and cannot be applied directly to ensemble forecasts. For a large
enough ensemble, the density of the ensemble forecast may potentially be approximated
using e.g. kernel density estimation or by fitting a parametric distribution. Alternatively,
IGN may be replaced by the Dawid-Sebastiani (DS) score (Dawid and Sebastiani, 1999),

DS(F, y) = log σ2
F +

(y − µF )2

σ2
F

, (10)

where µF denotes the mean value of F and σ2
F its variance. While the proper DS score

equals IGN for a Gaussian predictive distribution F , it only requires the estimation of the
ensemble mean and variance.

The continuous ranked probability score (CRPS; Matheson and Winkler, 1976) is of particular
interest in that it simultaneously assesses both calibration and sharpness, and thus all
three types of goodness discussed by Murphy (1993). The CRPS applies to probability
distributions with finite mean and has three equivalent definitions (Gneiting and Raftery,
2007; Gneiting and Ranjan, 2011; Hersbach, 2000; Laio and Tamea, 2007),

CRPS(F, y) = EF |X − y| −
1

2
EFEF |X −X ′| (11)

=

∫ +∞

−∞

(
F (x)− 1{y ≤ x}

)2dx (12)

=

∫ 1

0

(
F−1(τ)− y

)(
1{y ≤ F−1(τ)} − τ

)
dτ. (13)

Here,X andX ′ denote two independent random variables with distribution F , 1{y ≤ x}
denotes the indicator function which is equal to 1 if y ≤ x and 0 otherwise, and F−1(τ) =

inf{x ∈ R : τ ≤ F (x)} is the quantile function of F .
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It follows directly from (12) and (13) that the CRPS is tightly linked to other proper scores
that focus on specific parts of the predictive distribution. The form in (12) can be in-
terpreted as the integral over the Brier score (Brier, 1950) which assesses the predictive
probability of threshold exceedance. The Brier score is usually written on the form

BS(F, y | u) =
(
pu − 1{y ≥ u}

)2
, (14)

for a threshold u with pu = 1 − F (u). Similarly, the integrand in (13) equals the quantile
score (Friederichs and Hense, 2007; Gneiting and Raftery, 2007),

QS(F, y | q) =
(
F−1(q)− y

)(
1{y ≤ F−1(q)} − q

)
, (15)

which assesses the predicted quantile F−1(q) for a probability level q ∈ (0, 1).

When the predictive distribution F is given by a finite ensemble {x1, . . . , xK}, the CRPS
representation in (11) is equal to

CRPS(F, y) =
1

K

K∑
k=1

|xi − y| −
1

2K2

K∑
k=1

K∑
l=1

|xk − xl|, (16)

see Grimit et al. (2006). For small ensembles, Ferro et al. (2008) propose a fair approxima-
tion given by

CRPS(F, y) ≈ 1

K

K∑
k=1

|xi − y| −
1

2K(K − 1)

K∑
k=1

K∑
l=1

|xk − xl|. (17)

For large ensembles, a more computationally efficient calculation is based on the gener-
alized quantile function (Laio and Tamea, 2007). Let x(1) ≤ · · · ≤ x(K) denote the order
statistics of x1, . . . , xK . Then

CRPS(F, y) =
2

K2

K∑
i=1

(
x(i) − y

)(
K1{y < x(i)} − i+

1

2

)
, (18)

see also Murphy (1970). The formula in (18) is implemented in the R package scorin-

gRules together with exact formulas for a large class of parametric families of distribu-
tions, see Table 1 and Jordan et al. (2017).

When the forecasting model is estimated using Bayesian analysis, the predictive distribu-
tion F is commonly given by the posterior predictive distribution under the model. Here,
F is rarely know in closed form and is, instead, approximated by a large sample which is
often obtained using Markov chain Monte Carlo techniques. However, such techniques
may yield highly correlated samples which complicates the employment of approxima-
tion formulas as those for the CRPS above. Optimal approximations for both IGN and
CRPS when the distribution F is the posterior predictive distribution from a Bayesian
analysis are discussed in Krüger et al. (2016).
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Table 1. Parametric families of distributions for which the CRPS is implemented in the R package
scoringRules (Jordan et al., 2017). The truncated families can be defined with or without a point
mass at the support boundaries.

Dist. on R Dist. on R>0 Dist. on intervals Discrete dist.

Gaussian Exponential Generalized extreme value Poisson
t Gamma Generalized Pareto Neg. binomial
Logistic Log-Gaussian Trunc. Gaussian
Laplace Log-logistic Trunc. t
Two-piece Gaussian Log-Laplace Trunc. logistic
Two-piece exponential Trunc. exponential
Mixture of Gaussians Uniform

Beta

Scoring rules derived from scoring functions
The quality of a deterministic forecast x is typically assessed by applying a scoring function
s(x, y), that assigns a numerical score based on x and the corresponding observation y.
As in the case of proper scoring rules, competing forecasting methods are compared and
ranked in terms of the mean score over the cases in a test set. Popular scoring functions
include the squared error, s(x, y) = (x− y)2, and the absolute error, s(x, y) = |x− y|.

A scoring function can be applied to a probabilistic prediction F ∈ F if it is consistent for
a functional T relative to the class F in the sense that

EF s(T (F ), Y ) ≤ EF s(x, Y ) (19)

for all x ∈ Ω and F ∈ F . A consistent scoring function becomes a proper scoring rule if
the functional T in (19) is used as the derived deterministic prediction based on F . That
is, if S(F, y) = s(T (F ), y). The squared error proper scoring rule is given by

SE(F, y) = (mean(F )− y)2, (20)

where mean(F ) denotes the mean value of F , and the absolute error proper scoring rule
becomes

AE(F, y) = |med(F )− y|, (21)

where med(F ) denotes the median of F .

One appealing property of scoring rules that derive from scoring functions is thus the
possibility to compare deterministic and probabilistic forecasts. See Gneiting (2011) for an
extensive discussion of the use of scoring functions to evaluate probabilistic predictions.

Simulation study: Comparing univariate scoring rules
The purpose of this simulation study is to demonstrate a coherent approach to using
proper scores and rank or PIT histograms in practice, while highlighting some of the
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difficulties that might arise when working with limited data sets. In particular, we in-
vestigate how different scoring rules rank forecasts according to their skill, and how this
differs with the amount of available data.

We start by generating two sets of observation data, drawn randomly from the same
fixed “true” distribution. The first set consists of 100 values, which will serve as verifying
observations, while the second set, the training data, consists of 300 values for each of
the 100 observations. Our goal is to issue forecasts matching the observations, based on
the information contained in the training data. For the first part of the simulation study,
the true distribution is normal, with a random mean µ ∼ N (25, 1) and fixed standard
deviation σ = 3. In the second part, the truth is a Gumbel distribution, with the mean
following a N (25, 1) distribution and the scale parameter fixed to 3, see Table 2.

Table 2. Observation-generating distributions used in the simulation study. The expected values
are random variables following a normal distribution, while the scale parameters are fixed. γ de-
notes the Euler-Mascheroni constant.

Distribution F (Y ) E (Y ) Var (Y )

Part 1 Normal N
(
µ, σ2

)
µ ∼ N (25, 1) σ2 = 9

Part 2 Gumbel G (µ, σ) µ+ σ · γ ∼ N (25, 1)
π2

6
σ2 =

3π2

2

Using a method-of-moments approach, we estimate four competing forecast distribu-
tions per observation, which are listed in Table 3. The distribution parameters are cal-
culated by plugging the sample mean and sample standard deviation from the training
data into the equations for mean and variance. For the non-central t-distribution, the de-
grees of freedom are obtained numerically by a root-finding algorithm described in Brent
(1973), while restricting them to ν ≥ 3, ensuring that both mean and variance exist. As a
fifth forecaster, we use the true distribution, from which the observations are generated.
An ensemble of 50 members is drawn randomly from each of the forecast distributions,
and is then paired with the observations.

Table 3. Forecasters used in both parts of the simulation study, their expected values and vari-
ances as functions of the distribution parameters. γ denotes the Euler-Mascheroni constant.

Distribution F (Y ) E (Y ) Var (Y )

Normal N
(
µ, σ2

)
µ σ2

Non-central t t (ν, µ) µ

√
ν

2

Γ
(
ν−1

2

)
Γ
(
ν
2

) , if ν > 1
ν
(
1 + µ2

)
ν − 2

− µ2ν

2

(
Γ
(
ν−1

2

)
Γ
(
ν
2

) )2

, if ν > 2

Log-normal lnN
(
µ, σ2

)
exp

(
µ+

σ2

2

) (
exp

(
σ2
)
− 1
)

exp
(
2µ+ σ2

)
Gumbel G (µ, σ) µ+ σ · γ π2

6
σ2

The performance of the five forecasters is evaluated using the absolute error, the squared
error (both Section 3.1.2), the ignorance score, the CRPS (both Section 3.1.1) and the PIT
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histogram (Section 2.1). We also produced rank histograms, but they turned out to be
almost identical to the PIT histograms. As we encountered variations in the scores de-
pending on the initial random seed, the whole process is repeated 10 times with different
initial seeds, so that the final number of forecast-observation pairs comes to 1000.
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Figure 3. Top row: Mean absolute error, CRPS and ignorance score, and the 95% bootstrap con-
fidence interval for the five forecast distributions, if the true distribution is normal. Scores are
based on 1000 forecast-observation pairs. Bottom row: Same as above, but scores are based on
1 million forecast-observation pairs.

In order to understand the true ranking of the five forecasting methods in terms of skill,
we reproduce the simulation study with 10 times 100 000 forecasts. For the case of a nor-
mal true distribution, Figure 3 shows the mean absolute error, mean CRPS and mean
ignorance score, along with a 95% bootstrap confidence interval (see Section 3.7) com-
puted from 1000 bootstrap samples. We have omitted the squared error from this plot,
as its values are on a much larger scale than the other scores. Looking at the results for
the small sample size in the top row, all scores assign the lowest mean value, and there-
fore the highest skill, to the normal distribution with the true parameters. However, if
no knowledge about the true distribution was available, as it would be in a real fore-
cast setting, the absolute error and the CRPS would prefer the log-normal distribution
over all other forecasters, while the ignorance score judges the normal distribution with
estimated parameters to be the best.

The bottom panel of Figure 3 shows the results from running the same study with the
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larger sample size, and therefore the order in which we would expect the forecasters
to rank. Here, all scores rightly find the Gumbel distribution, which has a completely
different shape and tail behavior than the truth, to be the worst forecast, and the two
forecasts based on normal distributions to be the best. This is, however, a contradiction
to the results we got from the top panel, where only the ignorance score managed to rank
the forecasters in the same order as we would expect.

Due to assigning large penalties to outliers, the ignorance score is here able to discrim-
inate between the shapes of the forecast distributions and shows a significant difference
at the 95% level between the Gumbel and the normal, log-normal and true distributions.
The relatively poor performance of the non-central t-distribution can probably be ex-
plained by the fact that, while this distribution approximates a normal distribution if the
degrees of freedom are large, the asymptotic distribution will have a standard deviation
of 1, which doesn’t match the given standard deviation of 3 in this example.
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Figure 4. PIT histograms of the five forecast distributions, if the true distribution is normal, based
on 1000 forecast-observation pairs.

Judging from Figure 4, which shows PIT histograms for the small-sample study with
a normal true distribution, we can not make any statements about the forecast ranking,
except that the Gumbel distribution forecast is clearly uncalibrated. Only when looking at
the large sample equivalent in Figure 5, we see that the normal and the true forecasters are
the only ones not suffering from miscalibration. A formal chi-square test (see Section 3.7)
rejects the assumption of uniformity for the Gumbel distribution and even the t- and log-
normal distributions (at a level of 95%) in the small sample case, and for all distributions
apart from the true one in the large sample case.

Figure 6 illustrates one example forecast, for which the scores are plotted as functions
of the verifying observation, in this case a sample value from a N (27.16, 9) distribution.
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Figure 5. PIT histograms of the five forecast distributions, if the true distribution is normal, based
on 1 million forecast-observation pairs
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Figure 6. Squared error, absolute error, CRPS and ignorance score as a function of the verifying
observation, for one forecast case in the simulation study: (a) normal distribution forecast, (b) non-
central t-distribution forecast, (c) log-normal distribution forecast, (d) Gumbel distribution forecast,
and (e) forecast based on the true normal distribution
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While the score minima largely coincide for the true and the t-distribution, it becomes
clear from the shape of the ignorance score, why it is much better at identifying the
Gumbel distribution as an inferior forecaster than the other scores: because of the non-
symmetry, forecasts will receive a much higher penalty, if the observation lies left of the
distribution mode than if it lies on the right.
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Figure 7. Top row: Mean absolute error, CRPS and ignorance score, and the 95% bootstrap con-
fidence interval for the five forecast distributions, if the true distribution is a Gumbel distribution.
Scores are based on 1000 forecast-observation pairs. Bottom row: Same as above, but scores are
based on 1 million forecast-observation pairs.

For the second part of the simulation study, we used a Gumbel distribution as truth,
where the mean is distributed withN (25, 1) and the scale parameter is 3. The same kind
of forecasts are produced again: normal, non-central t, log-normal and Gumbel distribu-
tions based on the sample mean and variance of the training data. In Figure 7, the out-
come of the study is shown for a small sample size (top row) and a very large sample size
(bottom row). As previously, all scores agree on the forecast ranking, when the sample
is large. The Gumbel distribution with estimated parameters and the true Gumbel dis-
tribution are assigned the lowest scores, while the normal forecaster now has the lowest
skill.

However, the rankings look different in the top panel, where the true distribution is only
ranked the third best by the absolute error and the CRPS, behind the estimated Gumbel
and non-central t-distributions. The ignorance score again is the only score able to repro-
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duce the forecast ranking we expect from the bottom panel. This is of course concerning
and hints at the fact that even for a data set of apparently sufficient size, like the 1000 50-
member ensembles used here, scores don’t necessarily provide robust and proper results.
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Figure 8. PIT histograms of the five forecast distributions, if the true distribution is a Gumbel
distribution, based on 1000 forecast-observation pairs.
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Figure 9. PIT histograms of the five forecast distributions, if the true distribution is a Gumbel
distribution, based on 1 million forecast-observation pairs.

Like in the first part, we can not really judge the degree of forecast calibration by just
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looking at the PIT histograms in Figure 8, except for the clearly uncalibrated normal
distribution. A case could be made that the histogram for the true distribution looks
slightly flatter than the other ones, but not with great certainty. It becomes clear, however,
from Figure 9, that the forecasts based on non-central t and log-normal distributions also
suffer from multiple types of miscalibration. These findings are confirmed by a chi-square
test, which rejects the uniformity hypothesis for all except the Gumbel distributions in
Figure 8 and all except the true distribution in Figure 9.
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Figure 10. Squared error, absolute error, CRPS and ignorance score as a function of the verifying
observation, for one forecast case in the simulation study: (a) normal distribution forecast, (b) non-
central t-distribution forecast, (c) log-normal distribution forecast, (d) Gumbel distribution forecast,
and (e) forecast based on the true Gumbel distribution

Picking an example forecast from the data set, as in Figure 10, shows that the ignorance
score for the two Gumbel distribution forecasters is again non-symmetric, and therefore
minimizes at a different value compared to the CRPS. In general, the ignorance score
takes its minimum value at the mode of the distribution, and the CRPS at the median.

We can gather from this simulation study that even proper scores can behave very differ-
ently, depending on the size of the underlying data set, and aren’t necessarily able to rank
competing forecasters according to their actual skill. Therefore, we suggest to always use
a combination of scoring rules to get a maximum amount of information about the per-
formance of a particular model or forecaster. The ignorance score is more sensitive to the
shape of a distribution and thus suitable to check if a chosen distribution actually fits the
data. The CRPS is very useful for comparing models when the forecasts don’t take the
form of a standard probability distribution, or if for a given data set such a distribution
can not be perfectly specified.

This also has implications for the ongoing discussion whether to use maximum likeli-
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hood methods or minimize the CRPS to estimate model parameters (Gneiting et al., 2005),
in that there might not be a definitive answer. Depending on the forecast situation and
model choice, it could be preferable to switch between the two approaches. A case can be
made for performing a thorough exploratory analysis of the data at hand before fitting
any distributions, so as to find one that matches the data best. If it is difficult to select one
distribution over the other, the simpler model should be preferred.

In all circumstances, the ranking of forecasters should not be solely based on the mean
score, even if the sample size seems to be sufficiently large, but confidence intervals
should be given, e.g. by applying bootstrapping techniques. We found that even for 1

million data points, differences between the forecast scores were often not significant at
the 95% level.

Assessing extreme events
Forecasts specifically aimed at predicting extreme events can be assessed in a stand-
ard manner e.g. by using the scoring rules discussed in Sections 3.1.1 and 3.1.2 above
(Friederichs and Thorarinsdottir, 2012). However, the restriction of conventional forecast
evaluation to subsets of extreme observations by selecting the extreme observations after-
the-fact, while discarding the non-extreme ones, and to proceed with standard evaluation
tools will invalidate their theoretical properties and encourage hedging strategies (Lerch
et al., 2017).

Specifically, Gneiting and Ranjan (2011) show that a proper scoring rule S is rendered im-
proper if the product with a non-constant weight function w is formed, where w depends
on the observed value y. That is, consider the weighted scoring rule

S0(F, y) = w(y)S(F, y). (22)

Then if Y has density g, the expected score EgS0(F, Y ) is minimized by the predictive
distribution F with density

f(y) =
w(y)g(y)∫
w(z)g(z)dz

, (23)

which is proportional to the product of the weight function w and the true density g. In
particular, if w(y) = 1{y ≥ u} for some high threshold value u, then S0 corresponds to
evaluating F only on observed values exceeding u under the scoring rule S.

Instead, one can apply proper weighted scoring rules that are tailored to emphasize specific
regions of interest. Diks et al. (2011) propose two weighted versions of the ignorance score
that correct for the result in (23). The conditional likelihood (CL) score is given by

CL(F, y) = −w(y) log
( f(y)∫

Ωw(z)f(z)dz

)
and the censored likelihood (CSL) score is defined as

CSL(F, y) = −w(y) log f(y)−
(
1− w(y)

)
log
(

1−
∫

Ω
w(z)f(z)dz

)
.
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Here,w is a weight function such that 0 ≤ w(y) ≤ 1 and
∫
w(y)f(y)dy > 0 for all potential

predictive distributions F ∈ F . When w(y) ≡ 1, both the CL and the CSL score reduce to
the unweighted ignorance score in (9).

Gneiting and Ranjan (2011) propose the threshold-weighted continuous ranked probability
score (twCRPS), defined as

twCRPS(F, y) =

∫
Ω
w(z)

(
F (z)− 1{y ≤ z}

)2dz,

where, again, w is a non-negative weight function, see also Matheson and Winkler (1976).
When w(y) ≡ 1, the twCRPS reduces to the unweighted CRPS in (12) while w(y) =

1{y = u} equals the Brier score in (14). More generally, the twCRPS puts emphasis on a
particular part of the forecast distribution F as specified by w. For focusing on the upper
tail of F , Gneiting and Ranjan (2011) consider both indicator weight functions of the type
w(y) = 1{y ≥ u} and non-vanishing weight functions such as w(y) = Φ(y|u, σ2) where
Φ denotes the cumulative distribution function of the Gaussian distribution with mean
u and variance σ2. Corresponding weight functions for the lower tail of F are given by
w(y) = 1{y ≤ u} and w(y) = 1− Φ(y|u, σ2) for some low threshold value u.

Non-stationarity in the mean climate e.g. due to spatial heterogeneity may render it dif-
ficult to define a common threshold value u over a large number of forecast cases. Here,
it may be more natural to define a weight function in quantile space using the CRPS
representation in (13),

twCRPS(F, y) =

∫ 1

0
w(τ)

(
F−1(τ)− y

)(
1{y ≤ F−1(τ)} − τ

)
dτ,

where w is a non-negative weight function on the unit interval (Gneiting and Ranjan,
2011; Matheson and Winkler, 1976). Setting w(τ) ≡ 1 retrieves the unweighted CRPS in
(13) while this definition of twCRPS with w(τ) = 1{τ = q} equals the quantile score in
(15). Examples of more general weight functions for this setting include w(τ) = 1{τ ≥ q}
and w(τ) = τ2 for the upper tail, and w(τ) = 1{τ ≤ q} and w(τ) = (1− τ)2 for the lower
tail with appropriate threshold values q, see also Gneiting and Ranjan (2011).

Lerch et al. (2017) find that there are limited benefits in using weighted scoring rules
compared to using standard, unweighted scoring rules when testing for equal predict-
ive performance. However, the application of weight functions as described here may
facilitate interpretation of the forecast skill.

Example: proper and non-proper verification of extremes
In the following, we illustrate that the use of non-proper methods to verify and compare
competing forecasts for extremes can lead to a distortion of the results and possibly false
inference. Taking the same setting as the first part of the simulation study in Section 3.2,
we generate sets of observation and training data from a normal distribution with stand-
ard deviation 3 and the mean a random value from a N (25, 1) distribution.

Four of the forecasting methods in Section 3.2 are compared: a normal distribution with
estimated parameters based on the training data, a Gumbel distribution with estimated
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parameters, a normal distribution with the true parameters and a Gumbel distribution
with the true means as location parameter and scale parameter σ = 3. The forecasters’
performance for extremes, which we consider to be values greater or equal to the 97.5%

quantile of the observations u, will be measured using the threshold-weighted CRPS with
three different weight functions and the unweighted CRPS, where the cases are restricted
to observations above the threshold. The weight functions considered are variations on
the indicator function:

w1 (y) = 1 {y ≥ u}

w2 (y) = 1 + 1 {y ≥ u}

w3 (y) = 1 + 1 {y ≥ u} · u

Mean scores and 95% confidence intervals, calculated by numerical integration based on
the small sample data set from Section 3.2, are shown in Figure 11 for the threshold-
weighted CRPS and the CRPS with restricted observations along with the unweighted
CRPS. The results for the twCRPS with weight function w1 are omitted, as they are equal
to zero for all forecasters.

However, just by adding 1 to the indicator function, we obtain meaningful scores with
weight function w2, showing the Gumbel distribution with fixed parameters to be the
least skillful forecast, while the two normal distribution forecasters are of significantly
better quality. The twCRPS with weight function w3 and the unweighted CRPS lead to
similar conclusions, although the differences between the scores are sometimes not sig-
nificant. In contradiction to the other scores, the CRPS based on the restricted data set
clearly shows the Gumbel distribution with fixed parameters to be the preferred fore-
caster.

Although its parameters and shape are obviously wrong, this is no surprise, as this dis-
tribution was purposely chosen because it has a heavy tail. Figure 12 pictures predictive
densities for one example from the data set. If we restrict the evaluation to the area above
the chosen threshold, represented by the black vertical line, the Gumbel distribution with
fixed parameters is indeed the supposedly best forecast, as it assigns the highest probab-
ilities to extreme values. The two normal distributions and the Gumbel distribution with
estimated parameters, which tries to approximate the true normal distribution, have a
very similar tail behavior, explaining their similar performance in terms of all scores.

We come to the same conclusion as Lerch et al. (2017), that conditioning a data set on
extremal observations can result in preferring a forecaster who predicts extremes with
inflated probabilities. When evaluating forecasts for a certain range of values, proper
methods like the threshold-weighted CRPS should be used, where the whole data set is
considered.
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Figure 11. Mean scores and 95% bootstrap confidence interval for the four version of the CRPS.
Top row: twCRPS with weight functions w2 and w3. Bottom row: CRPS restricted on observations
above the threshold u and unweighted CRPS.
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Figure 12. Example of the predictive densities given by the four competing forecasters. The black
vertical line shows the threshold u, above which observations are considered to be extreme.
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Multivariate assessment
Two general approaches can be employed to assess multivariate forecasts with scoring
rules: Use specialized multivariate scores or reduce the multivariate forecast to a univari-
ate quantity and, subsequently apply the univariate scores discussed above. For the latter
approach, the appropriate univariate quantities depend on the context. Multivariate fore-
casts of single weather quantities are usually in the form of temporal trajectories, spatial
fields or space-time fields. Here, it can, for instance, be useful to assess the predictive per-
formance of derived quantities such as maxima, minima and accumulated totals, all of
which depend on accurate modelling of both marginal and higher order structures, see
e.g. Feldmann et al. (2015) for an assessment of spatial forecast fields for temperature.

Scores that directly assess multivariate forecasts are rather scarce and, as noted by Gneit-
ing and Katzfuss (2014), there is a need to develop further decision-theoretically prin-
cipled methods for multivariate assessment. The univariate Dawid-Sebastiani score in
(10) can be applied in a multivariate setting with

DS(F, y) = log det ΣF + (y − µF )>Σ−1
F (y − µF ), (24)

where µF is the mean vector and ΣF the covariance matrix of the predictive distribution
with det ΣF denoting the determinant of ΣF (Dawid and Sebastiani, 1999). However,
note that unless the sample size is much larger than the dimension of the multivariate
quantity, sampling errors can effect the calculation of det ΣF and Σ−1

F (see e.g. Table 2 in
Feldmann et al., 2015). Similarly, if the multivariate predictive density is available, the
ignorance score in (9) can be employed (Roulston and Smith, 2002).

Gneiting and Raftery (2007) propose the energy score (ES) as a multivariate generalization
of the CRPS. It is given by

ES(F, y) = EF ‖X − y‖ −
1

2
EFEF ‖X −X ′‖, (25)

where X and X ′ are two independent random vectors distributed according to F and
‖ · ‖ is the Euclidean norm. For ensemble forecasts the natural analogue of the formulas
in (16) and (17) apply. If the multivariate observation space Ωd consists of weather vari-
ables on varying scales, the margins should be standardized before computing the joint
energy score for these variables (Schefzik et al., 2013). This can be done using the marginal
means and standard deviations of the observations in the test set. The energy score has
been developed with low-dimensional quantities in mind and it may lose discriminatory
power in higher dimensions (Pinson, 2013).

Scheuerer and Hamill (2015) propose a multivariate scoring rule that considers pairwise
differences of the components of the multivariate quantity. In its general form, the vari-
ogram score (VS) of order p is given by

VSp(F, y) =

d∑
i=1

d∑
j=1

ωij
(
|yi − yj |p −EF |Xi −Xj |p

)2
, (26)

where yi and yj are the ith and the jth component of the observation, Xi and Xj are the
ith and the jth component of a random vector X that is distributed according to F , and
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ωij are nonnegative weights. Scheuerer and Hamill (2015) compare different choices of
the order p and find that the best results in terms of discriminative power are obtained
with p = 0.5. Furthermore, they recommend using weights proportional to the inverse
distance between the components unless a prior knowledge regarding the correlation
structure is available.

A comparison of the three multivariate scores in (24)-(26) is provided in Scheuerer and
Hamill (2015). The authors conclude by recommending the use of multiple scores as they
complement each other in their strengths and weaknesses. The variogram score is gen-
erally able to distinquish between correct and misspecified correlation structures, it has
certain limitations resulting from the fact that it is proper but not strictly proper. Some of
these limitations can be addressed by also using the energy score which is more sensitive
to misspecifications in the predictive mean and less affected by finite representations of
the predictive distribution. While the latter is an issue for the Dawid-Sebastiani score,
it performs well for continuous predictive distributions, in particular for multivariate
Gaussian models (Wei et al., 2017).

Divergence functions
In some cases, in particular in climate modelling, it is of interest to compare the predictive
distribution F against the true distribution of the observations which is commonly ap-
proximated by the empirical distribution function of the available observations y1, . . . , yn,

Ĝn(x) =
1

n

n∑
i=1

1{yi ≤ x}. (27)

The two distributions, F and Ĝn, can be compared using a divergence

D : F × F → R≥0 (28)

where D(F, F ) = 0.

Assume that the observations y1, . . . , yn forming the empirical distribution function Ĝn

are independent with distribution G ∈ F . A propriety condition for divergences corres-
ponding to that for scoring rules (7) states that the divergence D is n-proper for a positive
integer n if

EGD(G, Ĝn) ≤ EGD(F, Ĝn) (29)

and asymptotically proper if

lim
n→∞

EGD(G, Ĝn) ≤ lim
n→∞

EGD(F, Ĝn) (30)

for all probability distributions F,G ∈ F (Thorarinsdottir et al., 2013). While the condi-
tion in (30) is fulfilled by a large class of divergences, only score divergences have been
shown to fulfill (29) for all integers n. A divergence D is a score divergence if there exists a
proper scoring rule S such that D(F,G) = EGS(F, Y )−EGS(G, Y ).

A score divergence that assesses the full distributions is the integrated quadratic divergence
(IQD)

IQD(F,G) =

∫ +∞

−∞

(
F (x)−G(x)

)2dx, (31)
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the score divergence of the continuous ranked probability score (12). Alternative score
divergences that assess specific properties of the predictive distribution include the mean
value divergence (MVD),

MVD(F,G) =
(
mean(F )−mean(G)

)2
, (32)

the divergence associated with the squared error scoring rule (20), and the Brier divergence
(BD) associated with the Brier score (14),

BD(F,G | u) =
(
G(u)− F (u)

)2
, (33)

for some threshold u.
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Figure 13. Comparison of expected score divergence values for a standard normal observation
distribution and normal forecast distributions with varying mean values (left) or standard deviations
(right).

Figure 13 provides a comparison of the score divergences in (31)-(33) for two simple
settings where the observation distribution is given by a standard normal distribution
and all the forecast distributions are also normal distributions but with varying para-
meters. In the left plot, the variance is correctly specified while the forecast mean value
varies. In the right plot, the forecast mean values equal that of the observation distribu-
tion while the standard deviation varies. We compare the IQD, the MVD and the BD with
thresholds u = 0.67 and u = 1.64 which equal the 75% and the 95% quantile of the ob-
servation distribution, respectively. The divergences are more sensitive to forecast errors
in the mean than the spread. In particular, the MVD is, naturally, not able to detect errors
in the forecast spread. Furthermore, integrating over the BD for all possible thresholds
u and obtaining the IQD yields a better discrimination than investigating the differences
for individual quantiles. The right plot also shows that the model ranking obtained under
the BD highly depends on the threshold u.

While every proper scoring rule is associated with a score divergence, not all score di-
vergences are practical for use in the setting where the empirical distribution function
Ĝn is used. One example is the Kullback-Leibler divergence, the score divergence of the
ignorance score in (9). The Kullback-Leibler divergence becomes ill-defined if the fore-
cast distribution F has positive mass anywhere where the observation distribution G has
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mass zero. When G is replaced by Ĝn and, especially, if the sample size n is relatively
small, such issues might occur. One option to circumvent the issue is to treat the data
as categorical and bin it in b bins prior to the evalution. That is, identify the probability
distribution F with a probability vector (f1, . . . , fb) and, similarly, G with a probability
vector (g1, . . . , gb). The Kullback-Leibler divergence is then given by

KLD(F,G) =

b∑
i=1

fi log
fi
gi
,

see also the discussion in Thorarinsdottir et al. (2013).

Historically, much of the forecast evaluation literature has focused on the evaluation of
probabilistic forecasts against deterministic observations and an in-depth discussion of
optimal theoretical and/or practical properties of divergences is lacking. Applied studies
commonly employ divergences that are asymptotically proper rather than n-proper for
all positive integer n, see e.g. Palmer (2012) and Perkins et al. (2007).

Testing equal predictive performance
As demonstrated in the simulation study in Section 3.2, the estimation of the mean score
over a test set may be associated with a large uncertainty. A simple bootstrapping pro-
cedure over the individual scores may be used to assess the uncertainty in the mean
score, see e.g. Friederichs and Thorarinsdottir (2012). Assume we have n score values
S(F1, y1), . . . , S(Fn, yn). By repeatedly resampling vectors of length n (with replacement)
and calculating the mean of each sample, we obtain an estimate of the variability in the
mean score. Note that some care is needed if the forecast errors, and thus the resulting
scores, are correlated. A comprehensive overview over bootstrapping methods for de-
pendent data is given in Lahiri (2003).

Formal statistical tests can be applied to test equal predictive performance of two com-
peting methods under a proper scoring rule. The most commonly applied test is the
Diebold-Mariano test (Diebold and Mariano, 1995) which applies in the time series setting.
Consider two competing forecasting methods F andG that for each time step t = 1, . . . , n

issue forecasts Ft andGt, respectively, for an observation yt+k that lies k time steps ahead.
The mean scores under a scoring rule S are given by

S̄Fn =
1

n

n∑
t=1

S(Ft, yt+k) and S̄Gn =
1

n

n∑
t=1

S(Gt, yt+k).

The Diebold-Mariano test uses the test statistic

tn =
√
n
S̄Fn − S̄Gn

σ̂n
, (34)

where σ̂2
n is an estimator of the asymptotic variance of the score difference. Under the

null hypothesis of equal predictive performance and standard regularity conditions, the
test statistic tn in (34) is asymptotically standard normal (Diebold and Mariano, 1995).
When the null hypothesis is rejected in a two-sided test, F is preferred if tn is negative
and G is preferred if tn is positive.
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Diebold and Mariano (1995) note that for ideal k-step-ahead forecasts, the forecast errors
are at most (k− 1)-dependent. An estimator for the asymptotic variance σ̂2

n based on this
assumption is given by

σ̂2
n =

γ̂0 if k = 1,

γ̂0 + 2
∑k−1

j=1 γ̂j , if k ≥ 2,
(35)

where γ̂j denotes the lag j sample autocorrelation of the sequence {S(Fi, yi+k)−S(Gi, yi+k)}ni=1

for j = 0, 1, 2, . . . (Gneiting and Ranjan, 2011). Alternative estimators are discussed in
Diks et al. (2011) and Lerch et al. (2017).

In the spatial setting, Hering and Genton (2011) propose the spatial prediction comparison
test which accounts for spatial correlation in the score values without imposing assump-
tions on the underlying data or the resulting score differential field. This test is imple-
mented in the R package SpatialVx (Gilleland, 2017). Weighted scoring rules and their
connection to hypothesis testing are discussed in Holzmann and Klar (2017).

A simple test for the uniformity of a rank or PIT histogram is the chi-square test. It tests if
the histogram values can be considered samples from a uniform distribution and there-
fore if any deviations of uniformity are random or systematic (Wilks, 2004, 2011). The
chi-square statistic based on n cases and K ensemble members is

χ2 =

K+1∑
i=1

(mi − f)2

f
, (36)

withmi denoting the actual number of counts for bin i and f = n
K+1 the expected number

of counts for a uniform distribution. We can reject the null hypothesis of the histogram
being uniform if this statistic exceeds the quantile of the chi-squared distribution with K
degrees of freedom at the chosen level of significance.

In its general form, however, the chi-square test only applies to independent data, which
is not the case in many forecast settings due to e.g. temporal or spatial correlation between
forecast data points. Some methods to address this effect are proposed in Wilks (2004). If
the goal is to not only test for uniformity, but also for the other deficiencies in calibration
shown in Section 2.1, Elmore (2005) and Jolliffe and Primo (2008) present alternatives
which are more flexible and appropriate. Wei et al. (2017) propose calibration tests for
multivariate Gaussian forecasts based on the Dawid-Sebastiani score in (24).

Understanding model performance

When assessing the performance of an individual model, e.g. to identify weaknesses and
test potential improvements, it might be useful to look at tools which don’t necessarily
follow the principles of propriety described in Section 3. For instance, it can be useful to
investigate the forecast bias to better understand the potential sources of forecast errors
even if competing forecasting models should not be ranked based on mean bias as it is not
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a proper score (Gneiting and Raftery, 2007). Here, we discuss a few tools which may be
used to provide a better understanding of the performance of an individual forecasting
model while it is not recommended to rank competing forecasters based on these tools.

One of the most popular measures used by national weather services is the anomaly cor-
relation coefficient (ACC) , a valuable tool to track the gain in forecast skill over time (Jol-
liffe and Stephenson, 2012). The ACC quantifies the correlation between forecast anom-
alies and the anomalies of the observation, typically an analysis. Anomalies are defined
as the difference between the forecast or analysis and the climatology for a given time
and location. Usually, the climatology is based on the model climate, calculated from the
range of values predicted by the NWP model over a long time period.

For a deterministic forecast fi, valid at time i, with a corresponding analysis ai and cli-
mate statistic ci, there are two equivalent definitions for the anomaly correlation coeffi-
cient (e.g. Miyakoda et al., 1972):

ACC =

N∑
i=1

(fi − ci) · (ai − ci)−
N∑
i=1

(fi − ci) ·
N∑
i=1

(ai − ci)√
N∑
i=1

(fi − ci)2 −
(

N∑
i=1

(fi − ci)
)2

·

√
N∑
i=1

(ai − ci)2 −
(

N∑
i=1

(ai − ci)
)2

=

N∑
i=1

(
f ′i − f̄ ′

) (
a′i − ā′

)
√

N∑
i=1

(
f ′i − f̄ ′

)2 N∑
i=1

(
a′i − ā′

)2
Here, f ′i = fi − ci is the forecast anomaly and a′i = ai − ci the anomaly of the analysis,
with respective sums f̄ ′ =

∑N
i=1 (fi − ci) and ā′ =

∑N
i=1 (ai − ci). The ACC is a preferred

evaluation tool for gridded forecasts and spatial fields, as these are usually compared
against an analysis or a similar gridded observation product.

However, there are certain limits and pitfalls one has to be aware of when using this
measure. Due to it being a correlation coefficient, the ACC doesn’t give any information
about forecast biases and errors in scale, so that it can overestimate the forecast skill
(Murphy and Epstein, 1989). As such, it should always be used in conjunction with an
estimate of the actual bias, or applied to previously bias-corrected data.

It has been established empirically that an anomaly correlation of 0.6 corresponds to a
limit in usefulness for a medium-range forecast. Murphy and Epstein (1989) warn, how-
ever, that this is rather an upper limit of the actual skill and that the ACC should be
seen as a measure of potential skill. Naturally, the ACC relies to a large extent on the
underlying climatology used to compute the anomalies.

When evaluating forecast skill with proper scores, it is often useful to get separate in-
dicators for the degree of calibration and the sharpness of the forecast. The well-known
and widely used decomposition of the Brier score by Murphy (1973b) separates the score
value in three parts, quantifying reliability, resolution and uncertainty.
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Consider a forecast sample of size N , where probability forecasts pu = 1 − F (u) are
computed for exceeding a threshold u and binary observations take the form o = 1{y ≥
u}. If the forecasts takeK unique values, with nk denoting the number of forecasts within
the category k and pu,k the probability forecast associated with category k, then the Brier
score can be written as

BS(F, y|u) =
1

N

K∑
k=1

nk (pu,k − ōk)2 − 1

N

K∑
k=1

nk (ōk − ō)2 + ō (1− ō) , (37)

where ōk is the event frequency for each of the forecast values and ō = 1
N

∑N
i=1 oi the

climatological event frequency, computed from the sample. The first part of the sum in
(37) relates to the reliability or calibration, the second, having a negative effect on the total
score, to the resolution or sharpness, and the last part is the climatological uncertainty of
the event.

This representation of the Brier score relies on the number of discrete forecast values K
being relatively small. If pu takes continuous values, care must be taken when binning
the forecast into categories, so as not to introduce biases (Bröcker, 2008; Stephenson et al.,
2008). Several analogue decompositions have been proposed for other scores, such as
the CRPS (Hersbach, 2000), the quantile score (Bentzien and Friederichs, 2014) and the
ignorance score (Weijs et al., 2010). Recently, Siegert (2017) formulated a general frame-
work allowing for the decomposition of arbitrary scores.

While it is common and advisable to look at a model’s performance in certain weather
situations or for certain periods of time, it is important to be aware of Simpson’s paradox
(Simpson, 1951). It describes the phenomenon that a certain effect appearing in several
subsamples can not be found in a combination of these samples, or that the larger sample
may even show the complete opposite effect.

For example, a forecast model can have superior skill over all four seasons, compared to
another model, but still be worse when assessed over the whole year. Hamill and Juras
(2006) showed this to be true for a synthetic data set of temperature forecasts on two
islands. In this case, the climatologies of the two islands were so different, that the values
of performance measures were misleadingly improved. Fricker et al. (2013) found that
this spurious skill doesn’t affect proper scores derived from scoring rules, but care should
be taken when using scores derived from a contingency table which are not proper, and
skill scores in general.

In general, it is recommended to use statistical significance testing in order to evalu-
ate potential model improvements. Differences in scores are often very small and it is
hard to judge if they are caused by genuine improvement or chaotic error growth. Geer
(2016) investigate a version of the Student’s t-test modified for multiple models and tak-
ing account of autocorrelation in the scores. They also found that in order to detect an
improvement of 0.5%, at least 400 forecast fields on a global grid would be required. This
confirms our findings from Section 3.2 that it is essential to make careful considerations
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of the experiment sample size in order to generate meaningful and robust results.

Summary

In this chapter, a variety of methods to assess different aspects of forecast goodness were
presented and discussed. Calibration errors can be diagnosed with the help of histo-
grams, in both univariate and multivariate settings. It is recommended to use multiple
such diagnostics, especially in the multivariate case, as different tools highlight different
types of miscalibration.

Scoring rules provide information about the accuracy of a forecast and are valuable tools
for comparing forecasting methods. In this context, only proper scores should be used, as
they ensure that the forecast based on the best knowledge will receive the best score.
There are many such scores available, with the CRPS and the ignorance score being
amongst the most popular. However, we found that just looking at the mean of one such
score can be misleading, even if the underlying sample seems to be of sufficient size.
Therefore it is crucial to also provide information about the error of the mean score, and
to base decisions about model preference on the evaulation of multiple scoring rules, if
possible. If we don’t want to compare models, but rather understand the behaviour of a
model, it can be helpful to use measures which are not necessarily proper. Especially skill
scores and the anomaly correlation coefficient are widely used.

By adding appropriate weight functions to the CRPS and the ignorance score, it is pos-
sible to evaluate extreme event forecasts in a proper way. These weight functions can be
designed to emphasize e.g. different parts of the climatological distribution. Scores for
multivariate quantities not only give information about the calibration and sharpness of
the forecast, but also assess the correct representation of the covariance structure between
locations, forecast times or variables. However, some of them have limitations and don’t
work well if the number of dimensions is large.

Given the multitude of available evaluation tools and scores, constantly growing due to
new research and applications, it is essential to be aware of their properties and how to
choose a suitable measure. To make sure that all aspects of a forecast’s performance are
addressed, a number of scores should be calculated and a quantification of the associated
uncertainty given.
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