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Abstract

Most banks use the top-down approach to aggregate their risk types when computing total eco-
nomic capital. Following this approach, marginal distributions for each risk type are first inde-
pendently estimated and then merged into a joint model using a copula function. Due to lack of
reliable data, banks tend to manually select the copula as well as its parameters. In this paper we
assess the model risk related to the choice of a specific copula function. The aim is to compute
the bounds on the total economic capital for the aggregate loss distribution of DNB, the largest
Norwegian bank, and the key tool for computing these bounds is the Rearrangement Algorithm
introduced in Embrechts et al. (2013). The application of this algorithm to a real situation poses a
series of numerical challenges and raises a number of warnings which we illustrate and discuss.
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1. Introduction

Pillar 1 (Minimum Capital Requirements) of the Basel II capital framework calculates the over-
all minimum capital requirement of a bank as the sum of marginal capital requirements for credit,
operational and market risk. Basel II typically includes two methodologies used for computing
the marginal capital charges for each of these types of risk: a standardized measurement approach
and a more advanced, internal models approach.

Financial institutions are however also exposed to many other sources of risk. As cited at
pages 8-9 of the consultative document Basel Committee on Banking Supervision (2010), a bank
might be required to consider (in alphabetical order): asset default risk, casualty insurance risk,
counterparty risk, disintermediation risk, health insurance risk, interest rate risk, lapse risk, life
insurance risk, morbidity risk, mortality risk, non-life insurance risk, property insurance risk and
segregated fund guarantee risk. Pillar 2 of the Basel II framework requires banks to handle all the
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relevant risk types in the so-called Internal Capital Adequacy Assessment Process (ICAAP) and a
strategy for maintaining minimum capital levels. ICAAP calculations cannot result in a reduction
of required capital. They will either show that additional capital is required above Pillar 1 levels
or that no additional capital is needed.

Within Pillar 2 there is no regulatory guidance as to the methodology that the financial in-
stitutions should employ to integrate their different risks. Moreover, there exists no standard or
state-of-the-art approach for aggregating the marginal risk types to the total risk. While the risk
types to be considered and the risk metric to be used are usually set by the national authority,
financial institutions are allowed to use a variety of mathematical approaches for aggregating their
risks.

The task of incorporating multiple types of risks into a single metric is referred to as Risk
Aggregation. An appropriate risk aggregation framework is fundamental for adequate firm-wide
risk management. Risk aggregation models are used to support decisions about capital allocation,
capital adequacy and solvency. They are also used to support risk management functions such as
risk identification, monitoring and mitigation. However, risk aggregation imposes a number of
significant challenges. Most importantly, a risk aggregation model should include a meaningful
assumption of interdependence among the risks and it should be able to handle loss exposures that
are inhomogeneous by nature and in time.

The approaches proposed in the literature for combining marginal risk information into a total
economic capital can be divided into two main categories: bottom-up and top-down aggregation
methods. In bottom-up aggregation, the idea is to identify the economic risk factors that are
important drivers of the different risk types and develop a simultaneous model for the evolution of
these risk factors. The simultaneous model includes a description of the dependence structure of
the risk factors, either through a correlation matrix or a copula. The losses related to the different
risk types are then determined by non-linear functions of the fluctuations in the risk factors. The
final aggregation is performed by simulating a large number of scenarios (one million and more)
for the risk drivers. This type of method is used for instance in Kretzschmar et al. (2010) and,
partly, in Aas et al. (2007).

In the top-down aggregation approach, one develops marginal models for the yearly loss dis-
tribution of each risk type independently. These marginal distributions are then merged into a joint
distribution using a correlation structure and/or a copula function. This kind of approach, which
is described in Rosenberg and Schuermann (2006), Dimakos and Aas (2004) and Brockmann and
Kalkbrener (2010) among others, was favored by over 75% of the surveyed banks in a compre-
hensive survey by the International Financial Risk Institute (IFRI Foundation and CRO Forum
(2007)). Hence, in this paper we focus on a top-down aggregation approach.

Stepping from a number of marginal loss distribution models into a multivariate model for the
joint risk portfolio calls for an assumption of a dependence structure among the individual random
variables. This dependence structure is typically provided in the form of a copula model. Here,
the reader not familiar with the theory of copulas is referred to Chapter 5 in McNeil et al. (2005).
A copula function is used to merge the marginal distributions of each individual risk factor into a
joint model. Since it is relatively easy to generate simulations from such a model, the final estimate
of the economic capital is typically produced over a high number of simulated samples.

If one uses the top-down aggregation method to aggregate the risk types, one first has to decide
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which copula to use and then estimate its parameters. Due to lack of reliable data, most banks tend
to manually select the copula as well as its parameters. Inter-risk diversification is typically super-
imposed using rank correlations that are smaller than one, resulting in a downward adjustment to
the total economic capital. The reliability of such total economic capital reductions have recently
been questioned by Kretzschmar et al. (2010) and Grundke (2013).

Hence, in this paper the aim is to quantify the model risk related to the choice of a specific de-
pendence structure. More specifically, we determine the best and worst possible economic capitals
which are coherent with the marginals of each risk type, where the economical capital is computed
in terms of the Value-at-Risk (VaR) for the total loss distribution. It is well known that the worst
possible VaR does not correspond to maximally correlated random marginals; see Fallacy 3 in
the milestone paper Embrechts et al. (2002). Based on the difference between the worst and best
capital estimates and on the ratio between the worst estimate and the maximal correlation case, we
will study two useful indicators of the model risk related to the choice of a specific dependence
structure.

The key tool for the computation of bounds on economic capital will be the Rearrangement
Algorithm (RA). The RA was introduced in Embrechts et al. (2013) for the computation of the
best/worst-possible VaR for the sum of d inhomogeneous risks with given marginal distributions.
While the RA is applied only to continuous, parametric families of distributions in Embrechts et al.
(2013), we will handle the more realistic case for which some of the marginals are given in the form
of simulated samples. The shift from continuous distributions to simulated samples poses several
numerical challenges which we present and discuss. Our final aim will be the computation of
the best/worst-possible 99.97%-VaR for the total loss distribution of DNB, the largest Norwegian
bank. Since all underlying methods and models are adapted to the requirements in the Basel II
(becoming Basel III) regulations, we however believe the results, the methodologies and guidelines
described in this paper to be applicable also in a broader context.

We very much hope that our paper is both accessible to the academic researcher as well as
to the more quantitative practitioner and that the more applied statements are fully acceptable to
the end-user. With this goal in mind, we have kept the technical details to a minimum, stressing
more the algorithmic, numerical aspects and practical consequences of the results discussed. The
mathematics included is however totally correct in every respect. The reader interested in more
mathematical details is always referred to the relevant research papers.

The rest of this paper is organized as follows. In Section 2 we give an overview of the method-
ology used by the bank to generate the marginal distributions of the different risks. Section 3
reviews the theory behind the Rearrangement Algorithm and describe its application to realis-
tic situations like the DNB case. Finally, in Section 4 we summarize some issues and warnings
concerning the computation of economic capital in a practical setting.

2. The DNB total risk model

DNB, the largest Norwegian bank, is exposed to credit, market, operational and business risk.
In addition, it faces two types of risk that stems from the ownership of the group’s life insurance
company. The first, which here is denoted asset risk, is the risk connected to negative movements
in the assets of the insurance company, while the other, denoted insurance risk, is the risk of
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losses due to unforeseen increases in life claims (e.g. caused by changes in death probabilities and
disability rates). In conclusion, the aggregate loss for DNB is given by the sum

L+
6 = L1 + · · · + L6,

where the random variables L1, . . . , L6 represent marginal risk exposures for credit (L1), market
(L2), asset (L3), operational (L4), business (L5), and insurance (L6) risks. We also denote by
F1, . . . , F6 the corresponding marginal distribution functions.

DNB has a model for computing its total economic capital that is in current use and hence
plays an important role in measuring and assessing the total risk level of the financial institution.
We just briefly sketch below how the six marginal models F1, . . . , F6 are generated. For more
details on the complete procedure, the interested reader is referred to Aas et al. (2007).

The credit risk distribution F1 is generated from the widely used multi-factor normal copula
model that is associated with Credit Metrics; see Goupton et al. (1997). Since DNB’s credit
portfolio is very large, straightforward simulation from this model would be a computationally
very heavy procedure. Consequently DNB has chosen to perform the simulation in two steps:
first, the loss distributions of each of the largest customers are separately simulated, and then the
losses of each industry sector (without the largest obligors) are generated using an approximate
formula. Since the probability of large portfolio losses is very small, naive Monte Carlo simulation
as described above typically requires a very large number of runs to achieve a satisfactory variance
for the VaR estimate. For the credit portfolio of DNB not even 5 million simulations are sufficient
to obtain the desired accuracy for the 99.97% VaR. Hence, importance sampling is used to increase
the simulation accuracy in the tail (beyond the 96% quantile). For more details on the specific
procedure, see Reitan and Aas (2010).

Market risk is typically measured on a short time horizon, such as 10 days. In the DNB total
risk model, however, the distributional model F2 for market risk must be scaled to a 1-year horizon
to be consistent with the other risk types. The market risk portfolio is assumed to be composed
of K asset classes, where each class is assumed to depend on fluctuations of one specific risk
factor, e.g. an interest rate or an exchange rate. Also connected to each class is the exposure and
a liquidation period. In DNB, like in many other financial institutions, market risk is managed by
applying risk limits to traders’ activities. Hence, the exposure is defined as the expected utilization
of the limit. Some of the asset classes are composed of both long and short positions, meaning that
the net position will vary over time. To be on the conservative side, DNB assumes that they are
always positioned the wrong way. To generate the market risk distribution, daily changes in the
value of all risk factors are first simulated from a multivariate CCC-GARCH model (Bollerslev,
1990) with the Student’s t-distribution as the conditional distribution. Then, for each asset class
and all days t, the loss corresponding to day t is computed as the relative change in the risk factor
during the period [t, t+liquidation period] times the exposure, and the total loss corresponding to
this day is obtained summing up the losses for all asset classes. Finally, the yearly market loss is
given as the maximum of the daily losses. Note that contrary to the other risk types, market risk is
two-sided, meaning that one may have both gains and losses.

The modelling of the asset risk distribution (F3) is similar to that of market risk. First, daily
changes in the value of M risk factors are simulated from a multivariate CCC-GARCH model.
Then, the total value of financial assets of the insurance company is computed for each day t,
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taking strategies for rebalancing into account, and this time series is compared to the insurers’
buffer capital to determine the loss. The yearly asset loss is finally given as the maximum of the
resulting daily losses.

Due to a small database on internal operational losses, DNB currently uses the Basel II stan-
dardised approach Basel Committee on Banking Supervision (2004) for determining economic
capital for operational risk. To be able to incorporate the operational risk into the same framework
as the other distributions, they need however to assume a distribution for the operational losses.
Based on simulation studies, the operational loss distribution F4 is assumed to be a LogNormal.
The two parameters of the LogNormal are determined assuming that the 99.9% percentile and the
mode are known. The 99.9% percentile is chosen to be equal to the Basel II capital, while the
mode is determined based on expert opinions. The current choice of the LogNormal distribution,
and the method for estimating its parameters must be considered as preliminary. As soon as the
database on internal losses is deemed to be sufficiently large, DNB will possibly replace the Log-
Normal assumption with a more sophisticated technique like EVT. However, this change will not
affect the techniques described in the remainder of the paper.

Due to the poor quality of internally available data for business risk, and the limited size of
insurance risk when compared to the other risk types, also business and insurance distributions F5

and F6 are simply assumed to have LogNormal distributions.
To summarize, the marginal models F1, F2 and F3 are simulated samples generated via Monte

Carlo simulations, while F4, F5 and F6 are provided in the form of LogNormal distributions. To
give an idea of the characteristics of the marginal distributions, Table 1 shows typical summary
statistics (the distributions are continuously being updated). The mean values and VaR estimates
are given in million Norwegian kroner (MNOK).

Li Risk type Distribution function Mean Skewness Kurtosis VaR0.9997(Li)

L1 Credit simulated sample 5206.75 3.54 35.61 61912.89
L2 Market simulated sample 1388.93 1.30 5.70 5508.22
L3 Asset simulated sample 406.50 5.24 41.42 13100.73
L4 Operational LogNormal 840.73 3.04 20.03 7703.97
L5 Business LogNormal 743.34 2.12 8.94 4529.12
L6 Insurance LogNormal 438.98 0.77 1.09 1000.09

Table 1: Summary statistics for the different risk types. The mean values and 99.97%-quantiles are given in MNOK.
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DNB computes the capital to be reserved as the Value-at-Risk (VaR) for the aggregate loss L+
6 ,

at the confidence level α. This VaR is is defined as

VaRα(L+
6 ) = inf{x ∈ R : P(L+

6 ≤ x) > α}. (2.1)

To aggregate its marginal risks, DNB uses the top-down approach. More specifically, a t-copula is
used to model the dependence among the six risk types and the VaR is estimated via simulations.
Because of the lack of a multivariate dataset for determining the appropriate copula family, DNB
follows common practice and chooses a specific dependence structure among the risks entirely on
the basis of expert opinions. In Section 3 we use the Rearrangement Algorithm to quantify the
model uncertainty associated with the choice of dependence structure.

As far as the confidence level is concerned, α is set to 99.97%. This is due to the fact that DNB
wants its public debt to be rated AA. The connection between the rating and confidence level may
be explained as follows (Hull, 2012, Chapter 23.1): Economic capital is usually defined as the
amount of capital a financial institution needs in order to absorb losses over one year with a certain
confidence level. The confidence level is therefore the probability that the bank will not run out of
capital (i.e., become insolvent) in the next year. A common objective for a large international bank
is to maintain a AA credit rating. Corporations rated AA have a one-year probability of default of
about 0.03. This suggests that the confidence level should be set as high as 99.97% for economic
capital to be a guide as to what is necessary to maintain a AA rating.

3. Measuring dependence uncertainty via the Rearrangement Algorithm

As stated in Section 2, DNB uses a copula C to model the dependence among the six risk types.
A copula C is a d-dimensional distribution function (df) on [0, 1]d with uniform marginals. Given
a copula C and d univariate marginals F1, . . . , Fd, one can always define a df F on Rd having these
marginals by

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), x1, . . . , xd ∈ R. (3.1)

Sklar’s Theorem (see Theorem 5.3 in McNeil et al. (2005)) states conversely that we can always
find a copula C coupling the marginals Fi of a fixed joint distribution F through the above expres-
sion (3.1). Hence Sklar’s Theorem states that a copula C of a multivariate distribution F contains
all the dependence information of F. In the remainder, we write (LC

1 , . . . , L
C
d ) to indicate a d-

dimensional random vector which has fixed marginals F1, . . . , Fd and a dependence structure in
the form of a copula C.

We now introduce a measure of the model risk associated to the choice of the copula on top of
the marginal risk information for the six-dimensional (d = 6) DNB total risk portfolio. First, we
define the best and worst possible VaR capitals to be held in accordance with the given marginal
distributions as

VaRα(L+
6 ) := inf

C∈C6

{
VaRα(LC

1 + · · · + LC
6 )

}
, (3.2)

VaRα(L+
6 ) := sup

C∈C6

{
VaRα(LC

1 + · · · + LC
6 )

}
, (3.3)
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where C6 denotes the class of all 6-dimensional copulas. The following inequalities will auto-
matically hold for any random vector (LC

1 , . . . , L
C
6 ) having fixed marginals F1, . . . , F6 and arbitrary

copula C:

VaRα(L+
6 ) ≤ VaRα

(
LC

1 + · · · + LC
6

)
≤ VaRα(L+

6 ).

The dependence uncertainty spread (DU-spread) of VaR is then defined as

∆VaRα(L+
6 ) := VaRα(L+

6 ) − VaRα(L+
6 ). (3.4)

The DU-spread of VaR measures dependence model uncertainty on the capital reserve needed to
offset the aggregate position L+

6 and provides a measure of model risk which fits the framework set
by Cont (2006). Here, the model risk derives from the uncertainty about the dependence structure
coupling the estimated marginal distributions. In order to compute the DU-spread of VaR for the
DNB portfolio, we use the so-called Rearrangement Algorithm.

3.1. The Rearrangement Algorithm for continuous marginal models.
The Rearrangement Algorithm (RA in the following) was introduced in Embrechts et al.

(2013). The idea underlying the algorithm is very simple. The algorithm takes as input a a (N×d)-
matrix, and it iteratively rearrange the entries within each column of the matrix until each column
is oppositely ordered to the sum of the other (d − 1) columns. Here we say that two columns
a, b ∈ RN are oppositely ordered if (a j − ak)(b j − bk) ≤ 0 holds for all 1 ≤ j, k ≤ N. Having two
columns oppositely ordered means in practice that the largest component of the first is associated
to the smallest component of the other and so on.

In Figure 1, we give a basic example in order to illustrate the algorithm. In (A) we start from
an input 3 × 3 (N = d = 3) matrix and, as a first step, the RA rearranges its first column (indicated
with an arrow) oppositely to the sum of the second and the third, which is reported using an extra
column outside of the matrix. After the first iteration of the RA the matrix (B) is obtained. One
can check that in (B) the first column has been rearranged so that the largest component (7) is
now associated with the smallest component (1) of the sum of the other two columns. Similarly
the second largest component (4) is now associated with second smallest (7), and the smallest
component (1) now corresponds to the largest component (10) of the sum of the other two columns.
The algorithm repeats the same procedure for the second (in (B)) and third column (in (C)) until
it finds an ordered matrix (in (D)) in which no further changes are applicable. Depending on the
initial matrix, several rearrangements of each column may be needed. However, the number of all
possible different matrices which can be obtained from the input matrix by rearranging the entries
in each column in a different order is finite, and this holds in general for any N and d. Since the
RA finds a different matrix at each iteration, it is straightforward to state that the RA terminates in
a finite number of steps; see also the proof of Theorem 2.1 in Puccetti and Rüschendorf (2012) for
more details on this.

Procedure to compute VaRα(L+
6 ).

In order to compute VaRα(L+
6 ), we start from an input matrix in which the j-th column con-

tains a N-point discretization of the part of the j-th marginal distribution F j which is above the
7



Figure 1: Iterative rearrangement of the input matrix (A) via the RA. The arrow indicates which column is rearranged
at each step, while the extra column outside of the matrix is used to report the sum of the columns which are kept
fixed at each step of the algorithm.

α-quantile. Then, we iteratively rearrange the entries of each column of the matrix until it stops.
As a termination rule it is more convenient to require that two consecutive rearrangements of the
entire set of columns provide two estimates with a fixed number of decimal digits left unchanged.
At each iteration step, the minimal component of the vector representing the sum of all columns is
taken as an estimate of VaRα(L+

6 ).

Rearrangement Algorithm RAU to compute VaRα(L+
6 ):

1. Start with an input N × d matrix X = (xi, j) and fix the desired level of accuracy ε > 0.

2. Iteratively rearrange the j−th column of the matrix X so that it becomes oppositely ordered
to the sum of the other columns, for 1 ≤ j ≤ d. A matrix Y is found.

3. Repeat Step 2. until
s(Y) − s(X) < ε,

where
s(X) = min

1≤i≤N

∑
1≤ j≤d

xi, j.

A matrix X∗ = RAU(X) is found as an output of the algorithm applied to the input matrix
X.

If the marginal models F1, . . . , Fd are provided in the form of continuous families of distribu-
tions, which includes the DNB risk types 4 − 5 − 6, it is always possible to apply the RAU to two
matrices, representing an approximation from below and from above of the marginal right α-tails.
In such a way, one can obtain an interval that contains the worst VaR value. To this aim, define the
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two matrices Xα = (xαi, j) and X
α

= (xαi, j) as

xαi, j = F−1
j

(
α +

(1 − α)(i − 1)
N

)
, xαi, j = F−1

j

(
α +

(1 − α)i
N

)
, (3.5)

for 1 ≤ i ≤ N, 1 ≤ j ≤ d. Let X∗ = RAU(Xα) and X
∗

= RAU(X
α
) and define

sN = s(X∗) and sN = s(X
∗
).

Then we have sN ≤ sN and in practice we find

sN
N→∞
' sN

N→∞
' VaRα(L+

6 ). (3.6)

Procedure to compute VaRα(L+
6 ).

In order to compute VaRα(L+
6 ), we start from an input matrix in which the j-th column con-

tains a N-point discretization of the part of the j-th marginal distribution F j which is below the
α-quantile. Then, we iteratively rearrange the entries of each column of the matrix until it stops.
As a termination rule again we use a condition on final accuracy considering that, at each iteration
step, the maximal component of the vector representing the sum of all columns is taken as an esti-
mate of VaRα(L+

6 ).

Rearrangement Algorithm RAL to compute VaR
α
(L+

6 ):

1. Start with an input N × d matrix X = (xi, j) and fix the desired level of accuracy ε > 0.

2. Iteratively rearrange the j−th column of the matrix X so that it becomes oppositely ordered
to the sum of the other columns, for 1 ≤ j ≤ d. A matrix Y is found.

3. Repeat Step 2. until
t(Y) − t(X) < ε,

where
t(X) = max

1≤i≤N

∑
1≤ j≤d

xi, j.

A matrix X∗ = RAL(X) is found as an output of the algorithm applied to the input matrix
X.

Note that the RAL for the computation of VaRα(L+
6 ) differs from the RAU for the computation

of VaRα(L+
6 ) because of the different termination conditions given in Step.3.

If the marginal models F1, . . . , Fd are provided in the form of continuous families of distribu-
tions, it is always possible to apply the RAL to two matrices, representing an approximation from
below and from above of the marginal left alpha-parts of the distributions. In such a way, one can

9



obtain an interval that contains the best VaR value. To this aim, define the two matrices Zα = (zαi, j)

and Z
α

= (zαi, j) as

zαi, j = F−1
j

(
α (i − 1)

N

)
, zαi, j = F−1

j

(
α i
N

)
,

for 1 ≤ i ≤ N, 1 ≤ j ≤ d. Let Z∗ = RAL(Zα) and Z
∗

= RAL(Z
α
) and define

tN = t(Z∗) and tN = t(Z
∗
).

Then we have tN ≤ tN and in practice we find

tN
N→∞
' tN

N→∞
' VaRα(L+

6 ). (3.7)

We call the intervals (sN , sN) and (tN , tN) the rearrangement ranges for VaRα(L+
6 ) and, respec-

tively, for VaRα(L+
6 ). For more details on the convergence of the algorithm and the limit results

given in (3.6) and (3.7), we refer the reader to the remark Convergence of the algorithm given in
Section 4.

In the case of a homogeneous portfolio of identically distributed random variables, it is possible
to analytically compute VaRα(L+

6 ) using Proposition 4 in Embrechts et al. (2013). Hence, in this
case the quality of the bounds provided by the RAU can be checked. We measure the accuracy of
the rearrangement range for VaRα(L+

6 ) via the relative errors

eN =
sN − VaRα(L+

6 )

VaRα(L+
6 )

and eN =
sN − VaRα(L+

6 )

VaRα(L+
6 )

and we call the interval (eN , eN) the RAU error range.
In the homogeneous case, the analytical computation of the best VaR is possible under the

assumption of an underlying marginal distribution with a decreasing density, as stated in Corollary
4.8 in Bernard et al. (2014). This assumption covers a lot of practical cases such as the Pareto
distribution, but it is not satisfied in general for the LogNormal distribution. In practice, we found
that the VaR lower bound stated in Bernard et al. (2014) is not sharp for any of the LogNormal
densities in the DNB portfolio. Hence, in our case we are unfortunately not able to perform the
same quality assessment for best VaR as for worst VaR.

However this might not be that crucial. First, the best VaR estimate relies on the N-discretization
of the α left part of the distribution, meaning that it is reasonable to expect this estimate to be more
accurate than the corresponding estimate of the worst VaR. Second, we believe the worst VaR esti-
mate to be more interesting to a bank in general, since this is the measure that describes the worst
case situation.

Since the accuracy of the worst VaR estimate can be checked only in the case of a homogeneous
portfolio, we will first test the RAU on a reference marginal distribution in order to get an idea of
the magnitude of the error introduced by the discretization procedure. In the case of DNB’s three
LogNormal distributions, the accuracy of the estimate of VaRα(L+

6 ) seems to be decreasing with
the heaviness of the right tail, as illustrated in Table 2. Hence, we choose the distribution F4 as the
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d = 6 VaRα(L+
6 ) RAU error range

(MNOK) (%)

F4 = LogN(µ = 6.4741049, σ = 0.7213475) 56387.11 -0.0007 – 0.0004

F5 = LogN(µ = 6.4459970, σ = 0.5747400) 31762.01 -0.0005 – 0.0003

F6 = LogN(µ = 6.0534428, σ = 0.2489544) 6404.66 -0.0003 – 0.0001

Table 2: The worst possible 99.97%-VaR (in MNOK) and the corresponding RAU error range for the sum of d = 6
identically distributed random variables under different marginal assumptions. The figures in this table are computed
using the RAU with N = 105 and ε = 10−2.

d = 6 RAU range RAU error range
(true=56387.1 MNOK) (%)

N = 102 56043.7–56661.8 -0.6090 – 0.4872

N = 750 56340.91–56423.05 -0.0819 – 0.0638

N = 103 56348.9–56414.8 -0.0677 – 0.0491

N = 104 56383.6–56389.8 -0.0063 – 0.0047

N = 105 56386.7–56387.4 -0.0007 – 0.0004

Table 3: The RAU range (in MNOK) and the RAU error range (in %) for the worst possible 99.97%-VaR for the sum
of d = 6 random variables identically distributed as F4. The true value for VaRα(L+

6 ) is obtained analytically using
Proposition 4 in Embrechts et al. (2013).

reference marginal distribution to get a conservative estimate of the relative errors committed by
the RA.

Table 3 shows the accuracy of the RAU for a portfolio consisting of d = 6 random variables
identically distributed as F4 for various values of N and ε = 0.01. As shown by the table, already
at N = 104, one obtains the worst VaR estimate with a relative error in the order of 10−5 to 10−4 and
this in less than half a second. Unfortunately, as we will see later, the overall accuracy deteriorates
when the marginal models involved are not provided in the form of continuous distributions. All
the figures reported in the tables of this paper are obtained instantaneously or within seconds when
computed using R on an Apple MacBook Air (2 GHz Intel Core i7, 8 GB RAM).

3.2. The RA for a combination of continuous and simulated marginal models
In Section 3.1 we defined the application of the two RAs when the marginal models are pro-

vided in the form of a parametric distributions. When simulated samples are used instead of ana-
lytically computed quantiles, the application of the two RA’s are different from what is previously
described:

1. One matrix only. For the computation of the worst VaR estimate VaRα(L+
6 ), the RAU uses
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two matrices, representing an approximation from below and from above of the right tails
of the marginal distributions under study. When the marginal distributions are provided in
analytical form, these upper and lower approximations are defined in (3.5). When one has a
marginal distribution provided in the form of simulated samples, it is not in general possible
to obtain two discrete models approximating the marginal right tail from below and from
above. In this case, the RAU is applied to a single matrix in which each column contains
N observed simulations in the right (1 − α)-tail of the corresponding distribution. Formally,
we define Xα = (xαi, j), where each (xα1, j, . . . , x

α
N, j) is a vector of N simulated samples in

[F−1
j (α), F−1

j (1)], 1 ≤ j ≤ d. Using the notation defined in Section 3.1, one applies the RAU
to the matrix Xα and computes s(RAU(Xα)) as an estimate of VaRα(L+

6 ).

Analogous considerations hold for the computation of VaRα(L+
6 ). In this case, the RAL is

applied to a single matrix in which each column contains N observed simulations in the
left α-tail of the corresponding distribution. Formally, we define Zα = (zαi, j) where each
(zα1, j, . . . , z

α
N, j) is a vector of N simulated samples in [F−1

j (0), F−1
j (α)], 1 ≤ j ≤ d. Then, one

applies the RAL to the matrix Zα and computes t(RAL(Zα)) as an estimate of VaRα(L+
6 ).

2. Random estimates. As one relies on a random sample, two different set of simulations pro-
duce two different estimates for the VaR. No deterministic ranges can be obtained. However,
empirical confidence intervals for the random estimate can be obtained by running the algo-
rithms a large number of times.

3. Choice of N. The constant N denotes the number of simulated samples in the right or left tail
of each of the marginal models. Assume that the models used by a bank are able to produce
a number of M simulations over the entire domain of each of the marginal distributions
F j. This means that the RAU can be applied to a matrix with at most N = M (1 − α)
rows, while the RAL can be applied to a matrix with at most N = M α rows. This point
is particularly relevant. With a probability level of α = 99.97%, if one is able to obtain
M = 106 simulations, only N = 300 of them will be used in the RAU, while N = 999700 of
them will be used in the RAL. Hence, for a given M, we expect the RAL to be more accurate
than the RAU.

Now we test the accuracy of RAU in a homogeneous portfolio where the marginals are pro-
vided partly in the form of continuous models and partly in the form of simulated samples. To this
aim, we apply the RAU to a N × 6 matrix where columns 1–3 contain simulated samples in the
right (1 − α) tail of F4, while columns 4–6 contain the deterministic quantiles of F4. Hence, we
apply the RAU to the matrix Xα = (xαi, j), where

xαi, j = si, j, 1 ≤ j ≤ 3, and xαi, j = F−1
4

(
α +

(1 − α)i
N

)
, 4 ≤ j ≤ 6, (3.8)

for 1 ≤ i ≤ N. Here each (s1, j, . . . , sN, j), 1 ≤ j ≤ 3, is a vector of N simulated observations in
[F−1

4 (α), F−1
4 (1)]. Contrary to the definition of the input matrices in (3.5), notice that the first three

columns of the input matrix Xα in (3.8) are not ordered; see also the remark To randomize or not
to randomize? given in Section 4 below.
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At this point, we run the RAU 105 times in order to compute empirical confidence intervals for
VaRα. The results are shown in Table 4. Although the accuracy of the RA, measured in terms of
95% empirical confidence interval for the relative error, is worse than that shown in Table 3, the
overall performance of the algorithm is still more than reasonable.

It is important to notice that the relative errors reported in Table 4 are only valid when the
random variables are identically distributed as F4 and are only to be used as guidelines for the
choice of N. We stress again that, at the moment, there is no way one could check the accuracy
of the RA for an inhomogeneous portfolio of risks with (some of the) marginals provided in the
form of simulated samples. However, since the reference distribution used is the one producing
the poorest accuracy performance (see Table 2) for an homogeneous portfolio, we expect the final
relative errors committed in the real DNB case not to be larger than the ones reported in Table 4.

d = 6 RAU 95% CI RA error 95% CI
(true=56387.1) (%)

N = 102 55891.98–57167.62 -0.8781 – 1.3842

N = 750 56171.67–56643.03 -0.3821 – 0.4539

N = 103 56192.52–56609.12 -0.3451 – 0.3937

N = 104 56321.69–56452.96 -0.1160 – 0.1168

N = 105 56366.46–56407.96 -0.0366 – 0.0370

Table 4: 95% confidence intervals (CI) for the RAU estimate and RAU error for the worst possible 99.97%-VaR for
the sum of d = 6 random variables identically distributed as F4, when three of the marginals are provided in the form
of simulated samples. The empirical confidence intervals are evaluated over 105 runs of the algorithm. The true value
for VaRα(L+

6 ) is obtained analytically using Proposition 4 in Embrechts et al. (2013).

3.3. The RA for the DNB case
Due to memory constraints, the DNB model is able to generate at most M = 2.5 × 106 sim-

ulations for credit, market and asset risk. Using 2.5 million simulations may seem sufficient for
computing the 99.97% quantile. However, this means that the RAU can be applied to an input
matrix with only N = (1 − α)M = 750 rows. On the other hand, the RAL can be applied to an
input matrix with N = α×M = 2499250 rows, and it is reasonable to expect the best VaR estimate
to be more accurate than the worst VaR estimate. For operational, business and insurance risk we
used deterministic quantiles following the technique described in Section 3.2.

In Table 5, we report the best and worst possible VaR estimates obtained for the DNB model.
Table 5 also shows the DU-spread of VaRα as defined in (3.4) and the comonotonic VaR which
corresponds to the case of maximally correlated marginal exposures. We have also compared the
comonotonic VaR value with the independence VaR value obtained under the assumption of inde-
pendence and the t-copula value resulting when a t-copula with 6 degrees of freedom is used to
model the dependence among the six risk types (which is the model used in practice by DNB). The
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comonotonic VaR is simply obtained by summing up the marginal quantiles in Table 1 (see Mc-
Neil et al. (2005, Proposition 6.15)), while the independence and t-copula values are obtained via
simulations. As we already remarked, for VaRα one can reasonably assume that the relative error
committed by the RAU is not larger than the one obtained in Table 4, while we expect VaRα to
be much more accurate. The DU-spread of the VaR reported in Table 5 can be used as a measure
of model risk related to the uncertainty about the structure of dependence amongst the marginals.
Banks typically have better methods for estimating the marginal distributions for each risk type
than they have for the dependency structure. Hence, it is very useful for a bank to know the best
and especially the worst possible VaR for a given a set of marginals. Once one is able to quantify
DU-spreads, the following regulatory task would probably be to assess a corresponding extra cap-
ital to be reserved to offset model risk. This a delicate point that goes well beyond the scope of
our paper. Hence, we deliberately want to leave this issue open to encourage further discussions
within banking practice and regulation.

VaRα(L+
6 ) independence t-6 copula comonotonic VaRα(L+

6 ) ∆VaRα(L+
6 )

62156.4 66182.84 77896.33 93755.02 105878.2 43721.8

Table 5: From left to right: best, independence, t-6 copula, comonotonic, and worst VaR estimates and the DU-spread
of the VaR for the DNB case. All numbers are given in MNOK and the quantile level is set to α = 99.97%.

Diversification ratio and diversification benefit
Define the diversification ratio (SR) for the aggregate loss L+

6 =
∑6

i=1 Li as

4α(L+
6 ) =

VaRα(L+
6 )∑6

i=1 VaRα(Li)
. (3.9)

The diversification ratio measures the ratio between the total VaR of a portfolio and the sum of the
marginal exposures. Superadditivity of VaR can be also described using the equivalent concept of
diversification benefit formally introduced in Cope et al. (2009), but the ratio

VaRα(L+
6 )/(

6∑
i=1

VaRα(Li))

was already studied in the milestone paper by Embrechts et al. (2002).
A diversification ratio between 0 and 1 indicates that diversification effects occur in the port-

folio, meaning that the aggregate position L+
6 is less risky than the sum of the marginal exposures.

This is the typical situation occurring for elliptically distributed risk portfolios, for which it is well
known that 4α(L+

6 ) ∈ [0, 1]; see Theorem 6.8 in McNeil et al. (2005).
The case 4α(L+

6 ) = 1 occurs when the risks L1, . . . , L6 are comonotonic, i.e. they are all almost
surely increasing functions of a common random factor. In this case it is well known that the VaR
for their sum is equal to the sum of marginal VaR numbers; see Proposition 6.15 in McNeil et al.
(2005). See also Section 6.2.2 in McNeil et al. (2005) for a detailed discussion of the concept of
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comonotonicity within quantitative risk management. The comonotonic case represents maximal
correlation between the marginals and it is erroneously considered as highly conservative. As
shown by Table 5, the worst-case total risk of DNB exceeds the sum of the marginal risks, meaning
that the value of 4α(L+

6 ) may well be larger than 1. We define the worst diversification ratio (WSR)
for L+

6 as

4α(L+
6 ) =

VaRα(L+
6 )∑6

i=1 VaRα(Li)
.

For DNB at the quantile level α = 99.97%, we have 4α(L+
6 ) = 1.1293. It is well known that the

WSR may be larger than one, especially in the case of infinite mean models; see for instance Ibrag-
imov and Walden (2008) and Mainik and Rüschendorf (2010). In the DNB example however, the
marginal risks possess a finite expectation.

4. Remarks and warnings

We conclude our paper by discussing some important issues that the assessment of model
uncertainty in a real situation raises.

Only tails matter. As a consequence of Theorem 2.1 in Puccetti and Rüschendorf (2013), the
worst-possible α-VaR for a sum of random variables only depends on the right (1 − α) tails of the
support of the fixed marginal distributions. Maximization of the VaR of L+

6 can be equivalently
seen as the maximization of the survival function P(L+

6 ≥ s), for some real threshold s. Since
the probability P(L+

6 ≥ s) is increasing on the mass of the right tail of the fixed marginals and
no more than (1 − α) probability mass can be allocated to the right tail of the optimal solution,
it is intuitively obvious that the optimal solution should use only the largest (1 − α) part of each
marginal component. As a result, the optimal dependence structure is to be determined only in the
right tails of the marginal supports, while interdependence in the lower parts can be set arbitrarily.
In order to apply the RAU for the worst VaR, a financial institution has to be primarily (if not
totally) interested in providing a robust statistical model or accurate simulations for the right tails
of its marginal risks. However, there are also several reasons why a financial institution would want
to model/simulate the whole distribution and not only the tail. For example, DNB uses the total
risk model for other tasks than economic capital calculation. When e.g. computing earnings-at
risk and the best VaR estimate VaRα(L+

6 ), the lower quantiles are of relevance.

Uncorrelation is not meaningful. An implication of the previous statement is that it is always
possible to find a worst-case VaR copula having any dependence measure like standard correlation
or Kendall’s/Spearman’s rank correlation equal to zero. Thus, assuming that overall correlation
between the risks of the bank is small does not have any direct consequence on the worst VaR
estimate. Moreover, contrary to common belief, assuming the marginal risks to be positively
dependent, has a minimal impact on the estimate. See the discussion carried out in Section 3
in Embrechts et al. (2013).
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More information on the dependence structure. Providing information about dependence within
subgroups of the random variables will considerably lower the worst VaR estimate. The RAU
and RAL algorithms can also be applied in the case where one is able to estimate the copula for
some bivariate pairs of random variables; see Section 4 in Embrechts et al. (2013). Recently,
Bernard et al. (2014b) introduced the Extended Rearrangement Algorithm (ERA) that allows to
approximate sharp VaR bounds on a sum of risks when the variance of the portfolio sum is also
known. Adding the variance constraint gives rise to significantly tighter bounds in all situations of
interest.

Copulas corresponding to worst-possible VaR scenarios. Any output matrix from the RAs can
be seen as the support of a N-discrete, d-variate distribution giving probability mass 1/N to each
one of its N row vectors. Thus, the algorithm described in this paper can also be used to obtain a
discrete image of the structure of dependence (i.e. of the copula) attaining the worst/best possible
VaR estimates. We call any such copula a worst-possible or best-possible VaR scenario. In Fig-
ure 2 we give bivariate projections of the upper-orthant part of the support of the worst-possible
VaR scenario in the case of the sum of d = 3 random losses identically distributed as F4. The
number of points used in the discretization of the copula is set to N = 750 to resemble the real
application discussed in Section 3.2. The figure clearly shows the optimal dependence structure
underlying a worst-possible VaR scenario. This scenario is not the one for which all marginals
are positively dependent, i.e. where they all tend to be large at the same time. As already re-
marked, maximization of the VaR of a sum is equivalent to the maximization of the tail function
P(L+

6 ≥ s). An optimal allocation of the (1 − α) probability mass is obtained either if at most one
margin is exceeding the threshold s, or if the sum of all margins is exactly adding up to s. In the
latter case, the variance of their sum is equal to zero, and we have a so-called completely mixable
behavior. The interested reader can compare Figure 2 with Figures 2-3 in Embrechts and Höing
(2006) and Figure 4 in Puccetti and Wang (2014). For further details on the concept of complete
mixability, we refer the reader to the papers Wang and Wang (2011), Puccetti et al. (2012). Similar
dependence structures arise as the solution of VaR maximization/minimization problems possibly
subject to different constraints; see for example Bernard et al. (2013) and Bernard et al. (2014b).
In higher dimensions, the behavior of a homogeneous portfolio is similar, but less evident, be-
cause the completely mixable region gets larger with increasing dimensions. In Figure 3 we give
bivariate projections of a worst-possible VaR scenario in the case of the sum of d = 6 random
losses identically distributed as F4. Worst/best VaR scenarios may also be modeled by patchwork
copulas; see Durante et al. (2013) on this.

Figure 4 shows the projections of the upper-orthant part of the support of the worst-possible
VaR scenario in the case a portfolio of d = 3 risks having marginal distributions F4, F5, F6. The
cloud of points visible in each sub-figure corresponds to the region of minimal variance for the
sum. For general (possibly inhomogeneous) marginals, VaR is then still maximized by copulas
containing jointly mixable (i.e. minimal variance) regions in their upper-orthant parts. The con-
cept of joint mixability has been introduced in the paper Wang et al. (2013). Analogous patterns
are found in Figure 5, which shows the projections of the upper-right part of the support of the
worst-possible VaR scenario for the six-dimensional DNB case.
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Value-at-Risk versus Expected Shortfall. In the DNB case, where the marginal exposures possess
a finite expectation, Expected Shortfall (ES) is a natural alternative to VaR.

For a random variable X with E[|X|] < ∞ and distribution function FX, the expected shortfall
(ES) at confidence level α ∈ (0, 1) is defined as

ESα(X) =
1

1 − α

∫ 1

α

VaRq(X) dq. (4.1)

Unlike VaR, ES accounts for risk in a more comprehensive manner considering both the size
and likelihood of losses above a certain threshold (e.g. the 99.97%-quantile). Most importantly,
ES is a subadditive risk measure and it is well known that the worst-possible value in the case
of an aggregate position L+

6 is attained when the risks are comonotonic, i.e. perfectly positively
dependent. Formally stated, one has that

ESα(L+
6 ) := sup

C∈C6

{
ESα(LC

1 + · · · + LC
6 )

}
= ESα(LM

1 + · · · + LM
6 ) = ESα(L1) + · · · + ESα(L6),

where M denotes the comonotonic copula; see for instance Section 1 in Puccetti (2013).
A model risk analysis like the one previously carried out for VaR is also possible using ES as

the benchmark risk measure. Analogously to (3.2) and (3.4), one can define the best-possible ES
capital coherently with the fixed marginal distributions F1, . . . , Fd as

ES
α
(L+

6 ) := inf
C∈C6

{
ESα(LC

1 + · · · + LC
6 )

}
,

and the DU-spread of ESα as

∆ESα(L+
6 ) = ESα(L+

6 ) − ES
α
(L+

6 ).

The DU-spread of ESα for the DNB portfolio can be calculated using the RA following the tech-
nique described in Puccetti (2013). The results are given in Table 6. For the sake of comparison
we also repeat the VaR numbers from Table 5.

α = 99.97% VaRα(L+
6 ) VaRα(L+

6 ) ∆VaRα(L+
6 )

62156.4 105878.2 43721.8

α = 99.97% ES
α
(L+

6 ) ESα(L+
6 ) ∆ESα(L+

6 )

74354.7 110588.8 36234.1

Table 6: Upper row from left to right: Best VaR estimate, worst VaR estimate and the DU-spread of VaR for the DNB
case. Lower row from left to right: Best ES estimate, worst ES estimate and the DU-spread of ES for the DNB case.
All numbers are given in MNOK.

By definition, ES is a more conservative risk measure than VaR, i.e. ESα(L+
6 ) ≥ VaRα(L+

6 ).
The same inequality obviously holds also for the corresponding best/worst cases, i.e. ESα(L+

6 ) ≥
17



VaRα(L+
6 ) and ES

α
(L+

6 ) ≥ VaRα(L+
6 ) . As shown by Table 6, for the DNB case, the worst-possible

ES estimate is just 4% bigger than the corresponding VaR estimate. This very small difference is
not surprising, since conservative VaR- and ES-based capital charges have recently been shown to
be asymptotically equivalent. In practice, under very weak conditions on the marginal distributions
of a risk portfolio we have that

lim
d→∞

ESα(L+
d )

VaRα(L+
d )

= 1,

where L+
d = L1 + · · ·+ Ld; see Embrechts et al. (2014) for a proof and the history of this limit result.

Concerning Table 6, it is also interesting to mention that ES typically has a smaller DU-spread
if compared to VaR. As shown and discussed in Embrechts et al. (2014), this conclusion holds
asymptotically for all ESq(L+

6 ) vs VaRα(L+
6 ), q ≤ α.

Convergence of the algorithm. Unfortunately, there does not exist an analytic proof that the limit
results in (3.6) and (3.7) hold for all initial configurations of the algorithm. In general we have
that sN ≤ VaRα(L+

6 ) and tN ≥ VaRα(L+
6 ) for sufficiently large N. However, the inequalities sN ≥

VaRα(L+
6 ) and tN ≤ VaRα(L+

6 ) are not always satisfied. This is not in contrast with convergence of
the algorithm, but only means that these sequences might not be monotonic.

It is quite easy to build an example with marginals uniformly distributed in the unit interval in
which the two sequences sN and sN do not converge to VaRα(L+

6 ) and the two sequences tN and
tN do not converge to VaRα(L+

6 ). These examples are however based upon a special choice of the
starting matrix of the algorithm. In the applications given in this paper, where the starting matrix
contains ordered columns and/or simulated values, we always found the algorithm to provide
excellent approximations even with moderately large values of N.

The convergence of different versions of the RA has been tested in a variety of applications to
portfolios of interest in quantitative risk management; see e.g. the paper Bernard et al. (2014b)
However, an analytical proof of the convergence of the RA remains an open problem.

To randomize or not to randomize? The input matrix used by the RAs in Section 3 is a comono-
tonic matrix having all its columns arranged in increasing order. In the original version of the
algorithm described in Embrechts et al. (2013), the authors use a randomized starting matrix in
order to minimize the probability of choosing a starting point not leading to convergence of the
algorithm. We tried different deterministic/random choices for the starting rearrangement, but we
always found the comonotonic matrix to yield the same accuracy as the randomized one. Hence,
the choice of the starting matrix does not seem to be crucial in the application of the RA with a
large N. The advantage of using a comonotonic starting matrix is that the VaR ranges reported in
Table 3 are deterministic and do not vary across multiple repetitions of the algorithm. On the other
hand, this starting matrix may give negative values for the upper error eN .
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Figure 3: Two-dimensional projections to [0.9997, 1]2 of the support of the discrete image of the copula attaining the
worst-possible VaR for the sum of d = 6 random variables identically distributed as F4.
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Figure 4: Two-dimensional projections to [0.9997, 1]2 of the support of the discrete image of the copula attaining the
worst-possible VaR for the sum of d = 3 random variables having marginals F4, F5, F6.
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Figure 5: Two-dimensional projections to [0.9997, 1]2 of the support of the discrete image of the copula attaining the
worst-possible VaR for the DNB case.
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