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Abstract

Haugen M, Moger TA. Frailty modelling of time-to-lapse of single

policies for customers holding multiple car contracts. Scandinavian

Actuarial Journal. Corporate customers often hold multiple contracts

and this might give dependence between the lapsing times of the single

policies. We present a shared gamma frailty model in order to study

the time-to-lapse of single car policies for customers holding multi-

ple car contracts with the same insurance company, accounting for

measured and time dependent covariates. Customers with the highest

frailty value tend to leave the company earlier than the others and

finding these is a central aspect within a company’s customer relation-

ship management strategy. We estimate conditional survival curves

which illustrate the decreased survival probability of a customer after

a lapse in a single car insurance policy. The individual survival curves

are overestimated if the underlying association for cars with the same

customer is ignored. Fitting misspecified Cox’s proportional hazards

model also results in an underestimation of the standard error of the

parameter estimates. Keywords: frailty, intracluster dependence, non-

life insurance, survival analysis.

1 Introduction

A company must generate sales to survive but the firm’s sales are not only a

function of new customer numbers, but also of how many existing customers

are retained (Brockett et al., 2008). With a real life example from the fi-

nancial services industry, Van den Poel and Lariviére (2004) illustrated that

an increase in retention rate of just one percentage point may result in sub-

stantial profit increases. For customers holding multiple types of contracts

with the same insurance company, e.g. house, content and car, Brockett

et al. (2008) showed that a lapse in one policy may be a signal of the be-
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ginning of the customer’s defection to a competitor. Finding the customers

most likely to leave the company is hence a crucial task in customer rela-

tionship management (CRM). Once they are identified, individual customer

retention procedures can be carried out.

Survival and event history analysis are important tools in statistics.

These methods have applications for instance in insurance (Brockett et al.,

2008, Keiding et al., 1998, Van den Poel and Lariviére, 2004), medicine

(Drzewiecki and Andersen, 1982, Jepsen et al., 2008, Maruza et al., 2012)

and reliability (Wong and Tsai, 2012). Cox’s proportional hazards model

(Cox, 1972) and its extensions have become standard methods for survival

analysis (Therneau and Grambsch, 2000). Frailty models (Hougaard, 1995,

2000, Therneau and Grambsch, 2000) add a random effect to Cox’s pro-

portional hazards model, an effect thought to act multiplicatively on the

hazard function such that a large value increases the hazard. The idea is

that individuals have different frailties and those who are most frail tend

to experience the event of interest earlier than the others. Aalen (1988)

discussed the impact of individual heterogeneity in survival analysis and

illustrated how random effects can deal with it.

When observations are clustered into groups, such as families, hospitals

or cities, the shared frailty model is the most often adapted model (Rondeau

et al., 2012). It was introduced by Clayton (1978) and extensively studied by

Hougaard (2000). In this paper we have applied the shared frailty model in

order to study the time-to-lapse of single car policies for customers holding

multiple car contracts. Some customers had only a single car insurance

policy but many of them held multiple car contracts and the frailty term

may be dependent for these. If a single car insurance policy is lapsed, there

is a risk that all cars belonging to this customer will leave the portfolio.
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Each customer forms a cluster or a group with a specific frailty value, which

is shared among all cars in the cluster. Sharing a frailty value generates

dependence within a cluster, whereas conditional on the frailty those cars

are independent.

Intracluster dependence is often modelled with the gamma frailty dis-

tribution because of its simple interpretation and mathematical tractabil-

ity. The closed form expressions of the unconditional survival, cumulative

density and hazard function are easily derived due to the simplicity of the

Laplace transform of the probability function for the gamma distribution

(Hirsch and Wienke, 2012). Closed form expressions of both the univariate

and the bivariate unconditional survival curves are used to graphically illus-

trate the effect a lapse in a single car insurance policy has on the survival

probability of a customer. One then plots the survival function given that

another car in the cluster has lapsed and the survival function given that

another car has maintained the policy to see how the dependence within

groups of cars affects the survival for different combinations of the covari-

ates. If the underlying dependencies in the data are ignored, the individual

survival curves are overestimated. These illustrations may only be carried

out if we estimate the distribution of the frailty. A different approach is to

use the robust standard errors of the parameter estimates. These estimates

are adjusted for dependencies but we are not able to make good illustrations

in the same manner as with a fitted frailty distribution. All of the estimation

may be carried out by using standard software for survival analysis.

This paper is organised as follows. The data are described in Section

2. Section 3 describes the shared gamma frailty model and the estimation

of model parameters, and it gives some theoretical results. The main re-

sults from our statistical analysis are presented in Section 4 and finally we
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summarise our findings and discuss some remaining challenges in Section 5.

2 Material

The dataset consisted of all corporate customers in a car insurance portfolio

for small and medium sized companies in the largest non-life insurance com-

pany in Norway, Gjensidige, from 1998 to 2007. There were 61.189 unique

customers and 201.897 unique cars in the full dataset. The study period

was fixed and by the end of the study not all cars had left Gjensidige. In

survival analysis, such right censored data are easily accounted for.

The data included fixed and time dependent covariates on each car that

may help to find the customers most likely to leave the company. There

were no data on driver characteristics since several drivers may use one

car. The covariates are measured from the beginning of the policy until

the moment of lapsing or censoring (December 31, 2007). A summary of

the covariates is given in Table 1, most of them are self-explanatory. The

covariates DiscountC and DiscountO indicate whether a customer receives a

chain store discount on the yearly premium or a discount due to membership

in a specific organisation, respectively. There were four possible Covers:

liability, fully or partially comprehensive insurance and accident. All cars

had liability insurance, 76% of the cars with two covers had accident cover in

addition and 86% of the cars with three covers also had fully comprehensive

insurance. Approximately 80% of the cars had fully comprehensive insurance

and 13% had partially comprehensive insurance. Categorised versions of the

covariates Covers, Area, Disloyal and Usage are used in our frailty model. The

subcategories for Area are specified in Table 2. Dimakos et al. (2009) showed

that the loyalty to Gjensidige varied for car manufacturers and the disloyal

car manufacturers applied in this analysis are determined from their results.
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The use of categorisation is consistent with insurance company practice and

with the literature of non-life insurance (Antonio et al., 2010, Desjardins

et al., 2001).

Table 1, in about here.

The reason for the lapse in a single car insurance policy was unknown. A

customer could switch one car with another. Approximately 28.000 cars were

replaced within three months of their lapse and we considered these policies

to be maintained by the new car. There were no data on total insurance

time for the cars, neither duration nor first date. This was problematic since

the lapsing probability from Gjensidige was not constant over time periods,

so a misplacement of the observed time period could lead to bias in the

estimation of survival. Some of the cars, maybe all, insured in 1998 have

probably entered the company prior to the study start and therefore should

have been left truncated to avoid this problem. The cars which are insured

in 1998 are deleted (22% of the cars) and we have considered policies from

1999 to 2007. Cars with questionable information on some of the covariates

were removed from the sample and therefore ignored in the analysis.

With these constraints we are left with a dataset of 48.040 unique cus-

tomers and 108.274 unique cars. The customers were small and medium

sized companies, 59% of them had only one car contract while 98% had at

most ten cars insured. 70.751 cars left Gjensidige during the study period,

46% of the customers only had one lapse and 96% of the customers had

at most five lapses. Single car policies entered and left the sample, lapses

occurred without the customer leaving the company. Among the customers

holding at least two car contracts (41% of the customers), 17% lapsed all the

contracts within a maximum of two months, 49% lapsed some of the con-
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tracts within a maximum of two months and 34% only had one lapse during

the study period. The yearly turnover in the data was approximately 21%.

3 A frailty model for customers holding multiple

contracts

Cox’s proportional hazards model is semiparametric since the effect of co-

variates is estimated parametrically without specification of the distribution

of the baseline hazard. The baseline hazard describes how the risk changes

over time at baseline levels of covariates. In this analysis the individual haz-

ard rate gives the risk for a lapse in a single car insurance policy per unit of

time, given that the car is still insured in Gjensidige. This hazard rate varies

between customers, some have a higher risk for leaving the company, and

observable covariates can probably not explain all of this variation. Frailty

models take dependence caused by unmeasured covariates into considera-

tion. A frailty model may be applied when measurements that vary within

the group are missing or a shared frailty model when a latent common group

effect is present.

As mentioned in Section 1, one argument for our choice of frailty distri-

bution is the simplicity of the Laplace transform of the probability function

for the gamma distribution. It is also reasonable to presume that the risk for

an event is skewly distributed over the customers. Therefore, we apply Cox’s

proportional hazards model with shared gamma frailty on the customer. The

lapsing times of single car policies are assumed to be conditional indepen-

dent with respect to the shared frailty, that is had we known the frailty, the

events would have been independent. Let κ be a gamma distributed frailty

having variance θ = 1/ν and mean 1 for identifiability. Those clusters that
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possess κ > 1 are said to be more frail for reasons left unexplained by the

covariates and will have an increased risk of failure. Conversely, those clus-

ters with κ < 1 are less frail and will tend to survive longer. Large values

of θ signify closer positive relationship for the cars in a cluster and greater

heterogeneity between the clusters. The Laplace transform of the probabil-

ity function for the gamma distribution is L(s) = (1 + θs)−1/θ. The log of

the density of κ can be written as:

log[f(κ; ν)] = (ν − 1) log(κ)− νκ+ ν log(ν)− log Γ(ν)

The conditional hazard rate for car j (j = 1, . . . , Ni) in cluster i (i =

1, . . . , 48.040) is given as

λij(t|κi) = κiλij(t) = κiλ0(t) exp{βTXij(t)}, (1)

where t throughout denotes the time in days, λ0(t) is the baseline hazard

rate at time t, β is the vector of regression coefficients to be estimated,

and Xij(t) is the covariate vector at time t. The baseline hazard λ0(t) is

assumed to be common to all cars in the portfolio and is estimated non-

parametrically from the data. The estimation procedure is described in the

last paragraph of this section. The covariate effect exp(β), also called the

hazard ratio (HR), should be interpreted as a change in the within cluster

relative risk.

Therneau et al. (2003) showed that the shared gamma frailty model can

be written exactly as a penalised likelihood. Penalised models treat the

frailty terms as additional regression coefficients which are constrained by

a penalty function added to the log-likelihood. The hazard in (1) may be

written as λij(t|γi) = λ0(t) exp{βTXij(t) + γiZij(t)}, where γi = log(κi)
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and Z is a matrix of indicator variables such that Zij = 1 when car j belongs

to cluster i and 0 otherwise. This hazard is estimated by a maximisation,

over both β and γ, of the penalised partial log-likelihood

PPL(β, γ; θ) = l(β, γ)− g(γ; θ)

= l(β, γ) + 1/θ
∑

i

[
γi − exp(γi)

]
, (2)

where l is the log of the usual Cox partial likelihood, g is a penalty function

restricting the values of γ and θ is a tuning parameter, equal to the variance

of κ. Typically, the purpose of g is to ”shrink” γ towards zero and the

amount of shrinkage is controlled with θ. For censored cases, we define δij

to be 0 if the case is right censored and 1 if the case is uncensored. Further,

R(tij) is the risk set which consists of units (i, j) at risk of leaving Gjensidige

at time t. Let hij ≡ βTXij(tij) + γiZij(tij). The Cox partial log-likelihood

is then given by:

l(β, γ) =

48.040∑
i=1

Ni∑
j=1

δij

[
hij − log

{ ∑
(k,l)∈R(tkl)

exp(hkl)

}]

The Newton-Raphson algorithm can be used to fit the penalised partial

log-likelihood. The model fitting consists of an inner and outer loop. For

given θ, the penalised model is solved with a few (usually three to five)

Newton-Raphson iterations, and the corresponding value of the penalised

partial log-likelihood is returned. The outer loop maximises the profile log-

likelihood for θ.

Let Ti1 and Ti2 be the survival times of two cars of customer i. The

individual survival function for these cars is given as

S(tij |κi) = exp(−κiΛij(tij)), (3)
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where

Λij(t) =

∫ t

0
λij(u)du =

∫ t

0
λ0(u) exp{βTXij(u)}du (4)

is the cumulative baseline hazard. Define F1(ti1, ti2) = P (Ti2 ≤ ti2|Ti1 ≤

ti1), the probability that car number two lapses within time ti2 given that car

number one has lapsed within time ti1, and F0(ti1, ti2) = P (Ti2 ≤ ti2|Ti1 >

ti1), the probability that car number two lapses within time ti2 given that

car number one has maintained the policy up to time ti1. From these prob-

abilities, one may derive the conditional survival for a car in cluster i at

time ti2 (e.g. maintaining the policy the first year), given that another car

in the cluster has lapsed within time ti1, 1−F1(ti1, ti2), and the conditional

survival for a car at time ti2, given that another car has maintained the

policy up to time ti1, 1 − F0(ti1, ti2). As in Moger and Aalen (2008), by

using Bayes’ theorem and that all cars in a cluster are independent given

the frailty, one gets:

1− F1(ti1, ti2) =
Si2(ti2)− S(ti1, ti2)

1− Si1(ti1)

1− F0(ti1, ti2) =
S(ti1, ti2)

Si1(ti1)

(5)

The marginal survival function is given by Sij(tij) = L(Λij(tij)), where L is

the Laplace transform of the probability function for the gamma distribu-

tion. The bivariate survival function for two cars within cluster i is easily

expressed by means of L, evaluated at the total cumulative baseline hazard:

S(ti1, ti2) = L(Λi1(ti1) + Λi2(ti2))
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The conditional survival curves in (5) can then be plotted and compared to

the population survival function.

Information in the frailty concerning the dependence between cars with

the same customer is summarised with Kendall’s τ , a dependence mea-

sure widely used in Hougaard (2000). For the shared gamma frailty model

Kendall’s τ is given by θ/(2 + θ). If the dependence completely disappears

after covariate adjustment, then the measured covariates give all information

about the lapsing times of single car policies for a customer and loyal or dis-

loyal customers can be detected from the covariates. Given the covariates,

there is no association between the events for a customer.

A shared frailty model may be fitted by using standard software for

survival analysis, like the coxph function in the survival library in R (Hirsch

and Wienke, 2012, R Development Core Team, 2012). It fits the proportional

hazards model and its frailty extension by maximising the penalised partial

log-likelihood (2) (Therneau and Grambsch, 2000). A description of how

time dependent covariates are handled in the coxph function is given in Fox

(2002). The aforementioned functions in R do not provide standard errors for

the estimated frailty variance. This is provided in the R package frailtypack

(Rondeau et al., 2012), which is not applied here. Standard software may

also be applied to estimate the baseline hazard λ0(t). We have used the

basehaz function in R and then plugged the estimate into the cumulative

baseline hazard (4), and further estimated the individual (3) and conditional

(5) survival curves.

4 Results

First, we fit the model without covariates. The penalised partial log-likelihood

with and without frailty is -713.094 and -758.948, respectively, a highly sig-
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nificant frailty by the likelihood ratio test (p-value < 0.001). The frailty

variance is 1.18, corresponding to a value of Kendall’s τ of 0.37 which indi-

cates large differences between customers.

The first model with covariates includes Premium, Area, Disloyal and

Usage. The covariates are described in Table 1. The penalised partial log-

likelihood increases to -712.707, the frailty variance is 1.16 and Kendall’s τ is

0.37. These covariates do not explain much of the unobserved heterogeneity

in the data. When we also include the covariates Bonus, DiscountC, Dis-

countO, Covers and DueDate, the penalised partial log-likelihood increases

to -709.203, the frailty variance and Kendall’s τ is 1.01 and 0.34, respec-

tively. Compared to the first model, there is less degree of heterogeneity

among the clusters. The covariate selection was partly motivated by what

was available of covariates in our dataset and this is the final model.

The upper part of Table 2 gives the results for the final model. All the

covariates are significant at 5% significance level. The effect of a change in

any of the covariates may be calculated. For example, an increase in the

Premium from 6.000 to 8.000 Norwegian Kroner (NOK) gives a 2% increased

risk for lapsing a single car insurance policy within the cluster (exp{9.9e-4

· (80-60)} ≈ 1.02). If the Bonus is increased from 60% to 80%, the risk for

a lapse in a single car insurance policy is reduced with 34% (exp{-2.097 ·

(0.8-0.6)} ≈ 0.66). The Disloyal car manufacturers (i.e. Audi, BMW and

Chrysler) have an increased risk of 18% compared to the loyal car manu-

facturers. The solid lines in Figure 1 show the fitted survival curves of a

car with a Premium of approximately 6.000 NOK and 60% Bonus, the re-

maining covariate values are given under the heading “Car 2” of Table 3.

The dashed line to the left in Figure 1 shows that an increase in the Pre-

mium with 2.000 NOK gives an almost identical survival curve for this car,
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whereas the dashed line to the right shows that an increase in the Bonus to

80% results in a considerably increased survival probability.

Table 2, in about here.

Figure 1, in about here.

The lower part of Table 2 gives the results from a corresponding Cox

model without a frailty term. The penalised partial log-likelihood for this

model is -751.056. When the underlying dependence between the lapsing

times of single car policies for a customer is ignored, the standard error of the

parameter estimates is underestimated. As expected, most of the regression

parameters for the Cox model are smaller than for the shared frailty model.

The estimates are population average effects unlike the individual effects

from the shared frailty model.

The frailty distribution is shown in the histogram to the left in Figure 2.

To the right in the figure, the turnover rate for remaining and removed poli-

cies are given in solid and dashed lines, respectively. Remaining (removed)

policies are cars with a frailty value equal to or lower (higher) than the one

given on the x-axis. The plot shows that the frailty values may be applied to

find cars with a high or low risk for leaving Gjensidige. For example, from

the histogram we know that a cut-off value of two on the frailty will remove

5% of the customers, corresponding to 9% of the cars. Cars with a frailty

value above two have a turnover rate on 98% and removing them from the

portfolio results in a decrease in the overall turnover rate from 65% (70.751

of 108.274 cars) to 62% (61.375 of 98.732 cars). The decrease in premium

income by removing these cars is 8%, which must be weighed against the

cost of having disloyal customers. For new customers, the frailty may be

treated as a missing variable and be imputed by, for example, the mean of
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the frailty values for customers with similar covariate values. The estimated

frailty value may then be used to determine whether the customer should

be included in the portfolio or not.

Figure 2, in about here.

Figure 3 shows the fitted survival curves (3) of four cars belonging to

customers holding at least two car contracts and having different estimated

frailty values, specified in the headings of the figure. The cars have been

selected for illustration and the covariate values are given in Table 3. The

Premium varies from approximately 2.600 NOK to 30.000 NOK, only car

number two has a discount due to a membership in a specific organisation

and all cars have three Covers. The solid lines are the survival curves from

the shared frailty model and the dashed lines are the survival curves from

the Cox model without a frailty term. The figure illustrates that the survival

curves are overestimated if the frailty is neglected, more for some cars than

others.

Figure 3, in about here.

Table 3, in about here.

The solid lines in Figure 4 show the Kaplan-Meier curve based on all

data. The dashed and dotted lines show conditional survival curves for the

shared frailty model, found by setting ti1 = 365 in (5). In the illustration, we

have used the same cars as in Figure 3 and the second car for the customer

has been selected such that the covariate values correspond with the ones

given in Table 3. The figure clearly shows the effect a lapse within the

cluster has on the probability for maintaining the policy in Gjensidige. For

all cars, the survival curve of the car given that another car in the cluster
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has lapsed within one year (dashed line) is well below the survival curve

of the car given that another car in the cluster has maintained the policy

the first year (dotted line). If the conditional survival curves are below the

Kaplan-Meier curve, e.g. upper left plot, the covariate values of the car have

a negative effect on survival. With more beneficial covariate values, a lapse

within the cluster results in a much smaller effect on survival, e.g. upper

right plot.

Figure 4, in about here.

5 Discussion

For customers holding multiple car contracts, the time-to-lapse of single car

policies may be modelled with a shared frailty model where the random

effect is a continuous variable describing excess risk or frailty for the cus-

tomers. The unexplained heterogeneity is caused by the natural assumption

that customers respond differently to price changes, resulting in a necessity

for adjustment of both known and unknown covariates. The frailty term

represents the neglected common covariates for the cars of a customer and

this is an advantage of the frailty model. The effect of, for example, pre-

mium is conditional on both known and unknown covariates, in contrast

to the Cox model which gives premium effects conditional on the known

covariates only. We had customers holding the same type of contracts in

our dataset. More generally, the shared frailty model may be applied to

customers holding multiple types of contracts, such as house, content and

car.

Random effects are very often present in survival data. Henderson and

Oman (1999) investigated the consequences of ignoring frailty when present,
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fitting misspecified Cox’s proportional hazards model to the marginal dis-

tributions. They concluded that a misspecification can lead to an under-

estimation of covariate effects and inaccuracy in fitted survival curves by

quite important and significant amounts. The amount of bias in regression

coefficients depends in magnitude on the variability of the frailty term and

the form of the frailty distribution. For the data analysed in this paper, we

have seen that a Cox model results in underestimated standard error of the

parameter estimates and overestimated fitted survival curves.

The frailty models are far from perfect. The choice of the frailty dis-

tribution is mainly due to mathematical convenience and different frailty

distributions give quite different dependence structures. The gamma frailty

model describes high late dependence (Hougaard, 1995) so the dependence

is most important for late events. Possible frailty distributions in the R func-

tion frailty are the gamma, lognormal and log-t distributions. In contrast to

the gamma distributions, the Laplace transforms of the probability functions

for the lognormal and log-t distributions are theoretically intractable so ap-

proximation or numerical integration must be applied for probability results.

The mathematical tractability of the gamma distribution is an argument for

our choice of frailty distribution.

Some covariates that might have a great influence on a customer’s deci-

sion to leave Gjensidige were not available for this study. The last offered

premium to the customer before the lapse probably had a great influence

on the decision to leave Gjensidige. The reason for the lapses was unknown.

Some cars could be lapsed because the firm had to be downsized or costs

had to be reduced, regardless of the premium. Lastly, we had no data on

confounding variables such as competitors’ campaigns, newspaper and TV

headlines, and economic cycles. Without these internal and external covari-
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ates, it is difficult to know if the observed lapses are caused by the yearly

premium and consequently that the premium effects are correctly estimated.

The main aim of this paper has been to illustrate the inaccuracies in

the model fit when a frailty term is present but ignored in a car insurance

portfolio with customers holding multiple contracts. In a more detailed

analysis it would have been natural to focus more on the covariate selection

by using a more thorough grouping of the categorical covariates and adding

interaction effects between, for example, yearly premium and car manufac-

turer. Model assessment could have been performed by out-of-sample and

out-of-time prediction (Günther et al., 2011).
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Table 1: Description of measured covariates.

Covariate Description

Premium Yearly premium per 100 NOK (range [0.55, 2086.00]).
Bonus Percentage no-claims bonus (range [-0.8, 0.8]).
DiscountC Chain store discount (0 = No, 1 = Yes).
DiscountO Organisational discount (0 = No, 1 = Yes).
Covers Number of covers (1, 2, 3, 4).
Area Counties of Norway, grouped into five subcategories.
Disloyal Disloyal car manufacturer (0 = Noa, 1 = Yesb).
Usage Area of usage (1 = Private, 2 = Taxi, 3 = Various usec).
DueDate Less than 30 days until due date (0 = No, 1 = Yes).

aVolkswagen, Toyota, Ford, Opel, etc.
bAudi, BMW, Chrysler.
cFor example driving school, rental or craftsmen.



Table 2: Estimated covariate effects with standard errors (SE) from the
shared frailty model and the Cox model. Hazard ratios (HR) with 95%
confidence intervals.

Estimate SE HR (95% CI)

Shared frailty model
Premium 9.9e-4 1.1e-4 1.001 (1.001-1.001)
Bonus -2.097 0.031 0.123 (0.116-0.130)
DiscountC -0.357 0.047 0.699 (0.638-0.767)
DiscountO -0.385 0.036 0.680 (0.634-0.729)
Covers = 2 -0.253 0.040 0.777 (0.719-0.839)
Covers = 3 -0.518 0.038 0.596 (0.553-0.641)
Covers = 4 -0.975 0.069 0.377 (0.330-0.432)
Reference level: Akershus, Oslo

Area = 2a -0.170 0.023 0.844 (0.807-0.882)
Area = 3b 0.106 0.023 1.112 (1.064-1.163)
Area = 4c -0.339 0.021 0.712 (0.684-0.742)
Area = 5d -0.102 0.024 0.903 (0.862-0.947)

Disloyal 0.168 0.018 1.183 (1.141-1.226)
Usage = 2 -0.072 0.027 0.930 (0.883-0.981)
Usage = 3 -0.010 0.012 0.990 (0.966-1.014)
DueDate -0.731 0.009 0.482 (0.473-0.490)

Cox model
Premium 5.4e-4 8.4e-5 1.001 (1.000-1.001)
Bonus -1.744 0.022 0.175 (0.167-0.183)
DiscountC -0.163 0.027 0.849 (0.805-0.896)
DiscountO -0.263 0.020 0.769 (0.739-0.799)
Covers = 2 -0.209 0.030 0.811 (0.764-0.861)
Covers = 3 -0.430 0.028 0.651 (0.615-0.688)
Covers = 4 -0.900 0.061 0.406 (0.361-0.458)
Reference level: Akershus, Oslo

Area = 2a -0.109 0.012 0.897 (0.876-0.918)
Area = 3b 0.044 0.012 1.045 (1.021-1.069)
Area = 4c -0.242 0.011 0.785 (0.768-0.802)
Area = 5d -0.099 0.012 0.906 (0.884-0.928)

Disloyal 0.203 0.014 1.225 (1.191-1.259)
Usage = 2 -0.003 0.017 0.997 (0.965-1.030)
Usage = 3 -0.122 0.009 0.885 (0.870-0.900)
DueDate -0.668 0.008 0.513 (0.505-0.521)

aØstfold, Hedmark, Oppland
bBuskerud, Vestfold, Telemark, Aust-Agder, Vest-Agder
cRogaland, Hordaland, Sogn and Fjordane, Møre and Romsdal
dSør-Trøndelag, Nord-Trøndelag, Nordland, Troms, Finnmark



Table 3: Covariate values of four cars used for illustration.

Covariate Car 1 Car 2 Car 3 Car 4

Premium 300.90 59.75 67.93 26.11
Bonus 0.2 0.6 0.7 0.6
DiscountC 0 0 0 0
DiscountO 0 1 0 0
Covers 3 3 3 3
Area 1 2 3 4
Disloyal 1 0 0 0
Usage 3 3 1 1
DueDate 1 1 0 0
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Figure 1: Fitted survival curves showing, on the left, the effect of an in-
creased yearly premium from 6.000 NOK to 8.000 NOK and, on the right,
an increased bonus from 60% to 80%. Covariate values for the car are spec-
ified under the heading “Car 2” of Table 3.
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Figure 2: On the left, a histogram of the frailty showing the proportion of
customers with frailty values specified by the bars. The solid line on the
right gives the turnover rate for cars with a frailty value equal to or lower
than the specified value on the x-axis (”remaining policies”). The dashed
line gives the turnover rate for cars with a frailty value above the specified
value on the x-axis (”removed policies”).
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Figure 3: Individual survival curves of four cars from a Cox model with
(solid line) and without (dashed line) frailty. Covariate values for the cars
are specified in Table 3.
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Figure 4: Conditional survival curves of four cars showing the effect a lapse
has on survival. The Kaplan-Meier curve (solid line) is based on all data.
The dashed line shows the survival of the specified car given that another car
in the cluster has lapsed within one year. The dotted line shows the survival
of the specified car given that another car in the cluster has maintained the
policy the first year. Covariate values for the cars are specified in Table 3.


