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ABSTRACT
The frequent reporting by smart meters may raise privacy con-

cerns about the whereabouts of the consumers. There have been a

number of privacy-preserving schemes proposed during the recent

years, whereof most provide privacy-preserving aggregation of con-

sumption values from groups of smart meters, while less provide

privacy-preserving billing computations. An important aspect is

transmission efficiency, since smart meter communication is usu-

ally wireless. Groups of smart meters form mesh networks, where

the meters organize temporarily wireless paths where they forward

messages on behalf of each other to and from the master meter or

base station. Low transmission overhead is thus of high concern to

reduce the amount of communication. Also of concern is resilience

towards adversaries that are capable of compromising multiple me-

ters. In this paper, we propose privacy-preserving schemes for con-

sumption aggregation and billing that are communication-efficient

and that provide (s−1)-resilience.
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1 INTRODUCTION
Smart meters are currently being pushed into the society. This

allows power companies and power authorities to continuously

monitor and collect electricity consumption data of every individual

household. Consumption reporting occurs at short time intervals

(e.g., every hour) — in contrast to monthly-based billing. This allows

power companies to implement dynamic pricing regimes, and so

to charge their consumers according to variable tariffs.

The scope of such data registration may not be limited to the

management of the respective individual power companies, but

may for various purposes be centralized in national data hubs. In

particular, such a centralization is, amongst other, justified to the
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public by a need to coordinate billing among several actors. In coun-

tries using billing regimes that differentiate between transmission

costs (charged by the grid operator) and the electricity consump-

tion (charged by the power supplier), such coordination is relevant.

Moreover, since national electricity grids are interconnected, at

least in Europe, and thus form international electricity markets,

this causes a further centralization that is realized by transnational

data hubs.

Smart meter employment makes it possible to establish fine-

grained consumption profiles of individual private homes, and

henceforth raises several privacy concerns. Realtime consumption

reporting reveal if people are home or not, and likewise at what

times people have been at home. Even private information such as

what appliances and devices are being used, and estimates about

the number of inhabitants that are present, may in some cases be

deduced.

Performance is of great importance, since smart meter commu-

nication is usually wireless. Groups of smart meters form mesh

network, where the meters organize temporarily wireless paths

where they forward messages on behalf of each other to and from

the master meter or base station. A single smart reporting therefore

result in communication that involves a number of meters.

Privacy-preserving schemes address mainly the following pri-

vacy issues:

(1) Privacy-preserving aggregation of consumption values from

groups of smart meters.

(2) Verifiable privacy-preserving billing computation of individ-

ual smart meters by the dot-product b = c · r, where (c) is
the consumption vector and (r) is the tariff rate vector for a

given time period t (e.g., a month).

Most papers address only the first case. In this paper we address

both. In Sections 2.2 and 2.4 we present two privacy-preserving

schemes that sum the electricity consumption from clusters of smart

meters w.r.t. time intervals. In Section 3.1, we present a verifiable

privacy-preserving billing scheme for billing computation of indi-

vidual smart meters, that allows the power company to verify the

correctness of the billing computations.

The schemes are unique in the sense that they have lower trans-

mission overhead in contrast to previously proposed schemes, be-

cause each smart meter does not communicate with other smart

meters for privacy computation purposes, only with the head-end

system (HES).

1.1 Related work
The literature contains a number of papers of privacy-preserving

aggregation schemes and billing schemes. Those schemes usually

use homomorphic techniques. For aggregation schemes, privacy is

achieved by splitting the consumption values into shares of random

https://doi.org/10.1145/3129790.3129802
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values that are communicated to an associated meter that computes

partial sums of received shares. Equivalently, each meter masks

consumption values by a random nonce that in concert with other

nonces that are sent to associated meters sum to zero. This all-to-

all communication causes a high transmission overhead. Next are

some relevant aggregation schemes.

Garcia et al. [6] presented a “no-leakage protocol” that has three

transmission rounds and uses the homomorphic Pailler cryptosys-

tem [13]. Each smart meter splits a consumption value into n ran-

dom shares, and encrypts n−1 shares w.r.t. the other smart meter,

respectively. These are sent to the HES, that sums the encrypted

shares w.r.t. each smart meter. The encrypted sums are then sent

to each smart meter, that decrypts and adds the final share, and

sends the result to the HES, that than obtains the full sum. In all

there are O(n2) transmissions and n(n−1) encryptions. Klenze [10]
presented a scheme based on [6], which is rather impractical due

that it requires users to interact with the smart meters to verify

that they are not being compromised.

Erkin et al. [3] presented an aggregation scheme, where each

meter generates a random number w.r.t. each other smart meter. It is

encrypted using the homomorphic Pailler cryptosystem and sent to

the respective meter. Eachmeter decrypts the receivedmessage, and

masks the measurement using the sum of the received encryptions.

The HES multiplies the masked measurements and obtains the sum.

Hence, there are O(n2) transmissions and O(n2) encryptions.
The aggregation scheme in [8] assumes a trusted dealer that pro-

vides each meter with a randomly generated secret pre-distributed

key share, where all shares sum to zero. The key shares are used for

masking the consumption values. The aggregator obtains homo-

morphically the sum by multiplying the masked values. The main

disadvantage is the pre-distributed key shares, which correspond

to a fixed group. Group membership updates therefore require new

key share distributions for all meters. The scheme is efficient by

O(n) transmissions and O(n) masking operations.

The scheme by Leontiadis et al. [11] is based on [8], and over-

comes its disadvantage of static key shares. However, it requires a

third party (a “collector”) that acts as an intermediate between the

meters and the aggregator.

Jung et al. [9] presented a privacy-preserving secure-sum (and

a secure product) aggregation scheme. The users (or meters) form

a logical ring, where a given meter SMi compute the masking

value as a modular fraction
ki,i+1
ki−1,i

of the two Diffie Hellman-secrets

(ki,i+1,ki−1,i ), that it respectively shares with each of the two adja-

cent meters, SMi−1, SMi+1. This method is similar to the conference

key agreement protocol proposed by Burmester et al. [1]. The mask-

ing values homomorphically sum to zero by multiplication. Since

two colluding parties knowing (ki,i+1,ki−1,i ), can accordingly ob-

tain the masking value, and hence consumption value of SMi , it

is only 1-resilient. The authors propose to increase the number of

shared secrets to achieve k-resilience, which affects the efficiency

and complexity accordingly. A disadvantage is that these shared

secrets are constant, rendering the masking values also constant.

This makes the scheme susceptible to successful attacks, and it was

shown to be insecure by Datta et al. [2] by means of its number-

theoretical construction.

Wang et al. [15] proposed a privacy-preserving aggregation

scheme and billing scheme that uses the homomorphic Pailler cryp-

tosystem combined with verifiable secret sharing. Others billing

schemes are found in [7, 12, 14].

Two survey papers on privacy-preserving schemes for smart

meters and the smart grid are found in [4, 5].

2 PRIVACY-PRESERVING METER
AGGREGATION

By prognosis estimation and obtaining overviews of electricity

transported, consumed, and supplied by different suppliers through

the electricity grid, power companies and grid operators settle pro-

duction costs, carry out load balancing, detect electricity theft, etc.

In this context, realtime monitoring of individual smart meters

may not explicitly be of interest, but rather collective monitoring of

consumers clustered according to their distribution in the grid struc-

ture. Privacy-preserving computations that aggregate consumption

values of clusters of consumers could with advantage be used to

provide privacy to the individual consumers.

In this section, we propose two privacy-preserving computation

(PPC) schemes that provide privacy-preserving aggregation of con-

sumption values for groups of smart meters. Privacy-preserving

computation, also known as secure multi-party computation, refers

to the general problem where a number of parties jointly compute

a function in such a way that their individual input values are not

disclosed to the other parties. An essential property about PPC

is that such protocols must prevent that private inputs can be de-

duced from the messages that are sent during the execution of the

protocol.

It could be noted that in the pertaining context of smart meters,

only the centralized head-end system (HES) is intended to sum

the reported consumption values, while each participant would

compute the value of the given function in a general distributed

PPC setting.

2.1 Threat model and privacy properties
The overall privacy goal is to preserve the confidentiality of in-

dividual meter consumption values, and to prevent disclosure of

individual consumption values to the HES and others, while at the

same time allowing computation of sums for predefined groups of

smart meters.

An honest-but-curious adversary can be a legitimate user or a

coalition of k collaborating users that do not deviate from the de-

fined protocol, but will attempt to learn all possible information

from legitimately received messages. Such coalitions could share

their secret cryptographic data such keys and nonces to learn some-

thing beyond their existing knowledge.

This assumption is equivalent with an external adversary that is

able to compromise k smart meters, and by such obtain the crypto-

graphic secrets stored in those smart meters (and their consumption

values). In practise, this adversary could be malware or a virus.

An honest-but-curious adversary has access to all exchanged

protocol messages, which is a reasonable assumption at least con-

sidering the HES, and less than k keys:



Communication-efficient privacy-preserving smart metering ECSA ’17, September 11–15, 2017, Canterbury, United Kingdom

• k-resiliency. Let Sk denote a set of associated smart meters.

If less than k smart meters Ŝk ⊂ Sk of that group are com-

promised, privacy is preserved for the non-compromised

meters Sk\Ŝk of that group.

In other words, the k-resiliency privacy property indicates the

number of meters that must be compromised (whose cryptographic

secrets are obtained by the adversary) in order to compromise

the privacy (i.e., obtain the consumption values) of the remaining

non-compromised meters of that group, and where all exchanged

messages are available. Note that the adversary is passive and does

not modify messages nor keys.

The value k gives a quantitative indication of privacy in regard

of multiple compromised smart meters of that group. In practise,

the main concern of users is nevertheless to preserve their privacy

towards the HES, which of course, is a much weaker adversary

than an adversary able to compromise multiple targets.

An important thing to note is that the proposed privacy-preserving

schemes do not provide explicit security measures in the sense of in-

tegrity, confidentiality, and entity authentication of the exchanged

protocol messages. Such security measures are trivially provided

by using standard cryptographic techniques.

2.2 δs -resilient privacy-preserving meter
aggregation (PPMAδs )

PPMA facilitates periodical privacy-preserving aggregation or sum-

mation of consumption values from groups of smart meters. Each

smart meter is associated to a group Sk of smart meters. The head-

end system (HES) is only able to obtain the summed electricity

consumption of Sk for each time interval l .
This scheme has the privacy property of δs -resilience, meaning

that an adversary needs to compromise about
1

δs
≈ 41 % of the

smart meters in Sk , in order to disclose individual consumption

values of the remaining meters, where δs is the so-called silver ratio.
See Section 2.3.

The PPMAδs scheme consists of the following four phases:

(1) Parameter setup. The system requires a large prime p, where

q =
p−1
2

is also a large prime. Select a primitive root (i.e., a

generator) α to modulo p, so that the congruences α j ≡ a
(mod p) produce a cyclic group of residues a ∈ {1 . . .p − 1}

for the integers j ∈ {1 . . .p − 1}. Also, let v be a low integer

that is a primitive root to modulo q.
(2) Installation. Each SMi is represented by a Diffie-Hellman

(DH) type long-term public key pair (xi ,yi ), where the pri-
vate key xi is randomly selected randomly in Zp , and yi =
αxi mod p is the corresponding public key.

Each SMi ∈ Sk is installed with the public key yj , i , j,
of each meter SMj ∈ Sk . Due to the long-term keys, any

pair of smart meters (SMi , SMj ∈ Sk ), share a unique static
DH-secret

ki, j,0 = y
xi
j = kj,i,0 = y

x j
i = αxix j (mod p) (1)

that constitute initial values of the system. Hence, each smart

meter manages s−1 DH-secrets, where s = |Sk | is the group
size.

(3) Privacy-preserving consumption reporting. At each time

interval l , each SMi ∈ Sk “increments” each pairwise shared

DH-value (ki, j,l | i, j ∈ Sk , i , j) according to the modular

exponentiation

ki, j,l = k
v
i, j,l−1 mod p (2)

and computes a masking value

mi,l =
∑
j ∈Sk
i,j

(−1)(j<i)ki, j,l =
∑
j ∈Sk
i,j

(−1)(j<i)kvi, j,l−1 (3)

SMi ∈ Sk computes and sends the masked consumption

value

di,l = ci,l +mi,l mod p (4)

to the HES. Security measures such as encryption is out-

side the scope of this paper, but should be used to ensure

necessary communication security.

(4) Aggregation computation. The HES computes the aggre-

gated consumption value cl for all SMi ∈ Sk by summing

cl =
∑
j ∈Sk

dj,l =
∑
j ∈Sk

c j,l mod p (5)

which cancels out all masking values (mj,l | j ∈ Sk ).

Performance. For each time interval, each smart must carry out s−1
low-exponent modular exponentiations.

2.3 Security analysis (PPMAδs )
Theorem 2.1. δs -resiliency. If less than 1

δs
of the smart meters

are compromised, it is computationally infeasible to obtain the con-
sumption values of the non-compromised meters.

Proof. Each smart meter SMi ∈ Sk is installed with the public key

yj , i , j, of each meter SMj ∈ Sk . In conjunction with the private

key (xi | SMi ∈ Sk ), the public keys (yj | SMj ∈ Sk ), i , j, con-

stitute a unique static Diffie Hellman-secret ki, j,0 = yxij (Eq. 1),

which is shared by each pair of smart meters (SMi , SMj ∈ Sk ). Due
to the Computational Diffie-Hellman problem, it is computation-

ally infeasible to compute ki, j,0 given the corresponding public

keys (yi ,yj ).
Since each pair of smart meters in Sk shares a unique DH-secret,

there are γ =
(s
2

)
=

s(s−1)
2

DH-secrets, which is the same as the

number of ways to select two meters from that group. Any given

meter computes the masking valuemi,l based on its s−1 shared

DH-secrets according to Eq. 2. The confidentiality of the masking

values depend on the secrecy of the pertaining DH-secrets.

The masking values and the DH-secrets constitute a linear equa-

tion system S of γ unknowns and s = |Sk | equations. If a smart

meter is compromised by an adversary, then s−1 DH secrets are

disclosed to that adversary. Since two meters share one DH value,

s ′ compromised meters result in γ ′ =
∑s ′
j=1(s − j) = s ′s − s ′(s ′+1)

2

disclosed DH values, where 0 < s ′ < s . This reduces S to s − s ′

equations consisting of γ − γ ′ unknowns. The equation system S
is solvable if the number of unknowns is less than or equal to the

reduced number of equations, i.e., γ − γ ′ ≤ s − s ′, which is

γ − γ ′ =
s(s − 1)

2

− s ′s −
s ′(s ′ + 1)

2

≤ s − s ′ (6)

which corresponds to the inequality

0 ≤ 3s − s2 + 2ss ′ + s ′2 − s ′ (7)
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Table 1: δs -resilence

s s ′ s
s ′ ≈ δs

20 8 2.500000

40 16 2.500000

60 25 2.400000

80 33 2.424242

100 41 2.439024

120 49 2.448980

140 58 2.413793

160 66 2.424242

180 74 2.432432

200 83 2.409639

300 124 2.419355

400 165 2.424242

500 207 2.415459

1000 414 2.415459

5000 2071 2.414293

10000 4142 2.414293

Table 1 lists the minimum number of compromised meters s ′ that
are required for the inequality in Eq. 7 to be true. It also shows that

the ratio
s
s ′ converges towards the silver ratio

1 δs = 1 +
√
2.

This can be shown algebraically by simplifying Eq. 7 by remov-

ing the less significant first order terms 3s − s ′. Multiplying the

remaining terms by
1

ss ′ yields the quadratic equation

s

s ′
+ 2 +

s ′

s
= x − 2 −

1

x
= 0

where x = s
s ′ . Multiplying by x gives the quadratic equation x2 −

x − 1 = 0 with solution 1 +
√
2.

Since the equation system S is underdefined for s ′ < s
δs
, it has

infinitely many solutions, and cannot be solved. Hence, Theorem 2.1

is preserved. �

Note that the initial ki, j,0 is a long-term shared secret DH value,

whereof the secret ki, j,l , l > 0, is computed deterministically, with-

out supplying additional randomness (Eq. 2). The secrecy of ki, j,l
for any l is given by the secrecy of ki, j,l ′ , l , l

′
.

Next is an example of an equation system that corresponds to

s = 4 smart meters represented by 4masking values andγ =
(
4

2

)
= 6

DH-secrets. This number is unrealistically low, but is included for

the sake of illustration.


−1 −1 −1 0 0 0

1 0 0 −1 −1 0

0 1 0 1 0 −1

0 0 1 0 1 1


·



k1,2

k1,3

k1,4

k2,3

k2,4

k3,4


=



m
Sk
1,l

m
Sk
2,l

m
Sk
3,l

m
Sk
4,l


(8)

Since the equation system is underdefined, it is not solvable as such.

If for instance smart meter 1 is compromised, then the adversary

would possess the three DH-secrets k1,2, k1,3, and k1,4. Assuming

1
https://en.wikipedia.org/wiki/Silver_ratio

that all masking values are correctly guessed, then the equation

system is reduced to the solvable system:
−1 −1 0

1 0 −1

0 1 1

 ·

k2,3

k2,4

k3,4

 =

m
Sk
2,l − k1,2

m
Sk
3,l − k1,3

m
Sk
4,l − k1,4

 (9)

This agrees with Eq. 7, which is true for s = 4 and s ′ = 1.

2.4 (s−1)-resilient privacy-preserving meter
aggregation (PPMAs−1)

In this section, we present a multiplicative variant of the addition-

oriented PPMA-δs presented in the previous section. It is multiplica-

tive in the sense that the sum operation is achieved bymultiplication

through homomorphisms.

This scheme has the privacy property of being (s−1)-resilient,
where an adversary need to compromise all but one associated

smart meters in order to disclose individual consumption values of

the remaining non-compromised meter.

The PPMAs−1 scheme is as follows:

(1) Parameter setup. Select a large prime p, primitive root α
to p2, and a small prime v .

(2) Installation. This phase is the same as in the PPMAδs scheme,

except that the public keys yj are computed modulo ϕ(p2) =
p(p − 1).

(3) Privacy-preserving consumption reporting. For each time

interval l , each SMi ∈ Sk “increments” the sharedDH-secrets

as ki, j,l = k
v
i, j,l−1 mod ϕ(p2).

The multiplicative masking factorm∗
i,l is computed as

m∗
i,l = αmi,l =

∏
j ∈Sk
i,j

α (−1)
(j<i )ki, j,l

mod p2 (10)

where the secret exponentmi,l is in agreement with Eq. 3.

SMi ∈ Sk computes the masked consumption value

d∗i,l = (1 + ci,lp)m
∗
i,l mod p2 (11)

(4) Aggregation computation. The HES multiplies

c ′l =
∏
j ∈Sk

d∗j,l mod p2 (12)

and lastly obtains the total consumption cl =
c ′l−1
p for the

group Sk .

The multiplications in Eq. 12 cause the multiplicative masking fac-

torsm∗
i,l of d

∗
i,l to cancel out. Having the masking factors cancelled

out leaves the following expansion:

c ′l =
∏
j ∈Sk

(1 + pc j,l ) mod p2

= (1 + pci,l ) · · · (1 + pc j,l ) mod p2

= 1 + pci,l + pc j,l + . . . + p
2ci,lc j,l + . . . mod p2

= 1 + p(ci,l + . . . + c j,l ) mod p2

= 1 + p
∑
j ∈Sk

c j,l = 1 + pcl mod p2

(13)

https://en.wikipedia.org/wiki/Silver_ratio
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where the terms containing the factor p2 are cancelled out. Hence,

this operation has a homomorphic property since the multiplication

conforms to summing c j,l .

2.5 Security analysis (PPMAs−1)
The privacy goal is to preserve the confidentiality of each consump-

tion value, whose privacy is preserved as long as the secrecy of the

pertaining masking factor. In this section, we prove that all but one

smart meters in a group need to be compromised in order to obtain

consumption values from individual smart meters.

Theorem 2.2. (s−1)-resiliency. If less than (s−1) of the smart
meters are compromised, it is computationally infeasible to obtain the
consumption values of the non-compromised meters.

Proof. The confidentiality of a masked consumption value depends

on the secrecy of the pertaining masking factor m∗
i,l . Since the

DH-secrets are shared pairwise, there are

(s
2

)
=

s(s−1)
2

DH-secrets.

Any given meter computes the masking factorm∗
i,l based on its

s−1 shared DH-secrets according to Eq. 10. In this computation, the

sum of the DH-secrets constitute the secret exponentmi,l ofm
∗
i,l .

The confidentiality of the masking factors depend on the secrecy of

the pertaining DH-secrets, which is preserved in agreement with

the Computational Diffie-Hellman problem.

Let Sk denote a set of associated smart meters, whereof Ŝk ⊂ Sk
are compromised. If an adversary compromises a set of s−2 smart

meters Ŝk ⊂ Sk , then the remaining DH-secret ka,b,l shared by the

non-compromised meters SMa , SMb ∈ (Sk\Ŝk ) is still unknown
to the adversary. Therefore, the pertaining exponentmi,l remains

unknown to the adversary, which preserves the secrecy of the mask-

ing factorm∗
i,l . The confidentiality of the appurtenant consumption

value ci,l masked in d∗i,l (Eq. 11) is thus preserved. Therefore, the

PPMAs−1 scheme is (s−1)-resilient, and Theorem 2.2 is preserved.

�

3 PRIVACY-PRESERVING METER BILLING
In a dynamic price rate regime, power companies (PC) are able to

charge each consumer according to its consumption (c) and the

tariff rate vector (r) for a given period t (e.g., a month). The charged

billing value b is the dot product b = c · r.
Most smart meters produced today have bidirectional communi-

cation capabilities allowing them to receive, for instance, tariff data

from the PC. A straight-forward way to preserve the privacy of the

consumers, that is, to hide the consumption profile (c) from the

PC and others, would be that the PC periodically transmits tariff

information to each smart meter, which computes and transmits b
to the PC at the end of each period t .

From the perspective of the PC, this may be an undesired restric-

tion for the reasons addressed in Section 2. Moreover, the PC may

require means to verify the correctness of b.
In this section, we present a privacy-preserving smart meter

billing (PPMBs−1) scheme that provides the billing value bi for
each smart meter SMi ∈ Sk for a given time period t . The tariff
vectors may therefore be distinct for two smart meters.

3.1 (s−1)-resilient privacy-preserving meter
billing (PPMBs−1)

The PPMBs−1 scheme in this section is an extension of the multi-

plicative privacy-preserving meter aggregation (PPMAs−1) scheme

in Section 2.4 that combined produces privacy-preserving aggre-

gation of consumption values, and privacy-preserving billing for

each SMi ∈ Sk at the end of the billing period t .
An important property of the PPMBs−1 scheme is verifiability.

The HES must be able to verify that the computed billing values

are correct.

The privacy goal is to prevent deduction of individual meter

values in agreement with the PPMAs−1 scheme, and to preserve

the confidentiality of the billing value with regard to others than

the HES. Note that the privacy-preserving scheme does not pro-

vide security in the sense of integrity, confidentiality, and entity

authentication, but this is trivially provided by using standard cryp-

tographic techniques.

Since the privacy preserving billing scheme is an extension of

PPMAs−1. The steps parameter setup, installation, and the privacy-

preserving consumption reporting steps presented in Section 2.4

precede the privacy-preserving billing computation shown next:

(1) By the end of each billing period t , where 1 ≤ l ≤ t , the HES
transmits the tariff rate vector ri pertaining to each SMi .

(2) Each SMi ∈ Sk computes and transmits to HES the verifica-

tion value

ei =
t∏
l=1

(m∗
i,l )

ri,l = (αki,l )ri,l mod p2 (14)

and the billing value b ′i = ci · ri . Note that only SMi ∈ Sk
can compute ei since it is the only entity that knows the

secret masking factorsm∗
i,l .

(3) The HES computes

fi =
t∏
l=1

(d∗i,l )
ri,l

mod p2

=

t∏
l=1

(
(1 + ci,lp)m

∗
i,l
)ri,l

mod p2

=

t∏
l=1

(1 + ci,lp)
ri,l αki,l ri,l mod p2

=

t∏
l=1

(1 + ci,l ri,lp)
t∏
l=1

αki,l ri,l mod p2

= (1 + p
t∑
l=1

ci,l ri,l )ei mod p2

= (1 + pbi )ei mod p2

(15)

The HES then computes the billing value

bi =

fi
ei − 1

p
=

(1+bip)ei
ei − 1

p
=

1 + bip − 1

p

Finally, the HES verifies b ′i
?

= bi . Since the privacy goal is same as

for the PPMAs−1 scheme, the same analysis applies.
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Since the secret masking factorsm∗
i,l cannot be deduced from

the verification value ei and the masked consumption values d∗i,l ,

the verification proves that SMi ∈ Sk is the legitimate originator

of ei .
If less than k smart meters Ŝk ⊂ Sk of that group are compro-

mised, the confidentiality of the billing value is preserved for the

non-compromised meters Sk\Ŝk of that group although ri is known
to the adversary.

3.2 Correctness
Notice in Eq. 15 that (1 + ci,lp)

ri,l ≡ 1 + ci,l ri,lp (mod p2). This is
due to the expansion of the binomial theorem:

(1 + ci,lp)
ri,l =

ri,l∏
j=0

(
ri,l
k

)
1
ri,l−j (ci,lp)

j
mod p2

= 1 +

(
ri,l
1

)
ci,lp +

(
ri,l
2

)
c2i,lp

2 + . . . mod p2

= 1 + ri,lci,lp mod p2

(16)

In Eq. 15, the correctness of the products

∏t
l=1(1+ci,l ri,lp) mod p2

is in agreement with Eq. 13.

4 CONCLUSION
The awareness and attention for privacy is increasing as our so-

ciety is becoming more and more digitalized. By the advent of

smart meters, a number of privacy-preserving smart meter schemes

have been proposed the recent years, where most provide privacy-

preserving aggregation of consumption values from groups of smart

meters, while privacy-preserving billing computation has only been

addressed in a less degree. Due to that smart meters communicate

by wireless mesh networks, low transmission overhead is of high

concern to reduce the amount of communication.

In this paper, we have proposed three communication-efficient

privacy-preserving schemes that provide consumption aggrega-

tion and billing computation. Two privacy-preserving aggrega-

tion schemes are presented, whereof the second provides (s−1)-
adversarial resilience. Thus, an adversary needs to compromise

all but one associated smart meters in order to disclose individual

consumption values of the remaining non-compromised meter.
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