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Abstract—Blacklists and whitelists are often employed to
filter outgoing and incoming traffic on computer networks.
One central function of these lists is to mitigate the security
risks posed by malware threats by associating a reputation (for
instance benign or malicious) to end-point hosts. The creation
and maintenance of these lists is a complex and time-consuming
process for security experts. As a consequence, blacklists and
whitelists are prone to various errors, inconsistencies and omis-
sions, as only a tiny fraction of end-point hosts are effectively
covered by the reputation lists. In this paper, we present a
machine learning model that is able to automatically detect
whether domain names and IP addresses are benign, malicious
or sinkholes. The model relies on a deep neural architecture
and is trained on a large passive DNS database. Evaluation
results demonstrate the effectiveness of the approach, as the
model is able to detect malicious DNS records with a F1 score
of 0.96. In other words, the model is able to detect 95 % of
the malicious hosts with a false positive rate of 1:1000.

Keywords-DNS reputation, malware, neural networks, pas-
sive DNS, machine learning, graph inference, cybersecurity

I. INTRODUCTION

Given the growing risks posed by the current cyber-threat
landscape, the deployment of effective techniques for de-
tecting malicious activities becomes increasingly important
for both public and private organisations. In their 2017
Data Breach Investigation Report1, Verizon observes that
the majority of investigated breaches included some form
of malware, with backdoor and command & control (C2)
mechanisms being one of the most prominent hacking vari-
eties. Traditional defence strategies such as reputation lists
of domain names and IP addresses are often employed to
block communication channels serving malicious purposes.
However, these defence strategies can be circumvented rel-
atively easily by threat agents through techniques such as
fast-flux networks. Fast flux networks operate by changing
DNS records at high speed in order to evade static blacklists
and resist takedown attempts.

In this work, we present an alternative, data-driven ap-
proach to the detection of malicious end-point hosts. Based
on a large passive DNS dataset, we demonstrate how a deep
learning architecture can be used to automatically predict the
reputation of DNS records with high accuracy. The approach
presents multiple benefits compared to traditional reputation

1http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017/

lists. The most important advantage is the model ability to
provide predictions in real-time, without human intervention.
This enables faster and more effective responses to cyber-
attacks. The model is also less vulnerable to human errors
and omissions than traditional reputation lists (which must
be regularly updated by security experts).

The rest of this paper is as follows. The next section out-
lines the key principles behind dynamic reputation models
and the most important approaches developed in previous
work. Section III details the various data sources employed
to train the reputation models. Section IV describes how to
capture information about neighbouring hosts through graph
inference, and Section V presents the neural architecture
used to predict the reputation of end-point hosts. The eval-
uation results are reported in Section VI, along with a short
discussion. Finally, Section VII concludes this work.

II. BACKGROUND

Several prior studies have investigated the use of passive
DNS monitoring for the identification of malicious domains.
Antonakakis et al. (2010) described Notos, a dynamic
reputation system based on the observation that malicious
uses of DNS have unique characteristics, distinguishable
from legitimate professionally provisioned DNS services.
Notos employs a broad range of features, which can be
network-based (number of total IPs historically associated
with a domain, diversity of geographical locations, number
of distinct autonomous systems in which they reside, etc.),
zone-based (average length of domain names in related
domains, number of distinct top-level domains, character
frequencies, etc.), and evidence-based (number of malware
samples that contacted the domain or that are connected to
an IP pointed to by the domain).

Bilge et al. (2014) describe Exposure, a system similar to
Notos but requiring less training time and data. Exposure
is able to overcome some of the limitations of Notos,
as it is able to identify malicious domains and addresses
that were never seen in malicious activities before. Their
system uses 15 features extracted from DNS traffic, allowing
them to characterise different properties of domain names
and how these are queried. Specifically, the features of
Exposure are either time-based (short life, daily similarity,
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repeating patterns, access ratio), DNS answer-based (num-
ber of distinct IP addresses, number of distinct countries,
number of domains sharing the IP address, reverse DNS
query results), TTL value-based (average TTL, standard
deviation of TTL, number of distinct TTL values, number
of TTL change), and domain name-based (percentage of
numerical characters and normalised length of the longest
meaningful substring). In a real world evaluation of 2 weeks,
their system identified 3000 previously unknown malicious
domains without generating any false positive.

In contrast to Notos and Exposure, which both rely on
monitoring traffic from local recursive DNS servers, the
Kopis system Antonakakis et al. (2011) uses passive DNS
data aggregated at the upper levels of the DNS hierarchy and
can detect malware domains even when no IP reputation
information is present, by analysing global DNS query
resolution patterns. Kopis divides the monitored data streams
into epochs and summarises the DNS traffic for a given
domain name at the end of each epoch by computing a
number of statistical features, such as the diversity of the
IP addresses associated with the recursive DNS servers that
queried a specific domain, the relative volume of queries
from querying recursive DNS servers, and historic informa-
tion related to the IP space pointed to by the domain.

Khalil et al. (2016) argue that many local features used
in detecting malicious domains, such as domain name and
temporal patterns tend to be relatively brittle and allow
attackers to take advantages of these features to evade detec-
tion. To address this issue, they developed graphs reflecting
the global associations among domains and IPs, and they
proposed a path-based mechanism to derive a malicious
score at each domain based on their topological connection
to known malicious domains.

Peng et al. (2017) proposed a malicious domain detection
method focusing on domains that are not resolved to IP
addresses directly, but only appear in DNS CNAME records,
based on the idea that the domains connected by CNAME
resource records share intrinsic relations and are likely to
be similar to one another. However, the authors observe
that there exists scenarios where a domain is CNAMEd
by many other malicious domains but itself is still benign.
Their approach relies on a graph-based inference technique
that summarises the global association for each domain
and belief propagation to compute the malicious marginal
probability for each node based on its global associations
with other known malicious and benign domains. Their
experimental results show that their proposal can effectively
uncover the malicious domains omitted by previous works
based on passive DNS relying only on A records.

Finally, Watkins et al. (2017) proposed a semi-supervised
machine learning approach to filter out non-malicious do-
mains in passive DNS data. Their approach relies on cluster-
ing algorithms to cluster around the DNS-name based, TTL-
value based, and DNS query answer-based behaviour of

known malicious domains that become the reduced dataset
of suspicious results.

Passive DNS data can also contribute to the identifica-
tion of malicious domains generated by domain generation
algorithms (DGAs). Antonakakis et al. (2012) describe a
technique to detect DGAs based on the idea that bots from
the same botnet (same DGA) will generate similar non-
existent domain traffic (“NXDomain”). Using a combination
of clustering and classification algorithms combined with
real-word DNS traffic, the authors were able to discover
twelve DGAs (half were variants of known DGAs and the
other half new DGAs that have never been reported before).
Zhou et al. (2013) presented a DGA-detection approach
based on NXDOMAIN (non-existent domain) traffic. Their
approach is based on the idea that every domain name in
the domain group generated by one botnet using DGAs is
often used for a short period of time (active time) and has
similar life and query style. In addition, they group domain
names by creating clusters with the same second- and third-
level domains and IP addresses, and calculate domain access
similarity (life time span and visit time patterns) for each
group to output a suspicious DGA-domain name list.

This paper extends the approach developed by Anton-
akakis et al. (2010, 2011, 2012) in several directions. Most
importantly, we adopt a neural approach to the problem
of predicting the reputation of a given domain name or
IP address. The use of deep neural architectures provides
several important benefits compared to traditional, “shallow”
machine learning techniques, such as the ability to capture
complex patterns in the domain names (using recurrent
neural networks) and handle sparse features (such as the
geolocation of IP addresses) through embeddings. This re-
liance on neural models substantially reduce the need for
handcrafted feature engineering while providing state-of-the-
art classification results. Another contribution of this paper,
inspired by the work of Peng et al. (2017); Watkins et al.
(2017), is the use of graph-based features to exploit relations
between neighbouring domain names and IP addresses.

III. DATASET

A. Passive DNS

The passive DNS data used in this work was kindly
provided by Mnemonic2. The raw dataset consists of 567
million aggregated DNS queries collected over a period of
four years. Each entry is defined by the following variables:
• A record type (the most common DNS records in this

dataset are A, CNAME, AAAA or PTR records)
• A recorded query
• An answer to the above query
• A Time-to-Live (TTL) value for the query-answer pair
• A timestamp for the first occurrence of the pair
• A timestamp for the last occurrence of the pair

2https://passivedns.mnemonic.no



• The total number of occurrences of the pair during the
period the data was collected.

The majority of the DNS entries are A records – that is,
records mapping domain names to their corresponding IP
addresses. There is a total of 476 million A records in the
dataset (84 % of the total number of entries). There is also
about 63 million CNAME records (11 % of the total), whose
function is to provide aliases between domain names. The
remaining records are made of AAAA records (4 % of the
total) and PTR records (1 % of the total). For the purpose
of this paper, we shall focus on the A, AAAA and CNAME
records and discard the other entries, as they are not directly
relevant to the reputation of domain names and IP addresses.

Based on A and AAAA records, we extract the following
information for each distinct 〈domain, IP address〉 record:
• The domain name, divided in top-level and second-level

domains and optionally a subdomain ;
• The IP address, either in IPv4 or IPv6 ;
• The number of TTL changes observed for this pair ;
• The minimum TTL value observed for this pair ;
• The total number of queries for the pair.
This extraction process results in a total of 171 million

distinct domain names and 17 million IP addresses. Each
domain name is resolved to an average of 2.21 IP addresses,
with a large standard deviation σ = 18.3. This large standard
deviation is due to the fact that some domains are resolved
to several thousand IP addresses. Similarly, each IP address
is hosting an average of 22.6 domain names, again with a
large standard deviation σ = 1864 ( some IP addresses are
used by as many as two million domain names).

In complement to this dataset of 〈domain, IP address〉
records, a table of domain aliases was also extracted based
on the CNAME records present in the passive DNS data. This
table was used to compute the number of aliases associated
with each domain name and used as a feature for the neural
network model presented in Section V.

B. Reputation labels

To apply supervised learning to the problem of predicting
the reputation of domain names and IP addresses, we must
associate a portion of the dataset with reputation labels.
These reputation labels can fortunately be automatically
extracted from existing blacklists and whitelists. The domain
names and IP addresses were labelled with 4 reputation
values: unknown, benign, malicious or sinkhole.

Table I provides a summary of the most important statis-
tics regarding the dataset used for this work.

1) Domain whitelists:

We downloaded eight snapshots of the Alexa Top 1
million domains (spread from 2010 to 2017), along with
similar whitelists such as the top 1 million from Statvoo and
Cisco. It should be noted that these rankings only enumerate
popular domains and offers no guarantee that the domains

are malware-free. However, in practice, malicious domains
have a low probability of appearing on these ranked lists,
as malware domains are by nature transient and are very
unlikely to stay on a top list of popular domains for an
extended period of time. These whitelists are subsequently
augmented by two whitelists, one from maltrail3 and one
in-house whitelist from Mnemonic.

This extraction process resulted in a list of 4 million
domains marked as benign. We applied this list on the
passive DNS dataset and were able to label a total of 39
million domains (making up 22 % of the total number
of domain names) as benign. This number is higher than
the original list of 4M benign domains due to the fact
that the passive DNS data contains complete domain names
(including subdomains) while whitelists cover only the top
and second-level parts of the domain name.

2) Domain blacklists:

The identification of malicious domains in the dataset
followed a similar procedure. Three reputable sources were
employed:

1) The blacklist from maltrail (which is itself a compila-
tion of blacklists obtained from various sources such
as alienvault), totalling 1.3 million domains ;

2) An in-house domain blacklist provided by Mnemonic
with an additional 100 thousand domains ;

3) 2.9 million malware domains produced by domain-
generating algorithms (DGAs) from DGArchive4.

After merging these blacklists into one unified list, we
obtained a collection of 4.2 million malicious domains.
Upon applying this list on the passive DNS dataset, we find
a total of 2.8 million domains labelled as malicious.

In addition, blacklists also provide succinct information
about the type of malicious activity associated with the
domain (spam, fishing, malware, etc.) along with a con-
fidence level (for instance, many blacklists include the
word “suspicious” when the the domain is not confirmed
malicious). Based on these descriptions, we enriched the
reputation labels with a malicious category (comprising 454
distinct classes) and a confidence level (low or high).

3) IP whitelists and blacklists:

The white- and black-lists of IP addresses are extracted
from existing lists provided by maltrail and from an in-house
list from Mnemonic. This resulted in a list of 69 thousand
benign IP addresses (or sub-networks) and 210 thousand
malicious IP addresses (or sub-networks). These two lists
were then applied on the IP addresses from the passive
DNS data, leading to 54 thousand IP addresses labelled
as benign (0.33 %) and 1.2 million IP addresses labelled
as malicious (7.5 %). Using an approach similar to the

3https://github.com/stamparm/maltrail
4https://dgarchive.caad.fkie.fraunhofer.de/
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Description Number of occurrences
Number of distinct domain names 171 106 318
Number of benign domains 38 811 436 (21.65 %)
Number of malicious domains 2 903 996 (1.62 %)
... of which marked as high confidence 1 545 902 (53 % of above)
Number of sinkhole domains 14858 (0.008 %)
Number of distinct types of malicious domains 454
Number of distinct IP addresses 16 768 026
Number of benign IP addresses 56 636 (0.33 %)
Number of malicious IP addresses 1 259 214 (7.5 %)
... of which marked as high confidence 16 228 (1.3 % of above)
Number of sinkhole IP addresses 291 (0.002 %)
Number of distinct types of malicious addresses 72
Number of IP addresses with known geolocation and ISP 16 715 799 (99.7 %)
Number of distinct geolocations covered by the IP addresses 127 399
Number of distinct (ISPs) covered the IP addresses 490 945
Number of distinct 〈 domain, IP address〉 records 378 171 968
Number of benign records 122 177 956 (32.3 %)
Number of malicious records 9 275 476 (0.26 %)
Number of sinkhole records 201 461 (0.05 %)
Average out-degree for domain names 2.21 (std = 18.3)
Average out-degree for IP addresses 22.6 (std = 1864)
Number of 〈domain, domain 〉 aliases 40 321 236

Table I: Summary statistics regarding the passive DNS data.

one used for the domain names, the malicious IP addresses
were marked as either high confidence (confirmed malware)
or low confidence (i.e. suspicious). Only a small fraction
(1.3 %) of the IP addresses marked as malicious has high
confidence. The remaining parts consist of IP addresses that
are not confirmed malicious but are part of networks known
for hosting suspicious activities and botnets, as identified by
their Autonomous System Number (ASN).

4) Sinkholes:

In addition to benign and malicious reputations, we also
labelled some of the domains and IP addresses with a
specific label for sinkholes. DNS sinkholes intercept DNS
requests to known malicious domains and redirects them
to benign IP addresses, where it can be further analyzed
by experts and/or law enforcement officials (Bruneau and
Wanner, 2010). Introducing sinkholes as an explicit reputa-
tion category (besides benign and malicious) provides us
with a useful source of information for the detection of
malicious domains. Indeed, the fact that a domain name was
at some point redirected to a sinkhole IP address is a strong
indication that the domain was associated with a malicious
activity in the days or weeks preceding the redirection.

We compiled two small lists of sinkhole domains (54
instances) and sinkhole sub-networks (987 instances) and
applied them on the passive DNS dataset, leading to 1.4
thousand domains and 272 IP addresses labelled as sinkhole.

5) Reputation of 〈domain, IP address〉 records:

Although the reputation labels of domain names and IP
addresses extracted from white- and blacklists are undeni-
ably useful, they are also prone to errors and inaccuracies. To
increase the quality of the training data used for estimating
the reputation models, we employed the following procedure
to determine the reputation of each record. Let Rdom be the
reputation of the domain name and Rip the reputation of
the associated IP address. These reputations can have four
possible values: unknown, benign, malicious or sinkhole.
The reputation of the 〈dom, ip〉 record is then defined as:

1) If Rdom and Rip are known and Rdom 6= Rip (in other
words, there is a conflict between the reputations of
the domain name and its associated IP address), the
reputation of the record is marked as unknown.

2) If Rdom = Rip, the reputation of the record is labelled
with the same reputation.

3) If either Rdom or Rip is unknown and the other
reputation is marked as high confidence, the reputation
of the record is labelled with this reputation.

4) In all remaining cases (i.e. when the two reputations
are either unknown or marked as being of low confi-
dence), the reputation is marked as unknown.

C. Geolocation
An important factor influencing the reputation of IP

addresses is their geographical location and Internet Service
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Figure 1: Illustration of a bipartite graph extracted from passive DNS data. Green circles indicate a benign reputation, red
circles a malicious reputation, and blue circles an unknown reputation.

Provider (ISP). In order to exploit this intelligence source,
we acquired a large dataset of IP geolocations5 and used it
to annotate the IP addresses with both a geoname identifier
and the name of their ISP. 99.7 % of the IP addresses could
be annotated using this dataset.

The GeoNames database6 covers over 11 million place-
names. The resolution of these placenames is quite fine-
grained, sometimes as precise as city blocks. Each geoname
identifier is provided with various geographical information,
such its country, state or province, city, longitude and
latitude. More than 127 thousand distinct placenames and
490 thousand distinct ISPs were found to be associated with
the IP addresses present in the passive DNS data.

IV. GRAPH INFERENCE

As detailed in Deri et al. (2013), DNS traffic can be
represented as a large graph, more precisely as a bipartite
graph. A bipartite graph is a graph whose vertices can be
divided into two disjoint and independent sets such that
every edge connects one vertex from the first set with one
vertex from the second set. In our case, the first set corre-
sponds to the domain names, and the second set corresponds
to IP addresses. Figure 1 illustrates such a bipartite graph
structure. We focus here on A and AAAA records, which
are the most important source of information regarding the
reputation of domain names and IP addresses. The inclusion
of CNAME records of domain aliases in the graph is of course
possible but would increase the complexity of the inferential
process by breaking the bipartite structure of the graph.

The graph structure can provide important clues about
the reputation of a given record. For instance, in Figure
1, the reputation of the domain name abc.xyz is unknown.
However, one of its IP addresses is connected to another
domain name (www.google.com) which is known as benign.
Similarly, the IP address 64.202.189.170 has an unknown

5https://db-ip.com/db/
6http://www.geonames.org

reputation, but is connected to a domain name that was
itself connected to an IP address marked as malicious. The
reputation of a given node (domain name or IP address) may
therefore be influenced by the reputation of its neighbours in
the bipartite graph. This influence is inversely proportional
to the distance between the neighbour and the node (the
closer the node, the larger the influence).

Extracting the local neighbours of all nodes in the graph
and aggregating their reputation is, however, far from trivial
due to the sheer size and connectedness of the passive DNS
dataset. A naive traversal of the graph is not scalable, as
it may take weeks or months to complete. An alternative
approach is to split the nodes in subgroups and run a separate
traversal algorithm for each subgroup in parallel. However,
this parallelisation is difficult in practice due to the large
memory requirements necessary for storing the bipartite
graph and the associated reputations of each node.

The approach taken is this work is to rely on graph theory
and represent the bipartite graph as a large, sparse |D| × |I|
matrix R, where |D| is the number of distinct domain names
and |I| the number of distinct IP addresses in the dataset.
This matrix is called an adjacency matrix. Each cell (d, i)
in the matrix has only two possible values: 1 if there exists
a record between the domain d and the IP address i in the
dataset, and 0 otherwise. This matrix is very sparse, as only a
tiny fraction of the potential combinations of domain names
and IP addresses actually exists as records.

Based on this matrix, determining the neighbours at dis-
tance k can be expressed through matrix multiplication. The
distance between nodes is expressed in terms of number of
edges in the bipartite graph – for instance, www.google.com
and abc.xyz have a distance of 2. To find all neighbours of
domain names at distance 2, we compute the product of the
adjacency matrix with its transpose, take its sign function (to
reduce all positive integers to 1), and remove the diagonal
(to avoid counting the node as its own neighbour):

Nk=2 = sign(R ·RT )− I|D| (1)

https://db-ip.com/db/
http://www.geonames.org


where sign is the sign function and I|D| is the identity
matrix. The Nk=2 matrix is in this case a |D| × |D|
matrix where each (d1, d2) cell has a value 1 if d1 and
d2 are separated by exactly 2 edges (and d1 6= d2), and 0
otherwise. More generally, the neighbours of domain names
at distance k can be calculated through a sequence of k
matrix multiplications:

Nk = sign(R ·RT ·R ·RT · ...︸ ︷︷ ︸
k matrix multiplications

)− I|D| (2)

Based on this neighbour matrix Nk, calculating the num-
ber of malicious neighbours at a distance k of the domain
names can also be computed through algebraic manipula-
tions. Given the bipartite nature of the graph, we know that
if k is an even number, all neighbours at a distance k will
also be domain names, while if k is odd, all neighbours will
be IP addresses. Therefore, if k is even, we create an array
M of length |D| with a value of 1 if the domain is malicious
and 0 otherwise. If k is odd, we create a similar array M
of length |I| with a value of 1 if the IP address is malicious
and 0 otherwise. The number of malicious neighbours Mk

a distance k is then simply provided by:

Mk = Nk ·M (3)

The array MK will also be of size |D|, and each position
in this array will correspond to a domain name and express
the number of malicious nodes at distance k of this domain.

The same calculations can be employed to calculate the
number of benign or sinkhole neighbours. To optimise these
matrix operations (and limit the memory usage), we repre-
sent the matrix R using a sparse matrix format (compressed
sparse row), and rely on high-performance matrix-matrix
and matrix-vector multiplications (Williams et al., 2009). To
further improve the performance of the matrix products, it
is also possible to extract the connected components of the
matrix R (that is, the set of subgraphs that are isolated from
one another) and then perform separate calculations in each.

Once the reputations of neighbouring nodes is calculated,
they can be used as features for the machine learning model,
as described in the next section.

V. NEURAL MODEL

The neural model learns to classify 〈domain name, IP
address〉 records into three categories: benign, malicious
and sinkhole. Several types of features can be exploited for
this classification task, including both numerical features,
categorical features and one sequence (the characters making
up the domain name). The list of features used as inputs to
the neural model is provided in Table II.

Numerical features include values such as the number of
TTL changes, the lifespan of the record or the number of
malicious neighbours at distance 2. As the range of possible
values for some of these features can be large, the feature

values are rescaled (by removing the mean and scaling to
unit variance) before being fed to the neural model.

Categorical features encompass values such as the ISP as-
sociated with the IP address or the Top-Level Domain (TLD)
of the domain. While these features can be very informative
for the classification, their inclusion in the neural model is
far from straightforward, as the number of possible classes
for most categories is very large. There is for instance over
490K distinct ISPs in the database. A “one-hot encoding”
of these features is therefore not directly applicable. A more
scalable approach, which is used in the neural architecture
developed in this paper, is to use learnable embeddings
to convert each category into a dense vector (Goldberg,
2016). One advantage of embedding models is their ability
to express similarities between categories – for instance, the
vector for the TLD “nl” might be closer in vector space to the
TLD “de” than to “cn”, since the distributional properties of
Dutch domains are expected to be more similar to German
domains than Chinese ones. These embeddings are learned
simultaneously with the rest of the neural model.

Finally, the domain name needs to be accounted for in a
specific manner due to its sequential structure. The sequence
of characters making up the domain name can be a very
useful source of information for predicting the reputation of
the domain, as many malicious domains are generated by so-
called domain-generating algorithms and have distributional
patterns that are different from real domain names.

The sequential structure of the domain can be captured
by a recurrent layer, for instance with LSTM or GRU units
(Goodfellow et al., 2016). Such a recurrent layer operates by
incrementally updating a hidden state (expressed as a fixed-
size vector) based on the sequence of inputs – in this case,
the characters making up the domain name. Each unit in this
recurrent layer takes as input one character and the previous
state, and outputs an updated vector representing the state
of the sequence so far. Once the last character is processed,
the final output vector is used to predict whether the domain
is likely to have been generated by a malware. This sub-
network is trained separately from the rest of the architecture
(since it can be directly estimated from a dataset of malware
domains). Due to space constraints, we do not present the
details of this part of the architecture in the present paper,
but refer to Lison and Mavroeidis (2017) for details.

The complete neural architecture is illustrated in Figure
2. The network comprises both numerical, categorical and
sequential features. Categorical features are converted into
low-dimensional embeddings, and the characters making up
the domain name are fed into a recurrent network that
outputs a probability value expressing whether the domain
is likely to be malware-generated. The numerical features,
embedding vectors and probability value from the recurrent
network are then combined and fed into two dense feed-
forward layers (with rectified linear units as activation func-
tion). The output of the second dense layer is then applied



Numerical features:
nb queries Total nb. of queries observed in the passive DNS data for the 〈domain, IP address〉 pair
min ttl Minimum TTL value for the pair
ttl changes Nb. of change of TTL values for the pair
lifespan Time (in seconds) elapsed between the first and the last observation of the pair
nb domain queries Total nb. of queries for the domain (aggregated over all IP addresses resolved to it)
domain lifespan Time (in seconds) elapsed between the first and the last observation of the domain
domain inactivity Time (in seconds) elapsed since the last observation of the domain
nb ips Nb. of distinct IP addresses that have been resolved to the domain
nb locations Nb. of distinct geolocations (identified by geoname identifier) where the domain was resolved
nb isps Nb. of distinct Internet Service Providers where the domain was resolved
nb countries Nb. of countries where the domain was resolved
nb aliases Nb. of aliases for the domain
nb address queries Total nb. of queries observed for the IP address (aggregated over all domains resolving to it)
address lifespan Time (in seconds) elapsed between the first and the last observation of the IP address
ranking domain Average ranking of the domain in Alexa rankings
is ranked 1 if the domain is ranked on Alexa, else 0
nb domains Nb. of domains resolved to this IP address
nb neighbours(d) Nb. of records at distance d of the current record
nb benign neighbours(d) Nb. of records marked as benign and at distance d of the current record
nb malicious neighbours(d) Nb. of records marked as malicious and at distance d of the current record
nb sinkhole neighbours(d) Nb. of records marked as sinkhole and at distance d of the current record

Categorical features:
city City associated with the geolocation of the IP address
country Country associated with the geolocation
stateprov State or province associated with the geolocation
geoname id Geoname identifier for the IP address
ip 2bytes First 2 bytes of the IP address
isp id Internet Service Provider for the IP address
suffix Top-level domain of the domain name

Sequence:
domain Domain name of the record (sequence of characters)

Table II: Feature set used for the predicting the reputation of 〈domain, IP address〉 records.

to produce a probability distribution over the three possible
reputation labels (benign, malicious or sinkhole).

VI. EVALUATION

We report in this section the experimental results obtained
when evaluating the classification performance of the neural
network. For this evaluation, we used the full set of 378M
records extracted from the passive DNS database. The
dataset was split at random into 10 folds, 9 folds being used
for training and 1 fold being held-out for testing.

The neural models were trained on GPU-accelerated hard-
ware (with a training time of 6-8 hours) using a batch
size of 128 and two passes on the training set. Adam was
employed as optimisation algorithm (Kingma and Ba, 2014).
The dimension of the embeddings was set to 16, and the
maximum length of the domain name was capped to 50
characters. Rectified linear units were used as activation
function for the hidden layers.

The evaluation results are provided in Table III. The
first row represents a weak baseline using a single feature:
the total number of domain queries. This baseline model
classifies the record as malicious if its domain has less
than 10 queries in the passive DNS dataset, and classifies
it as benign otherwise. As we can see, the neural mod-
els achieve better results than “shallow” logistic regres-
sion models without hidden layers. Furthermore, all feature
types (numerical features, rankings, graph-based features,
categorical features and domain name) seem to contribute
positively to the classification performance. The empirical
results are consistent with the findings from Antonakakis
et al. (2010) who reported a true positive rate of 97 % given
a false positive rate of 0.38 %. These rates are, however,
not directly comparable as they are evaluated on different
datasets (collected at different time periods).

We can improve the model performance even further by
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Figure 2: Neural architecture for predicting the reputation of a 〈domain, IP address〉 record. The network takes both numerical,
categorical and sequential (domain) features as inputs. The categorical features are first converted into lower-dimensional
dense embeddings (one per feature). The domain name is fed into a recurrent network (with Gated Recurrent Units) and
outputs a prediction on whether the domain is likely to be generated by malware. The numerical features, embeddings and
probability value are then fed into two dense feed-forward layers. Finally, the output of the second dense layer is used to
produce a probability distribution over the possible reputations.

applying the model in several passes, in a semi-supervised
learning fashion (Chapelle et al., 2010). As described in
Section III, only one third of the records are annotated with
a reputation label. The remaining two thirds are therefore
ignored by the reputation models. It is, however, possible to
exploit this unlabelled data to yield better predictions. Once
a neural model has been trained on the labelled records, it
can be applied on the full dataset of 378 million records
in order to obtain, for each record, a probability distribution
over the three reputation classes. These predicted reputations
can be subsequently employed to recompute the values of
the graph-based features (i.e. the numbers of neighbouring
nodes at distance d that are benign, malicious or sinkholes),
and a new neural model can be trained on the basis of these
updated features. The classification results of this second
model are shown in the last row of Table III, and constitute
the best performance on the held-out test set.

As shown in Figure 2, the last layer of the neural
model outputs a full probability distribution over possible
reputation labels for each input. In other words, the trade-off
between recall and false positive rate can be easily adjusted
by modifying the threshold with which we decide to classify
a record as benign, malicious or sinkhole. This trade-off can
be plotted using a ROC curve, shown in Figure 3. One can
also interpret the classification performance in terms of recall
(also called true positive rate) that can be achieved given a
fixed false positive rate. For the best performing model (a

neural model with 3 hidden layers each of dimension 1024,
all input features and two learning passes), we achieve a
recall for the detection of malicious records of 0.74 for a
false positive rate of 1:100K, 0.86 for a 1:10K, 0.92 for
1:1000, 0.97 for 1:100 and 0.99 for 1:10.

VII. CONCLUSION

This paper presented a novel machine learning approach
to the problem of predicting the reputation of domain names
and IP addresses. The approach relies on a deep neural
architecture combining a broad range of features related to
the properties and relational structure of the DNS records.
The model is trained on a large dataset extracted from
passive DNS monitoring. To our knowledge, this paper is
the first one to investigate the use of deep neural networks
for the development of dynamic reputation models. The
evaluation results presented in Section VI demonstrate that
the model is able to predict whether a DNS record is benign,
malicious or a sinkhole with high accuracy.

Future work will focus on online learning strategies for
the reputation models. Passive DNS data and reputation
lists are indeed regularly updated, and the model should
be able to reflect these changes without needing to retrain
its parameters from scratch. Online learning strategies will
necessitate both efficient ways of performing graph inference
on an continuously evolving graph as well as the use of
incremental learning algorithms.
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Figure 3: ROC curve for the task of detecting malicious records
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