Måling av kontraster på skjerm

Teknologi- og metodeanbefaling

DART/14/2017

Till Halbach, Kristin Skeide Fuglerud

2017-12-30
Forfatterne
Till Halbach er seniorforsker ved Norsk Regnesentral og del av E-inkluderingsgruppen.
Kristin Skeide Fuglerud er sjefsforsker ved Norsk Regnesentral og leder av E-inkluderingsgruppen som arbeider med digital inkludering, universell utforming og brukeropplevelse.

Norsk Regnesentral
Norsk Regnesentral (NR) er en privat, uavhengig stiftelse som utfører oppdragsforskning for bedrifter og det offentlige i det norske og internasjonale markedet.
NR ble etablert i 1952 og har kontorer i Kristen Nygaards hus ved Universitetsparken i Oslo. NR er et av Europas største miljøer innen anvendt statistisk-matematisk modellering og har et senter for forskningsdrevet innovasjon, Big Insight, med finansiering fra Norges forskningsråd, bedrifter og offentlige partnere. Innen statistikk jobbes det med et bredt spekter av problemstillinger, for eksempel finansiell risiko, jordobservasjon, estimering av fiskebestander, helse og beskrivelse av geologien i petroleumsreservoarer. NR er ledende i Norge innen utvalgte deler av informasjon- og kommunikasjonsteknologi. Innen IKT-området har NR innsatsområdene e-inkludering, informasjonssikkerhet og store informasjonssystemer.
NRs visjon er forskningsresultater som brukes og synes.
Sammendrag

Denne rapporten diskuterer ulike teknologier og metoder for å måle skjermkontraster på en pålitelig og effektiv måte. Dokumentet er utarbeidet ved å se på relevante standarder og relatert forskning, og ved å hente inn uttalelser av ekspertter, samt brukerinnspill.

Vår anbefaling er at en kontrastmåling bør være tredelt og bestå av to objektive og en subjektiv verdi. De to objektive verdiene er forhold av høy og lav luminans, målt med luminansmåleren en gang i et mørkt rom og en gang under diffus belysning. I tillegg anbefaler vi å supplere labmålingene med en brukerutprøving. Denne fremgangsmåten skal fange opp de tre hovedfaktorene uavhengige skjermegenskaper, skjermens robusthet, det vi si hvor bra den klarer å beholde den maksimale kontrasten under ekstern lyssetting, og hvordan kontrasten faktisk oppleves sett med menneskelige øyne.
Innholdsfortegnelse

Introduksjon ... 7

Målet med rapporten ... 8

Utførende og metode .. 8

Takk .. 8

Involvering av sosiale medier ... 9

Begrepsavklaring ... 9

Relevante standarder ... 9

CEN/TS 15291:2006 .. 10

Vurdering .. 10

NS-EN ISO 9241-20:2009 .. 10

Vurdering .. 10

ISO/TR 22411:2008 .. 11

Vurdering .. 11

NS-EN 12414:2000 ... 11

Vurdering .. 12

NS-EN ISO 9241-303:2011 ... 12

Vurdering .. 12

NS-EN ISO 9241-305:2008 ... 13

Vurdering .. 13

NS-EN ISO 9241-306:2008 ... 13

Vurdering .. 13

NS-EN ISO 9241-307:2008 ... 14

Vurdering .. 14

W3C WCAG 2 ... 15

Vurdering .. 15

W3C CSS 2.1 .. 15

Vurdering .. 15

ITU-T P.800.1 og ITU-T P.800.2 ... 16

Vurdering .. 16

ITU-T P.910 ... 16

Vurdering .. 16

ITU-R BT.500-13 ... 17

Vurdering .. 17

Relevant forskning .. 18

Rapport: Lesbarhet av trykt tekst for svaksynte .. 18

Vurdering .. 18

Vurdering .. 18

Annen forskning om polaritet og subjektive vurderinger .. 19

Vurdering .. 19
Ekspertanbefalinger...19
Vurdering...21

Brukerinnsipp..21
Vurdering...21

Anbefaling og begrunnelser...22
Anbefaling for utregning av minimumskontrast, L_{\text{h,min}} og terskelverdier...............24

Konklusjon..24
Figuroversikt

Figur 1: Illustrasjonsbilde for ulike informasjonstavler under kunstig lyssetting på Nasjonaltheater stasjon i Oslo.
1 Introduksjon

Meningen med elektroniske skjermer er å formidle informasjon på en visuell måte og legge til rette for dialog/interaksjon med brukeren.

Det å ha tilstrekkelige kontraster på skjerm er derfor ofte avgjørende for hvordan brukeropplevelsen blir. Dette er spesielt viktig for personer med nedsatt syn, som er antatt å utgjøre ca. 6% av den norske befolkningen\(^1\), men det er mange med vanlig syn som også har utfordringer med å oppfatte det som står på skjermen i tilfelle dårlige kontraster eller vanskelig lyssetting. I de aller fleste tilfeller består informasjonen av tekst. Kontrastmålinger er derfor også knyttet til lesbarhet av tekst på skjerm.

Problematikken gjelder i utgangspunkt alle skjermer/display\(^2\) med egen lyskilde (selvlysende), både analoge og digitale, og ordinære og berørings-skjermer. Eksempler er billett- og parkeringsautomater, ofte omtalt med paraplybetegnelsen selvbetjeningsautomater, samt informasjonstavler, det vil si skjermer som ikke krever brukerinteraksjon. Forekomsten av ulike typer skjermer har økt betraktelig i den senere tid, forårsaket av progresjonen av digitaliseringen av produkter, tjenester og tekniske systemer, og ledsaget av inntoget av flere og flere mobile enheter. Det forventes at skjermforekomster vil øke ytterligere fremover. Derfor er det behov for gode skjermkontraster ikke bare på datamaskiner, men også nettbrett, telefoner og for eksempel smartklokker. Og, ettersom mange skjermer blir brukt ute i det fri, er gode kontraster spesielt viktig i dagslys og med solinnstråling.

Figur 1: Illustrasjonsbilde for ulike informasjonstavler under kunstig lysssetting på Nasjonalteater stasjon i Oslo

Det må videre nevnes at krav om gode kontraster er lovpålagt som en del av forskriften om universell utforming av IKT-løsninger\(^3\). Denne rapporten er derfor relevant for ulike interesseforeninger, innkjøpere, tilsynsorganer og utviklende bedrifter, med flere.

\(^1\) SSB, Levekårsundersøkelse om helse, 2012
\(^2\) På engelsk brukes forkortelsen VDT, for Visual Display Terminal
\(^3\) Kommunal- og moderniseringsdep., Forskrift om universell utforming av informasjons- og kommunikasjonsteknologiske løsninger, 2013
Det er derimot ikke trivielt å måle skjermkontraster på en riktig måte og kvalitetssikre at en skjerm har tilstrekkelig eller god kontrast. For hva er «tilstrekkelig» eller «god»? Og for hvem? Andre faktorer som også spiller inn er skjermens innebygde lysstyrke og -kontrast, fargegjengivelse, samt skjermens refleksjonsegenskaper. Man bør, som utdypet tidligere, også ta hensyn til hvordan skjermen er lyssatt (kunstig og/eller gjennom sollys), og om lysettingen varierer med tiden. Det er viktig å presisere at det er den endelige/effektive (netto-)kontrasten som er avgjørende; det hjelper altså svært lite å etterleve f.eks. WCAG4-kravene for en webside (som legger føringer for bruttokontrasten) om skjermens lysstyrke er altfor mørkt innstilt, eller om solens refleksjoner på skjermen gjør det umulig å se noe.

2 Målet med rapporten

Målet med denne rapporten er å diskutere ulike teknologier, verktøy og metoder, og å gi en konkret, begrunnet anbefaling for den mest pålitelige og effektive måten å måle skjermkontraster på.

3 Utførende og metode

Det er Norsk Regnesentral (NR) som har utarbeidet rapporten, med seniorforsker Till Halbach som ansvarlig prosjektleder. Sjefsforsker Kristin Skeide Fuglerud har vært fagressurs. Det ble intervjuet en rekke fagpersoner i forbindelse med denne rapporten. Disse er:

- Bjørn Nygård, tidligere rådgiver ved Hjelpemiddelsentralen i Sør-Trøndelag, avdeling Syn
- Arne Tømta, synspedagog i Blindeforbundet
- Ruedi à Porta, tidligere grafisk designer og industridesigner
- Jonny Nersveen, førsteamanuensis ved Institutt for vareproduksjon og byggt�knikk (og Norsk forskningslaboratorium for universell utforming), NTNU,
- Ole Lund, førsteamanuensis ved Institutt for design, NTNU
- Magne Helland, dosent ved Institutt for optometri, radiografi og lysdesign (og Nasjonalt senter for optikk syn og øyehelse), HSN

Tilnærmingen til problemstillingen er i hovedsak basert på en litteraturstudie og intervjuer av og drøftinger med eksperter vedrørende synsfaglige aspekter. Intervjuene ble gjennomført på telefon og/eller e-post. I konklusjonen inngår vurderingene av både ekspertuttalelsene, forskningsresultater, standarder og annen litteratur, samt innspill fra en kampanje på sosiale medier, se nede.

Rapporten fikk tilskuddsmidler fra Norges Blindeforbunds forskningsfond.

3.1 Takk

Takk også til Mia Jacobsen og Tonje Bjerkemoen i Blindeforbundet for hjelp med å spre budskapet på sosiale medier, samt alle som lot seg engasjere i saken og kom med kommentarer, eksempler og bilder.

4 W3C, Web Content Accessibility Guidelines, 2008
3.2 Involvering av sosiale medier

For å belyse problemstillingen fra brukersiden ble det besluttet å kjøre en kampanje på Facebook bestående av to innlegg\(^5\)\(^6\) med noen få eksempler og oppfordring om å sende inn egne opplevelser og eksempler. Dette ble gjort på Facebook-gruppen uleselig.no, som styres av Blindeforbundet.

Gruppen har i skrivende stund i overkant av 21 000 følgere. Blant disse kan det antas er det mange personer med nedsatt syn. Aktivitetsnivå på kanalen varierer en del: I 2017 ble 15 saker lagt ut på Uleselig, med alt mellom under 10 og over 100 reaksjoner i form av likes og lignende, med en gjennomsnitt på rundt 30. For å øke engasjement i saken ble det lovet ut en premie i andre innlegg for beste innsendte eksempelet.

4 Begrepsavklaring

Med kontrast menes her forskjellen mellom to lyssignaler. En eksempelverdi er 1500:1, også skrevet 1500.\(^5\)

Luminans er betegnelsen på styrken (amplituden) av et lyssignal. Noe forenklet sier luminans altså noe om hvor sterkt et lysintrykk er.

Bruttokontrasten er kontrasten som gjenspeiler intensjonen av informasjonstilbyder, f.eks. en webredaktør som spesificerer fremstillingen av en nettside i en grafisk nettleser. Bruttokontrasten vil alltid være lik på tvers av hardware uansett skjerminnstilling, ekstern lysettsetting og refleksjoner.

Begrepet nettokontrast\(^7\) er brukt her for kontrasten som kan oppleves/måles i situasjoner der lys fra skjerm, der også skjermens egenskaper og innstillinger inngår, blandes med lys fra andre lyskilder, inkludert dagslys. Ettersom dette gjelder i de fleste anvendelsesområdene, vil ordene kontrast og nettokontrast her brukes om hverandre med samme betydning. Som en ytterligere avgrensning menes med kontrast her bokstavkontrast, eller forholdet mellom lysstyrke av linjene i bokstavene og bakgrunnen. Dette fordi informasjonsformidling i de fleste tilfeller vil dreie seg om tekst.

5 Relevante standarder

Skjermer er i de fleste tilfeller en vesentlig bestanddel av selvbetjeningsautomater. Det er derfor naturlig å se på Difis liste av tekniske dokumenter for universell utforming av automater\(^8\) for hva som er relevant for måling av skjermkontraster. Disse dokumentene er diskutert lenger nede.

- NS-EN 1332-1:2009,
- NS-EN 1332-2:1998,
- NS-EN 1332-3:2008,
- NS-EN 1332-4:2007,
- NS-EN 1332-5:2006,
- ISO 20282-1:2006 og

5.\(^7\) https://www.facebook.com/uleselig.no/photos/a.1422603374634662.1073741828.1415372415357758/2073574236204236/?type=3&theater
6.\(^8\) https://www.facebook.com/uleselig.no/photos/a.1422603374634662.1073741828.1415372415357758/2085521315009528/?type=3&theater
7. På engelsk: perceptual contrast

5.1 CEN/TS 15291:2006

Hva gjelder skjermkontraster skal automatken være lyssatt i tilfelle mangel på dagslys (avsnitt 5.4.1). Videre skal skjermen ikke være vendt mot direkte innstråling fra solen. Refleksjoner fra skjermen må være ubetydelige (5.4.2). Selv skjermen skal ha tilstrekkelig lysstyrke og kontrast, være i stand til å gjengi passende farger og må ikke vise flakringseffekter. Informasjon på skjermen må kunne leses med opptil 40 graders innfallsvinkel (6.5.2). Spesifikasjonen nevner videre at lesbarhet avhenger av en del andre faktorer, sånn som tekststørrelse, skrifttype, og andre typografiske parametre (6.3.2). Hva angår fargekombinasjoner er lys skrift på mørk bakgrunn å foretrekke framfor mørk skrift på lys bakgrunn (D.2.1).

5.1.1 Vurdering

5.2 NS-EN ISO 9241-20:2009

Det er ganske begrenset hva som er relevant for måling av skjermkontraster i denne standarden: Det skal være mulig å endre kontrasten av informasjon på skjermen (avsnitt 7.2.7) og størrelsen på det som blir vist (7.2.8/7.2.9). Ellers blir det vist til allerede nevnte ISO 9241-300 og -302.

5.2.1 Vurdering
For en standard å være er ISO 9241-20 overraskende vag med formuleringer som «tilstrekkelig» lysstyrke og «tilstrekkelig» kontrast. Det er derimot meningen at andre, mer detaljerte standarder benyttes der disse er tilgjengelige. Standarden kan derfor uten problemer ignoreres i denne sammenhengen her.

9 Identification Card Systems - Guidance on design for accessible card-activated devices
10 Ergonomics of human-system interaction - Part 20: Accessibility guidelines for information/communication technology (ICT) equipment and services
5.3 ISO/TR 22411:2008

En rekke faktorer er listet opp som påvirker god lesbarhet av det som vises på skjermen:
Lyssetting; Automatens utforming bør ta hensyn til de mest sannsynlige lysforholdene i felten (avsnitt 8.4.2). Ettersom kunstig belysning for automater er anbefalt vurdert, kan det i nesten alle tilfeller gåes ut fra at lys fra andre lyskilder enn skjermen vil påvirke lesbarheten (8.4.2). Refleksjoner; Polerte overflater og overflater med høy refleksjonskoeffisient kan føre til blending, dette gjelder spesielt for selve skjermen (8.4.4). Skjermens tekniske egenskaper; lyssyrke og kontrast spiller selvsagt en viktig rolle, og her spesielt luminanskontrast, som må være tilstrekkelig på den ene siden, men som samtidig ikke må blende brukeren med en for høy kontrast heller (8.5.4). Skjermens fysiske egenskaper; Skjermstørrelse og avstand til betrakteren påvirker bruskskaliertene vesentlig (8.2.3.1, B.2). Egenskapene til synssansen; Kontrasten oppleves forskjellig avhengig av fargene som er brukt og fargenes intensitet (8.5.2). Betrakternes heterogenitet; Synsopplevelsen påvirkes også av betrakterens alder og eventuelle synsnettelser (8.5.1). Dessuten kan en persons eventuelle funksjonsnedsettelser også påvirke synsopplevelsen. Anbefalingen nevner her at individer med nedsatt syn som oftest foretrekker negativ polaritet (lyst på mørkt) framfor positiv polaritet (mørkt på lyst) (8.6.1).
Tekst og symboler; Størrelse av bokstaver og ikoner samt skrifttype påvirker lesbarheten (8.6). Skjermbildet; Måten innhold er fordelt på utover skjermen, for eksempel såkalt romslig frekvens påvirker også lesbarheten og helhetsintrykket (9.2.1.7). I Annex B.2 spesifiserer TR 22411 en metode for å regne ut luminanskontrasten som en funksjon av spektral stråling av to lyssignaler, lysets bølgelengde og betrakterens alder.

5.3.1 Vurdering
Det trekker ned at dokumentet kun er en teknisk anbefaling, og at den som sådan er litt vag i formuleringene. Det som gjør den verdifull i denne konteksten er at den nevner «utallige» faktorer som påvirker betrakterens opplevelse, og at dokumentets hovedtyngde ligger på å synliggjøre behovene til spesielt eldre og mennesker med redusert synsfunksjon. Anbefalingene er derimot for lite konkret til å hente inspirasjon til måling av skjermkontrasten, bortsett fra metoden nevnt i Annex B.2.

5.4 NS-EN 12414:2000
EN 12414:1999 nevner lesbarhet av all vesentlig informasjon, som skal være lesbar både på dagtid og nattetid, med vanlig lesehjelp og uten, på en distanse av maksimalt 1 m (avsnitt 4.19.1).

11 http://www.iso.org/iso/catalogue_detail?csnumber=57385
12 European Commitee for Standardization/Technical Committee 226/Working Group 9
13 Det antas å referere til brille, kontaktlinser, o.l.
5.4.1 Vurdering

5.5 NS-EN ISO 9241-303:2011
Denne spesifikasjonen er både norsk og internasjonal standard med tittelen «Ergonomi for samhandling mellom menneske og system - Del 303: Krav til elektronisk visuelle skjermer».

For å evaluere overholdelse av standarden må den derimot tolkes sammen med Del 307 (se lenger nede).

I følge ISO 9241-303 er det en rekke flere parametre enn luminans som utgjør brukerenes skjermopplevelse, som omstendigheter, fysiske omgivelser, lesbarhet, m.fl. (avsnitt 4, Annex B).

Anbefalt avstand mellom bruker og skjerm er mellom 400 og 750 mm i de fleste avendelserområdene, men i noen tilfeller kan det være nødvendig med større avstand (5.1.2). Standarden krever at skjermutstyrer en minimumsluminansverdi for ulike avstander, typisk lysinnstråling fra omgivelsene, og for ulike aldre til brukerne (5.2.3, Annex D). Sistnevnte fordi kravene til kontrast blir høyere med brukerenes økende alder. Skjermens egenskaper kan også endre seg med alderen (5.2.3), så det kan være lurt å ta hensyn til dette med en ekstra margin for minimumskontrast for helt nye skjermer. Skjermstørrelsen spiller også inn (Annex D). På nattestid bør skjermutstyreren derimot være dempet for å unngå blending og hjelpe til at betrakterens øyne lett kan tilpasse seg. Luminanskontrast mellom skjerm og dens nærmere omgivelser bør ikke overstige en størrelsesorden av skjermutstyreren (5.2.4). Skjermens egenskaper kan variere noe på ulike punkter på skjermflaten, derfor anbefaler standarden å gjennomføre opptil tre luminans- og fargemålinger (5.4.2, 5.4.3). Som alternativ målemetode er det mulig med brukertest, der man måler måloppnåelse, effektivitet og brukerforespending (Annex C). I Annex D er det foreslått flere metoder for utregning av minimumskontrast. Det er nevnt at ISO 9241-3 anbefaler et forhold på minst 3:1 mellom høy og lav luminans, mens ISO 13406-2 har definisjonen \(1 + 10 \cdot L_l^{0.55} \), der \(L_l \) er den lave luminansen.

ISO 9241-303 prøver så å bygge bro over motsetningene ved å foreslå en aldersavhengig utregning, og en utregning der minimumskontrast ikke konvergerer mot 1 med stigende \(L_l \). Definisjonen på minimumskontrast blir da \(k_a \cdot (2.2 + 4.84 \cdot L_l^{0.65}) \), der \(k_a \) er en aldersavhengig korrekturfaktor, se tabell D.1. Standarden utviser derimot forsiktighet med å anvende denne korrekturfaktoren, det vil si at den nevnes, men den er tydeligvis ikke i bruk.

5.5.1 Vurdering

Til slutt må det nevnes at det i Del 303 er eksplisitt formulert (avsnitt 1) at standarden ikke tar høye for funksjonsnedsettelser utover en redusert synsfunksjon pga. høyere alder. Dette

15 Det er uvisst hvorfor korrekturfaktoren ikke er anbefalt brukt. Kanskje det menes at datagrunnlaget er for tynt, og at nevnte studie bør verifiseres av annen forskning før for korrektur kan bli normativ standard.
16 På engelsk brukes vendingen «with normal or corrected-to-normal vision», noe som inkluderer bruk av brille.
betyr igjen at de delene som bygger på Del 303, vil heller ikke funksjonsnedsettelser spille noen rolle i. Denne aspekten utgjør en svakhet av hele 300-serien i ISO 9241.

5.6 NS-EN ISO 9241-305:2008
Også denne spesifikasjonen er både norsk og europeisk standard og har fått tittelen «Ergonomi for samhandling mellom menneske og system - Del 305: Optiske testmetoder for elektronisk visuelle skjermer»17. Standarden må ses i sammenheng med delene 302, 303 og 307 og gjelder altså for testing i standardiserte labomgivelser.

Dette slår seg blant annet ned i at det er anbefalt å unngå eller i det minste kontrollere direkte eller indirekte lys, f.eks. fra måleutstyret eller i form av refleksjoner fra vegger eller strølys forårsaket av optisk utstyr, for å forhindre målefeil (avsnitt 5.5). Luminansmeteret bør ha mulighet for å regulere åpningen og fokus for å foreta spotmålinger (5.7). Det er beskrevet detaljerte ulike fremgangsmåter og metodikk, f.eks. til spotmålinger og talltesting av refleksjonskoeffisienter og lignende (6), samt nødvendig måleutstyr og andre hjelpemidler.

Spesielt interessant i denne sammenhengen er måling av kontrast ved hjelp av mørkerom, et gitt testmønster og to spotmålinger, i et tilfellet uten ekstern lysetstyring (6.7.1), og i tre tilfeller med ekstern lysetstyring og uønskede refleksjoner (6.7.2, 6.7.3, 6.7.4). I den sammenhengen er det også relevant hvordan luminans måles ved hjelp av en lignende fremgangsmåte, men med fem/ninelleve spotmålinger (6.6.1, 6.6.7). Det er også verdt å merke seg at standarden skiller mellom spredte/diffuse refleksjoner, f.eks. forårsaket av indirekte, eksterne lyskilder som himmelen, og speilingseffekter, som ofte kan føres tilbake til direkte eksterne lyskilder som solen; begge er komponenter som bidrar til nettokontrasten.

Andre detaljer fra standarden som er relevant for måling av skjermkontraster er: Før en måling skal skjermen ha fått anledning til å stabilisere seg i minst 20 minutter (5.1). Det er anbefalt å måle et større område på minst 500 piksler for å komme fram til riktig resultat (5.6.1). Der det er brukt bokstaver i testmønstrene er disse utformet på en ikke anti-aliased måte, det vil si med skarpest mulig kant mellom lyst og mørkt (5.3). Det anbefales videre å foreta usikkerhetsberegninger for alle utførte målinger for å gi en øvre grense for feil med målingene (Annex E).

5.6.1 Vurdering
ISO 9241-305 er meget relevant i denne sammenhengen, og den kan sies å gi svært detaljerte retningslinjer for å gjennomføre målinger av skjermkontraster. Som sådan kan den brukes av både skjermleverandører og testinstitusjoner. Ulempen med den er derimot at alle målinger må utføres under nøye kontrollerte forhold, som begrenser dens bruk i praksis. De beskrevne måleinstrumentene og -metodene er videre ganske omfattende og ressurskrevende, både hva gjelder kostnader og tidsbruk. For målinger ute i felten vises til ISO 9241-306.

5.7 NS-EN ISO 9241-306:2008

Ekstern lysetstyring kan måles ved hjelp av en luxmeter (avsnitt 5.2.1), mens skjermens egenstråling kan måles med luminansmeter (5.2.2). Det er foreskrevet med visse

17 ISO 9241-305:2011. «Ergonomics of human-system interaction -- Part 305: Optical laboratory test methods for electronic visual displays»

målingsområder på skjermen og en bestemt orientering av målingsverktøyet i forhold til skjermen. Skjermer må få anledning til å stabilisere seg før en måling, uansett skjermteknologi (4.1.1, 4.2.1). Avstand mellom betrakter og skjerm bør være mellom 400 og 750 mm (5.1.1), men avstanden mellom skjerm og luminansmater avhenger av målerens blendejusteringsevne (5.5.1.1). Til målinger av glansgraden av overflater anbefales det en glossmeter (5.2.3). Standarden anbefaler videre å måle kontrasten mellom skjermen og omgivelsene, f.eks. en vegg i nærheten, med anbefalingen om at den bør være så liten som mulig (5.2.3). Måling av bokstavkontraster stiller krav om justeringsevne av blendeåpning og fokuspunkt på luminansmeteret (5.5.1.1, 5.5.1.2). Måling av bokstavtykkelsen kan gjennomføres gjennom direkte sammenligning med en referanseskala og eventuelt bruk av forstørrelsesskåle/lupe (5.5.5). Ellers kan andre parametre også evalueres etter den visuelle-inspeksjonsmetoden (5.6.1, 5.6.4, 5.7.2, m.fl.).

5.7.1 Vurdering
ISO 9241-306 er i høyeste grad relevant for måling av skjermkontraster. Standarden spesifiserer nøaytig en rekke testmetoder, viser til gyldige verdier for målingsresultater og attpåtil beskriver format for rapportering. Etter vår mening er den til og med mer relevant enn Del 305 fordi den er beregnet på målinger i felten og på det måten tar bedre hensyn til realistiske forhold sammenlignet med labomgivelser.

Men, med tanke på alle factorene som påvirker brukeropplevelsen (Annex B) mener vi at standarden ikke klarer å fange opp helhetsintrykket ettersom det gjennomføres en rekke enkelttester uten å ta hensyn til helhetsopplevelsen til brukeren, eller med andre ord hvordan alle disse endimensionale aspektene påvirker hverandre. Det er heller ikke tatt hensyn til hvordan eventuelle funksjonsnedsettelser påvirker brukeropplevelsen, og hvordan disse kan fanges opp av endrede eller flere terskelverdier. I den forbindelsen er det relevant å spørre om man kunne lagd en skjerm som overholder alle krav i spesifikasjonen, men som likevel gir et ubrukelig resultat for en person med nedsatt funksjonsevne.

5.8 NS-EN ISO 9241-307:2008

På et overordnet nivå skiller ISO 9241-307 på de ulike skjermtypene CRT²⁰ (avsnitt 5.1), LCD²¹ (5.2), PDP²² (5.3), projiserings-skjermer (5.4) og mobil-LCD (5.5), hvis egenskaper krever ulike målemetoder. Standarden gir en rekke terskel- og referanseverdier som gåter utover de verdiene som er nevnt i de andre delene (f.eks. C.2.3). Det er eksplicit nevnt at samtlige anbefalinger kun gjelder for innendørs bruk. Videre anbefaler standarden å dokumentere omstendighetene for alle målinger i form av spesifikasjon av brukerne, brukskontext, oppgave og beskrivelsen av selve innretningen, f.eks. om den er stasjonær eller mobil, størrelse på skjermen osv. (Annex C).

²⁰ Engelsk: cathode ray tube
²¹ Engelsk: liquid crystal display
²² Engelsk: plasma display panel
5.8.1 Vurdering
Del 307 i ISO 9241 er svært relevant for en teknisk måling av skjermkontraster ettersom den utgjør en ytterligere spissing av kravene nevnt i Del 305 for å ta hensyn til ulike skjermtyper. Med sine over 200 sider er den svært omfattende; noen av seksjonen for måling av kun en skjermtyp er på over 50 sider! Samtidig begrenses standardens betydning av det faktum at målingene gjelder kun innendørs, og fordi eventuelle funksjonsnedsettelser eller helhetsintrykket ikke er tatt høyde for.

5.9 W3C WCAG 2
Web Content Accessibility Guidelines (WCAG, i skrivende stund med versjonsnummer 2) er W3Cs anbefaling for tilgjengelighet på Web.

I avsnitt 1.4.3 defineres det et minimums kontrastforhold mellom to (relative) luminansverdier. Noen tilfeller - som dekorative elementer, logoer og merkenavn – er unntatt dette kravet. Ellers er det verdt å merke seg at WCAG skiller mellom vanlig tekststørrelse (under 14 pt) og tykke bokstaver («bold»), ellers under 18 pt) og stor tekststørrelse (over dette) med et krav om minimums kontrast på 4,5:1 i første tilfellet og 3:1 i andre tilfellet på nivå AA. På nivå AAA må tilsvarende kontrast bli minst henholdsvis 7:1 og 4,5:1.

5.9.1 Vurdering
WCAG 2 er en allment kjent, innarbeidet og ofte brukt anbefaling. Krav 1.4.3 har vist seg å være godt egnet til å spesifisere og måle bruttokontrasten i mange ulike kontekster, og det finnes en rekke verktøy for å måle at kontrastkravet blir overholdt.

Hovedsvakheten med WCAG 2-metoden er at den dreier seg om intensjonen til en forfatter eller designer etc., men ikke om netto- eller den opplevde kontrasten. Verdiene i anbefalingen er tatt fra ISO 9241-303, og det er også tatt høyde for en noe redusert synsfunksjon gjennom alder. Det vil igjen si at verdiene ignorerer andre faktorer, som skjerminnstiller (eksempelvis lysstyrke), aldring av skjermen, produksjonsfeil og lignende avvik. Denne listen inneholder også eventuelle funksjonsnedsettelser. Det må videre nevnes at det ikke er klart hvor mye eventuelt endrede terskelverdier måtte bety i form av inkludering og ekskludering, men denne diskusjonen gjelder ikke bare WCAG 2.

W3C jobber i skrivende stund med en revisjon av WCAG 2, som skal få versjonsnummeret 2.1, men det er uvisst når dette arbeidet avsluttes, hva som oppdateres og hvordan dette vil slå ut.

5.10 W3C CSS 2.1
Cascading Style Sheets (CSS, i skrivende stund med versjonsnummer 2.1) er W3Cs anbefaling for stilsett på Web.

Størrelser i CSS relateres til brukerens leseavstand til skjermen, som er satt til gjennomsnittlig armlengde eller 71 cm (avsnitt 4.3.2).

5.10.1 Vurdering
I CSS 2.1 er det kun leseavstanden som er relevant i denne sammenhengen, men dette aspektet dekked også av f.eks. 300-serien i ISO 9241.

23 https://www.w3.org/TR/WCAG20/
24 1 pt er 7/200 cm
25 Det er dog tatt hensyn til en generell strøy- effekt i formelen for kontrast.
27 https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html#visual-audio-contrast-contrast-73-head
28 https://github.com/w3c/wcag/issues/200
29 https://www.w3.org/TR/CSS21/
W3C jobber for tiden med å revidere CSS, som skal få versjonsnummeret 2.2, men det er uvisst når dette arbeidet avsluttes, og hva som kommer til å endres. Utkastet på versjon 3 bruker samme definisjon på leseavstand.

5.11 ITU-T P.800.1 og ITU-T P.800.2
P.800.1 og P.800.2 er deler av ITU-Ts P-serie med tekniske anbefalinger som omhandler ulike typer terminaler og metoder for både objektive og subjektive kvalitetsmålinger. Helt konkret dreier begge seg om MOS, en verdi som kvantifiserer den opplevde kvaliteten av stimuli og/eller tekniske løsninger. Begge standardene er påvirket av arbeidet VQEG har gjort i forbindelse med kvalitetsvurderinger av video. VQEG er en i utgangspunkt uavhengig organisasjon, men flere av deres studier har resultert i tekniske ITU-anbefalinger.

5.11.1 Vurdering
P.800.1 blir ofte nevnt i samme åndedrag som P.800.2, men inneholder ikke mye relevant informasjon for eventuelle subjektive kontrastmålinger. P.800.2 anses til å være relevant for subjektive kvalitetsbedømmelser av visuelle inntrykk, selv om den først og fremst gjelder video. Hovedforskjellen til konteksten her er at P.800.2 ønsker å skape så like forhold som mulig for alle informanter i en utprøving, mens det som skal fanges opp med kontrastmålingen er nettopp variasjonen grunnet ulike omgivelser og lysforhold. Likevel mener forfatterne at en beregning av MOS teoretisk og praktisk kan brukes for å bedømme kontraster på skjerm. MOS er en av de mest brukte metodene for kvantifisering av subjektive bedømmelser, selv om den også har noen svakheter, som diskutert i P.800.2. Derfor tilkommer en statistisk analyse av MOS nøklerollen, og det er forventet en ganske stor spredning av individuelle skårene. Ungivelse av MOS for en gitt automat bør alltid følges av en beskrivelse for beregningen av MOS, som beskrevet i P.800.2, og en detaljert statistisk analyse.

5.12 ITU-T P.910
ITU-T P.910 er en teknisk anbefaling for gjennomføring av subjektive kvalitetsmålinger. Den er i samme serien som ITU-Ts P.800.1 og P.800.2.1 og gjelder i utgangspunkt for multimedia og video. De fleste delene i standarden er derimot så generelle at den også kan anvendes på andre områder, noe som også eksplisitt er kommentert.

ITU-Ts P.910 beskriver flere ulike testmetoder, men felles for alle er at det forutsettes full kontroll over skjerm billedet (avsnitt 5-7) og omgivelser (5.1, 7.1). Standarden foreskriver:

30 https://www.w3.org/TR/css3-values/
31 ITU-T, Recommendation P.800.1 – Mean opinion score (MOS) terminology, 07/2016
32 ITU-T, Recommendation P.800.2 – Mean opinion score interpretation and reporting, 07/2016
33 International Telecommunication Union – Telecommunication Sector
34 Engelsk forkortelse for Mean Opinion Score
35 Video Quality Expert Group
36 https://www.wikiwand.com/en/Mean_opinion_score

5.12.1 Vurdering
Noen områder i P.910 er spesifikke for kvalitetsmålinger av video, men det aller meste kan også brukes for måling av kontrast på skjerm og subjektiv opplevelse. Det som ikke er relevant er de punktene som er til for å skape mest mulig like forhold for alle informanter, noe som ikke er ønskelig i denne konteksten. Også tallene 4/15/40 må ses i samme lys, og en subjektiv måling av kontrast i felten bør nok involvere en betydelig høyere antall informanter for å fange opp hele spektrum av variasjoner i omgivelser og lysforhold. Det er derimot en god idé å gjennomføre målinger med færre personer under hele utviklingsløpet, ikke kun på slutten. En annen god idé er ikke bare å måle helhetsinntekktrykket, men også å spørre etter relaterte faktorer som refleksjoner og lysstyrke.

5.13 ITU-R BT.500-13

BT.500-13 anbefaler minst 15 testdeltagere (2.5). Den enkeltes bakgrunn burde dokumenteres for å kunne forklare eventuelle forskjeller i skårer. Selv om ikke eksplisitt nevnt vil dette også omfatte en eventuell funksjonsnedsettelse. En skåre bør alltid følges av dokumentasjon for testoppsett og en statistisk analyse av enkeltmålinger, bestående i det minste av antall deltageres, arithmetisk middelverdi av enkeltmålingen og 95%-konfidensintervall (2.8).

5.13.1 Vurdering
BT.500-13 vurderes som relevant for måling av skjermkontrast ved hjelp av en subjektiv evaluering, men det er mye av det samme i forhold til ITU-T P.910 og P.800.2. Denne anbefalingen er derimot mer detaljert og definerer nøyaktig beregningsmetoder og terskelverdier, for eksempel for konfidensintervall, og spesifiser også filtreringmetoden for å

38 ITU-R, Recommendation BT.500-13 – Methodology for the subjective assessment of the quality of television pictures, 01/2012
39 Broadcasting service (television)
40 International Telecommunication Union – Radiocommunication Sector
fjerne uteliggere. Også anbefalingen å benytte seg av objektive målekriterier og oppgaver under en subjektiv evaluering er nyttig.

6 Relevant forskning

Her omtales et utvalg av relevant forskning på området.

6.1 Rapport: Lesbarhet av trykt tekst for svaksynte

En NTNU-rapport fra 2016 har sett på en rekke parametere for god lesbarhet for svaksynte, inkludert kontrast.

6.1.1 Vurdering

Rapporten er interessant i henhold til metode og resultat, men ikke direkte anvendbar her siden den kun omtaler trykksaker, og det vises til at opplevelse av kontrast med luminans (som med selvyssende skjermer) oppfattes forskjellig sammenlignet med illuminans (altså flater med eksterne lyskilder).

Arbeidet sett kontrast i en direkte sammenheng med lesbarhet av tekst der også flere andre aspekter spiller inn, som polaritet, skriftstørrelse og skrifttype. Fremgangsmåten er særdeles interessant i og med at det kun brukes (subjektive) brukervurderinger der hver informant har sin egen forståelse av hva det vil si å ha god/tilstrekkelig kontrast.

6.2 Rapport: Undersøkelse av synsforhold ved billettautomater og informasjonstavler

I en annen NTNU-studie fra 2013 ble det blant annet testet billettautomater, storskjermer og skilting ute i felten med den hensikt å måle lesbarhet for personer med nedsatt syn. Nersveen viser til at målinger av skjermkontrast i felten ofte vil være støy-befengt på grunn av variasjoner i strølyset gjennom skjerm og reflekterende klær (avsnitt 3.2). Videre vil det lett kunne oppstå variasjon i luminansmålinger av små områder/felter fordi dette krever at luminansmålerets minste blendeåpning brukes, som igjen fører til at apparatet blir svært følsom for bevegelse (3.2).

I utprøvingen av billettautomatene ble det kombinert luminansmåler-målinger med spørreskjema (3.2). Det er uklart om Michelsons eller Webers kontrastdefinisjon ble brukt, men kontrastberegningen gir svært lite informasjon i de fleste tilfellene uansett fordi svart skrift på en forholdsvis lys bakgrunn ga som oftest resultatet -1. I spørreskjema ble det spurt om hvor lett forsøkspersonen trodde det var å bruke skjermbildet.

41 Nersveen og Johansen. Lesbarhet av trykt tekst for svaksynte. NTNU, 2016
42 I rapporten defineres positiv kontrast som mindre prosentuell sorthet i forgrunn enn i bakgrunn, dvs. ensbetydende med negativ polaritet ellers brukt i forskningen og i ISO 9241; derfor brukes her lyst/mørkt for å unngå forvirring. Negativ kontrast defineres i rapporten som større prosentuell sorthet i forgrunn enn i bakgrunn, dvs. ensbetydende med positiv polaritet; derfor brukes det her mørkt/lyst.
43 Dette er en motsetning til det som er nevnt i ISO/TR 22411:2008, avsnitt 8.6.4
44 ISO/TR 22411:2008, avsnitt 8.6.4
Evalueringen av skilting ble gjennomført ved hjelp av et spørreskjema som spurte etter faktorer som skriftstørrelse, kontrast, fargekombinasjoner o.l. med svarmulighetene «dårlig», «middels» og «god» (3.3).

Storskjermbildene ble testet i en labsetting med oppgaven å lese så mye som mulig på skjermen der tekst ble vist i mange ulike skriftstørrelser (3.4). Testen ble gjennomført med ulike horisontale belysningsstyrker i rommet målt 0,75 m over gulvet, samt ulike leseavstander, med registrering av den minste størrelsen av skrift forsøkspersonen kunne lese.

6.2.1 Vurdering

Studien er dessverre noe begrenset på grunn av en liten testpopulasjon, men er interessant fordi objektiv kontrastmåling blir kombinert med subjektiv brukerutprøving i form av spørreskjema. Som Nersveen poengterer forventes en større variasjon av måleverdier, både objektive og subjektive, på grunn av sammenspill av mange faktorer man stort sett ikke har kontroll over ute i felten. Derfor bør testpopulasjonen økes. Der det er mulig bør oppgaver benyttes hvis suksess lett kan måles (f.eks.: les ordet), framfor å spørre om eksempelvis tilfredshet eller forventning.

6.3 Annen forskning om polaritet og subjektive vurderinger

I en studie fra 2009 ble det påvist at polaritet ikke har noe å si for lesbarhet på skjerm46. I følge studien er det snarere slik at effekten av god lesbarhet med positiv polaritet mest sannsynlig kan føres tilbake til høy skjermluminans og altså ikke polaritet.

Et annet arbeid fra samme år har undersøkt kontrast i bilder, der ulike algoritmer for kontrastberegning ble sammenstilt med subjektive evalueringer47. Disse foregår i en standardisert labsetting da betrakterne bruker sin egen forståelse av hva kontrast er og gir en skår på en skala fra 0 (lavest) til 100. Målet var å komme frem til egnede algoritmer som etterligner subjektive vurderinger.

Beslektet med dette er en studie med temaet subjektiv kontrast i bilder i ukontrollerte omgivelser48. I studien er ovenfor nevnte skala redusert til 10. Videre slår studien fast at forskjellen på den subjektive evalueringen mellom labsetting og ukontrollerte omgivelser ikke er signifikant, men viser samtidig til at de subjektive rapporteringene er mindre korrelerte med ulike objektive metrikker.

6.3.1 Vurdering

At ulike studier kommer til ulike resultater når det gjelder polaritet tyder på at temaet er ganske komplekst, og at minst én av studiene har svakhet. Så her må mer metodisk god forskning til før man eventuelt kan konkludere.

Hovedbudskap av studiene vedrørende subjektive vurderinger er at man kan få gyldige resultater selv om disse gjennomføres utenom labben.

7 Ekspertanbefalinger

Ekspertuttalelsene er gjengitt i vilkårlig rekkefølge.

For tidligere rådgiver i Hjelpemiddelsentralen i Sør-Trøndelag, avdeling Syn, Bjørn Nygård, må gode skjermkontraster først og fremst ses i kontekst data skjerm og arbeidsplass. Et eksempel

46 Buchner, Mayr, Brandt. «The advantage of positive text-background polarity is due to high display luminance». Ergonomics Vol. 52, No. 7, July 2009, 882-886
47 Simone, Pedersen, Hardeberg, Rizzi. «Measuring perceptual contrast in a multi-level framework». IS&T/SPIE Electronic Imaging, 72400Q-72400Q, 2009
48 Simone, Pedersen, Hardeberg. «Measuring perceptual contrast in uncontrolled environments». IEEE Visual Information Processing (EUVIP), 2010
her er baklys når dataskjermen er vendt mot vinduet. Hva som er tilstrekkelig kontrast er høyst individuelt, slik at det ikke kan gis et fasitsvar. Nygård mener dog at det er viktig ikke å henge seg opp i tall og prinsipper; skjermen bør fortrinnsvis prøves ut individuelt. «God oppløsning» er i følge ham det viktigste. Kontrast og kontrastmålinger har sine begrensninger, mener han basert på over 20 år med erfaring og over 100 ulike utprøvinger. For eksempel er god kontrast ikke mye til hjelp for personer med kikkertsyn. Et prinsipp gir han allikevel: Jo mindre skjerm, desto bedre bør kontrasten være.

For tidligere grafisk designer og industridesigner Ruedi á Porta henger måling av kontraster på skjerm og lesbarhet tett sammen. En annen viktig parameter for lesbarhet er skjermens oppløsning, noe som gir seg utslag i netto-strektykkelse, som er den vist på skjermen. Denne kan derfor være en del tynnere enn strektykkelsen den designeren har valgt. Det er et viktig poeng at skalering av skrift i kombinasjon med kantutgjevning, såkalt font smoothing og anti-aliasing, gjør at skriften blir gråere og dermed dårligere lesbar med høyere oppløsning. Med liten skrift stiger derfor kravene til kontrast.

Førsteamanuensis ved NTNUs Institutt for vareproduksjon og byggteknikk, Jonny Nersveen, anbefaler en to trinns prosess for måling av kontrasten: En gang uten forstyrrelser fra omgivelsen, og en gang for å måle refleksjonene fra omgivelsene, men begge i en labsetting, det vil si et mørkt rom. Nersveen er klar på at denne prosedyren ikke fanger opp alle persepjonelle reaksjoner en seende måtte ha, men han understreker viktigheten av at innkjøpere av utstyr må vurdere at de kan virke bedre med hensyn til egenkontrasten og evnen til å bevare kontrasten i utplassert stand. For utregning av kontrasten anbefaler han å bruke Webers definisjon av skjermens egenkontrast \(C_S = (L_F - L_B) / L_B \), der \(L_F \) og \(L_B \) er henholdsvis tekst-/forgrunnsluminans og bakgrunnsluminans. Luminansene måles ved hjelp av luminansmåler av netto-strektykkelen av skjermen. For omgivelsene kan det være viktig å ta hensyn til den diffuse belysningen og eventuelle refleksjoner fra omgivelsene. For bruk av skjerm Ørslev anbefaler han å bruke Webers definisjon. For en skjerm som har en luminans \(L_F \) og \(L_B \) kan det defineres en helhetskontrast \(C = C_S \cdot D \), der \(D \) er en blendingsgrad av skjermens luminans. Helhetskontrasten blir da \(C = C_S \cdot D \)

Førsteamanuensis Ole Lund ved Institutt for design, NTNU, har spesialisert seg på typografi og informasjonsdesign. Han påpeker at kontrast bare er én av mange faktorer når det gjelder lesbarhet. Han har videre vist til en del svagheter og feil med relatert forskning i sin avhandling.

49 På engelsk: darkroom
og mener at mange av forskningsresultatene blir feilaktig brukt i ukritiske anbefalinger50. Han etterlyser både forsiktighet i tolkning av resultatene, mindre rigiditet i anvendelse og mer fleksibilitet.

Dosent Magne Helland ved HSNs Institutt for optometri, radiografi og lysdesign arbeider først og fremst med synskrevende arbeid ved dataskjermer og tar forbehold om begrenset erfaring med fargekontrast. Han peker derimot til en rekke studier som har undersøkt relaterte mikrovariabler som synskomfort, synsergonomi og produktivitet. Noen faktorer er ganske perifere til lesbarhet, som luftfuktighet i omgivelsene, blankfrekvens, eventuelle refleksjer i skjermen, hvordan skjermen er plassert med hensyn på blikkvinkel, stress på arbeidsplassen, og kontorlandskap versus enkeltmannskontor. Utøver det anbefaler han en fremgangsmåte for kontrastmålinger som er lik den Nersveen beskriver.

7.1 Vurdering

Ekspertene kommer fra ulike fagfelt og har ulike innfallsvinkler, og derfor er det ingen overraskelse at det er stor variasjon i svarene. Nersveen har et poeng i at innkjøpere (og tilsynsmyndighetene) bør kunne sammenligne kontrasten på tvers av skjermene, og her vil en labmåling som den han skisserer, være sentral. En teknisk løsning bør spesifiseres i henhold til teoretisk kontrast og det vi kan omtale som sløringskontrast. Begge kan måles som beskrevet ovenfor. I tillegg bør en brukerutprøving belyse om kontrasten fortsatt er tilstrekkelig når løsningen er utplassert i felten og fange opp ikke-tekniske parametre. Evalueringen bør inkludere personer med nedsatt syn.

8 Brukerinnspill

Sammenlignet med kanalens popularitet var det få reaksjoner på de to innleggene, men begge er i skrivende stund med henholdsvis 48 og 119 godt over gjennomsnittet på 30 for 2017, så saken engasjerer mer enn ellers. De følgende eksemplene ble gitt (noen uten mulighet for verifisering av forfatterne):

• Hvit skrift på rød bakgrunn i det grafiske grensesnittet av elektroniske programguider på tv (Altibox, Canal Digital)
• Hvit tekst på hvit bakgrunn i en vignett på NRK 1
• Grå, tynn skrift på hvit bakgrunn på noen nettsider (Sanguine Brasserie, Argent Restaurant)
• Grå/svart skrift på grå bakgrunn på elektroniske prislapper på butikker

I forbindelse med første kulepunkt er kommentaren fra en grensesnittdesigner oppsiktsvekkende. Han forklarer dårlige grensesnittvalg med at mye av teknologien er patentert, og at det gir færre gode valgmuligheter.

8.1 Vurdering

Det var ikke overveldende reaksjon på innleggene våre, og eksemplene som kom inn var stort sett kjent fra før av. Kommentaren vedrørende teknologipatenter som hindrer gode løsninger var derimot meget interessant. Om denne påstanden viser seg til å stemme, er dette noe som bør behandles av tilsynsmyndighetene og politikerne.

50 Lund. Evidence-based typography or easy-going operationalism? International Conference on Typography and Visual Communication, 2002
9 Anbefaling og begrunnelser

Basert på vurderingene av relevante standarder, relatert forskning, uttalelser av eksperter, samt brukerinnspill gis følgende anbefaling for måling av skjermkontraster. Begrunnelsene for anbefalingene er skrevet med innrykk.

Det er den opplevede, subjektive kontrasten som er fasitsvar på spørsmålet om skjermkontrasten til en teknisk løsning er tilstrekkelig / god nok for «folk flest». Denne nettokontrasten påvirkes av en rekke faktorer som materialvalg, skjerminnstillinger, design- og utformingsvalg, lyssetting og -skjerming og andre tiltak for å unngå uønskede refleksjoner, og ikke minst eventuelle variasjoner av synsfunksjonen hos det enkelte individ. Dette brede spekteret av faktorer kan kun delvis estimeres ved hjelp av objektive kriterier og bør derfor suppleres med subjektive målinger, det vil si brukerevalueringer.

En kontrastmåling bør derfor være tredelt og bestå av to objektive og en subjektiv verdi.

Verdiene skal dokumentere både skjermens egenskaper fra fabrikken og forholdene der skjermen er oppstilt. Førstnevnte skal gi innkjøpere (og tilsynsmyndighetene) anledning å sammenligne flere skjermer på en uavhengig måte, og målet med sistnevnte er å fange opp aspekter forårsaket av utplassering, lyssetting og refleksjoner. Tilnærmningen imøtekommer videre kravene til alle ekspertene som ble intervjuet.

Den objektive delen bør gjennomføres i en labsetting under kontrollerte forhold.

Dette for pålitelige, repeterbare resultat.

En objektiv kontrastmåling bør bestå av to luminansmålinger, en for høy luminans \(L_h\) og en for lav luminans \(L_l\). Luminans bør måles ved hjelp av et luminansmåler\(^51\) plassert 75 cm fra skjermen. Luminansmeteret bør være sentrert over skjermen og rettet mot den slik at normalen gjennom skjermens midtpunkt går i rett linje gjennom luminansmålerets linse.

Skjermer avstanden på 75 cm følger anbefalingen fra ISO 9241-303 og -306 og er ikke langt fra W3Cs anbefaling på 71 cm. Den er særlig beregnet på selvbetjeningsautomater der brukeren interagerer med skjermen, men kan også observeres i forbindelse med svaksynte i møte med informasjonstavler, se Nersveens studie av tavler på Oslo S. Oppsettet følger ellers anbefalingene fra ISO 9241-305.

Første objektive måling bør foregå i et mørkt rom (illuminasjon/belysningsstyrke mindre enn 1 lux; mørke, absorberende overflater osv.). Illuminasjon bør måles med et luxmåler\(^52\) horisontalt i rommet, i en høyde av 0,75 m over gulvet.

Dette følger anbefalingene til Nersveen og Helland.

En luminansverdi bør gjelde en flate med homogen, statisk luminans (og homogen farge). Det bør velges flater som er store nok til at luminansmålerets målingsfelt ligger fullstendig innenfor flaten slik at apparatet viser en konstant verdi.

Denne anbefalingen er til for å unngå variasjoner i målingene.

Kontrasten bør definieres som kontrastforhold\(^53\) \(L_h/L_l\), det vil si forhold mellom høy luminans og lav luminans.

Dette er definisjonen brukt i ISO 9241, ANSI og W3C.

Resultat for første objektive måling blir da den maksimale kontrasten \(C_{\text{max}}\).

Andre objektive måling bør gjennomføres som første måling, men i et rom med diffus belysning på 1000 lux.

\(^{51}\) Eksempler er Konica Minolta LS-150 og LS-160
\(^{52}\) Eksempler er Konica Minolta T-10A og T-10MA
\(^{53}\) På engelsk: contrast ratio
Dette følger igjen anbefalinger til Nersveen.

Resultat blir da den noe reduserte kontrasten C_{1000}.

Den subjektive målingen bør gjennomføres ved hjelp av en brukerutprøving.

Dette er i samsvar med ITU-T P.800.2 og P.910, samt ITU-R BT.500-13, og videre inspirert av Nygård, Tømta og Nersveen.

Evalueringen bør foregå i felten, der en gitt automat er utplassert, med relevante skjermbilder. Mellom 15 og 20 informanter bør delta i testen, og halvparten av disse bør ha en eller annen moderat form for redusert synsfunksjon.

Brukerantallet følger anbefalingen P.910. I utgangspunkt gjelder «jo flere, desto bedre», men grensen bør dras ved ca. 20 for å holde kostnadene nede. Involvering av brukere med redusert synsfunksjon anbefales for å øke variasjonen i svarene.

Den enkeltes bakgrunn og egenskaper bør dokumenteres. Hver informant bør gi skårer for faktorene kontrast (k), lesbarhet (l), refleksjoner (r) og blending (b). Følgende spørsmål bør stilles, ett om gangen, og uten mulighet for å se tidligere svar, i denne rekkefølgen:

1. Hva er din vurdering av kontrastene på skjermen på følgende skala?
2. Hva er din vurdering av lesbarheten av det som vises på skjermen på følgende skala?
3. Hva er din vurdering av refleksjonene på skjermen på følgende skala?
4. Blir du blendet av skjermbildet eller deler av skjermbildet?

For svaret bør det benyttes en kontinuerlig glidebryter med synlig inndeling jevnt fordelt over skalaen. For Spørsmålene 1 og 2 bør inndelingen være:

- «meget dårlig»
- «dårlig»
- «middels»
- «bra»
- «meget bra»

For spørsmål 3 bør inndelingen være:

- «meget forstyrrende»
- «ganske forstyrrende»
- «synlige, men ikke forstyrrende»
- «neste ignorerbare»
- «helt ignorerbare»

For spørsmål 4 bør inndelingen være:

- «ja, i meget høy grad»
- «ja, i moderat grad»
- «vet ikke / ingen formening»
- «nei, i liten grad»
- «nei, overhodet ikke»

Den underliggende skalaen bør gå fra 0 (første alternativ) til 10 (siste alternativ).

Alle disse anbefalingerne, med unntak av formuleringen av spørsmålene, er i henhold til P.910. Den kontinuerlige skalaen fra 0 til 10 kopierer fremgangsmåten i 2010-artikkelen 23.

Alle enkelskårer bør inngå i beregningen av henholdsvis MOS$_k$, MOS$_l$, MOS$_r$, og MOS$_b$, altså én for hver faktor nevnt tidligere. Det bør legges ved fullstendig dokumentasjon for testoppsett og en statistisk analyse bestående av antall deltagere, arithmetisk middelverdi og 95%-konfidensintervall.

MOS er anbefalt i P.800.2, og dokumentasjonen er omtalt i BT.500-13.

Helhetsinntrykket for kontrasten, og samtidig resultatet for den subjektive målingen, C_{sub}, bør så regnes ut som gjennomsnitt av MOS$_k$, MOS$_l$, MOS$_r$, og MOS$_b$. Resultatet er altså et tall mellom 0 og 10, der 10 betyr utmerket kontrast (og ikke blending heller).

Denne fremgangsmåten er valgt fordi de enkelte MOS-verdiene har en verifiserende relasjon til hverandre. MOS$_b$ er til for å hindre at skåren blir høy i tilfellet kontrasten er for stor.

9.1 Anbefaling for utregning av minimumskontrast, $L_{h,min}$ og terskelverdier

Det vises til ISO 9241-303, Annex D for en god anbefaling når det gjelder utregning av minimumskontrast og minste luminans $L_{h,min}$ som gir en god/tilstrekkelig leseopplevelse i forhold til L_i. Ved å kombinere ligningene D.9 og D.11 blir minimumsluminansen:

$$L_{h,min} = k_a \cdot (2,2 + 4,84 \cdot L_l^{0,65}) \cdot (L_l + L_d + L_s) - L_d - L_s$$

med de følgende parametre:

- L_h: høy luminans
- L_l: lav luminans
- k_a: aldersavhengig korreksjonsfaktor (se tabell D.1)
- L_d: luminans forårsaket av diffus belysning
- L_s: luminans forårsaket av direkte lyskilder som spotter og solen54

Dette er en ganske kompleks formel, men til gjengjeld tar den hensyn til en generell reduksjon i synsfunksjonen med alderen, og til både diffuse og direkte refleksjoner. Med andre ord kan det ikke gis et tall som terskelverdi for tilstrekkelig kontrast sånn som WCAG gjør med sitt krav om én konstant minimumskontrast på 4,5 (Level AA). Den er snarere avhengig av alle nevnte parametre og vil dermed variere betraktelig.

Det må nevnes at formelen også har noen begrensninger. For eksempel fanger den ikke opp eventuelle nedsettelser av synsfunksjonen, og ISO 9241-303 nevner videre at $L_{h,min}$ også er avhengig av skjermstørrelse.

Det må også sies til slutt at det bør finnes en maksimal kontrast og maksimal luminans $L_{h,max}$ for en god leseopplevelse uten blending, men her har forfatterne ikke funnet relevant forskning eller anbefalinger.

10 Konklusjon

Denne rapporten har tatt for seg temaet hvordan måle kontraster på skjerm på en pålitelig og effektiv måte. Dette er en høyst aktuell problemstilling ettersom flere og flere skjermer blir brukt for informasjonstavler, selvbetjeningsautomater og personlige enheter.

54 På engelsk: specular reflection og specular luminance
I grunn og bunn dreier alt seg om problemstillingen hvordan man mest mulig objektivt kan måle kontrastintrykket «folk flest» har med en gitt skjerm. Som denne rapporten viser, er dette en forholdsvis innviklet affære på grunn av kompleksiteten av synsfunksjonen, brukernes diversitet, bredden på anvendelsesområdene og spennvidden av de ulike faktorene som påvirker slutteresultatet.

Vi mener skjermens egenskaper og motstandsdyktighet mot refleksjoner bør inngå i en kontrastmåling. Dette for å tilrettelegge for rettferdige sammenligninger av skjermer. I tillegg bør målingen fange opp faktorene forårsaket av utplassering, omgivelsene og andre, overveiende subjektive faktorer. Vi har beskrevet en metode bestående av to objektive målinger og en brukerevaluering. Alt i alt er denne tilnærmingen forholdsvis ressurskrevende og kostbar med dagens teknologi. Til gjengjeld vil den gi et bedre resultat enn én enkel måling. Det er også en fordel at brukeropplevelsen gjenspeiles i høyere grad i målingene enn det som hittil har vært tilfellet.