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Abstract  9 

The aim of this study was to evaluate the predictive fit of probability distributions to 10 

annual maximum flood data, and in particular to evaluate (i) which combination of 11 

distribution and estimation method gives the best fit and (ii) whether the answer to (i) 12 

depends on record length. These aims were achieved by assessing the sensitivity to record 13 

length of the predictive performance of several probability distributions. A bootstrapping 14 

approach was used by resampling (with replacement) record lengths of 30 to 90 years (50 15 

resamples for each record length) from the original record and fitting distributions to 16 

these sub-samples. Subsequently, the fits were evaluated according to several goodness of 17 

fit measures and to the variability of the predicted flood quantiles. Our initial hypothesis 18 

that shorter records favor two-parameter distributions was not clearly supported. The 19 

ordinary moments method was the most stable while providing equivalent goodness of fit.  20 

 21 

Keywords: Design Floods, Flood Frequency Analysis, Probability Distributions, 22 

bootstrapping, reliability, stability 23 

  24 



 

Introduction 25 

The motivation for this study is the need to revise guidelines for design flood estimation 26 

in Norway. The design flood estimates form the basis for hazard management related to 27 

flood risk and is a legal obligation when building infrastructure such as dams, bridges and 28 

roads close to water bodies. Flood inundation maps used for land use planning are also 29 

based on design flood estimates. Existing guidelines are given in Midttømme et al. (2011) 30 

and Castellarin et al. (2012), and summarized in Table 1. The approach is based on using 31 

annual maximum floods, and the recommendations depend on the length of the local data 32 

record. A minimum of 30 years of local observations is required for local flood frequency 33 

analysis and at least 50 years of data should be available to use three-parameter 34 

distributions. The Gumbel (two parameters) and GEV (three parameters) are the preferred 35 

distributions. More recently Glad et al. (2015) found that the Generalized Logistic is the 36 

preferred distribution for annual maximum floods in small catchments. 37 

 38 

Table 1. Guidelines for flood frequency analysis according to data availability 39 

Data availability Procedure for 

calculation of 

the index flood 

Procedure for calculation of growth curve for 

target return periods between Q200 and Q1000 

>50 years Not used Calculated from 2- or 3-parameter distribution, 
based on observed series 

30-50 years Not used Calculated from 2-parameter distribution, based 
on observed series 

10-30 years Calculated from 
observed series 

Calculated by analysis of other 
long series in the area 

< 10 years  Calculated by analysis of other long series in the 
area 

None  Use of regional flood frequency curves 
 40 

Other guidelines for flood frequency estimation include USA (Stedinger and Griffis, 2008 41 

and 2011), Australia (Ball et al., 2016), and Europe (Castellarin et al., 2012). The four 42 

distributions that are most commonly used for annual maximum floods are the 43 

generalized extreme value (GEV) distribution (Australia, Austria, Cyprus, Germany, 44 



 

France, Italy, Lithuania, Slovakia, Spain) with the Gumbel distribution (Finland, Greece) 45 

as a special case, the generalized logistic (UK) and the log-Pearson III (United States, 46 

Australia, Lithuania, Poland, Slovenia). Two-component Gumbel distributions are 47 

recommended in Italy and Spain in order to account for different flood generating 48 

processes. 49 

Four methods are commonly used to estimate distribution parameters: ordinary moments, 50 

linear moments, maximum likelihood and Bayesian. The method of linear moments has 51 

been recommended for its robustness with small sample sizes (Hosking et al., 1990). In 52 

recent years Bayesian flood frequency estimation has got an increased attention in the 53 

research community (e.g. Coles and Tawn, 1996; Gaal et al., 2010; Gaume et al., 2010; 54 

Renard et al., 2013), and is recommended in the operational guidelines in Australia (see 55 

chapter 2.6.3 in Ball et al., 2016). The benefit of the Bayesian method is the flexibility in 56 

model formulation, the possibility to include prior and/or regional knowledge in the local 57 

estimation, and the possibility to account for errors in rating curves (Ball et al., 2016).  58 

 59 

The recommendations provided in the national guidelines are in most cases based on 60 

systematic evaluations. Renard et al. (2013) provide a short review of evaluation 61 

frameworks and distinguish between simulation based and data based frameworks. In the 62 

simulation based approach, the true distribution is known, and Monte-Carlo-generated 63 

samples from the true distribution are used to assess the performance of different 64 

distributions and/or parameter estimation methods (e.g. Hosking et al., 1985). It is 65 

especially useful for assessing robustness (e.g. Stedinger and Cohn, 1986) and evaluating 66 

the estimates of standard errors (e.g. Stedinger et al., 2008). For data based approaches, 67 

the true distribution is not known, and the aim of the evaluation is to assess if the 68 

observations might be realizations of the estimated distribution. Goodness of fit tests 69 

combined with split-sample or cross-validation are used in order to assess the predictive 70 



 

performance of the fitted distribution. The goodness of fit criterions measure the 71 

reliability, i.e. how well the model fits to (independent) data. Renard et al. (2013) 72 

introduced “stability” as an additional criterion. It measures the sensitivity of the design 73 

flood estimates to different subsets of data. Design flood estimates that depend strongly 74 

on the underlying data might lead to re-assessment of the design flood. This can for 75 

example result in large costs for dam owners as the design of dams has to be re-assessed 76 

every 20 years. Stability is therefore an important criterion in order to choose between the 77 

most reliable models. 78 

The aim of this study is to perform a systematic evaluation of the predictive performance 79 

of local flood frequency distributions and estimation methods applied to annual maximum 80 

data. The results will later be used as a foundation for recommendations in new 81 

guidelines.  82 

In this study we wanted to answer the following research questions:  83 

(i) Which combination of distribution and estimation method best fits the data? 84 

(ii) Does the answer to (i) depend on local data availability?  85 

To answer these questions we set up a test bench for local flood frequency analysis using 86 

data based evaluation methods inspired by Renard et al. (2013) by using a bootstrapping- 87 

approach where we systematically evaluated how the predictive performance depends on 88 

record length. The final aim is to update the flood frequency analysis guidelines for 89 

Norway. 90 

 91 

Data 92 

We used annual maximum floods from 529 streamflow stations of the Norwegian 93 

hydrological database “Hydra II”. We present here a brief summary of the dataset and 94 

associated quality control methods, which are described in detail in Engeland 95 

et al. (2016). All data influenced by river regulations were removed. In addition, quality 96 



 

controls of the data including quality assessment by the field hydrologist and of the rating 97 

curve for high flows, were used to select flood data with a sufficient quality. For all 98 

gauging stations, we extracted a set of catchment properties (for details see Engeland et 99 

al., 2016). Figure 1 shows the histogram for record length, catchment areas, lake 100 

percentage, mean annual temperature and precipitation and the rain contribution to floods. 101 

Figure 2 presents a map of mean annual precipitation, temperature and floods and the rain 102 

contribution to floods. All climatological descriptors are based on the gridded 103 

temperature and precipitation data product in SeNorge (www.senorge.no). In this study 104 

we used 280 stations which have at least 30 years of record. Only 103 stations have more 105 

than 50 years of data. The catchment area spans between 0.5 and 20300 km2 with 106 

163 km2 as the median. The presence of lakes influences flood sizes, and 494 of the 107 

catchments has more than 1 % of the catchment area covered by lakes. For these 108 

catchments the median lake percentage is 6.5 %. The mean annual precipitation ranges 109 

from 400 to 3140 mm with 986 mm as the median. We see a strong west-east gradient 110 

with the highest precipitation on the west coast. The mean annual temperature ranges 111 

from -3.75 to 7.62 oC with 0.21 oC as median. The temperatures are influenced by 112 

elevation as well as latitude (temperature decrease with elevation and longitude). The 113 

relative contribution of rain was estimated by calculating the ratio of accumulated rain 114 

and snowmelt in a time window prior to each flood and then averaging these ratios over 115 

all floods (for details see Engeland et al., 2016). Rainfall processes dominate most coastal 116 

catchments and none of the catchments are completely dominated by snowmelt. A 117 

majority of stations, i.e. those where contribution from snow melt is important, show a 118 

prevalence of floods in spring and very few floods during winter. The catchments 119 

dominated by rainfloods do not show a clear seasonal pattern by frequently displaying 120 

floods in summer and winter. Both the flood records and the catchment properties 121 

datasets (catchment area, record length, mean annual runoff and several other catchment 122 

descriptors) are available as supplementary materials. 123 



 

 124 

 125 

Figure 1. Histograms showing the distribution of record lengths, catchment area, lake percentage, 126 

mean annual precipitation and temperature; and the relative contribution from rain to floods. 127 
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 140 

Figure 2. Maps showing the mean annual precipitation, temperature and flood (per unit area). The 141 

last map shows the contribution of rain precipitation to floods (index of flood generating 142 

processes). 143 

 144 

Methods 145 

Distributions  146 

We evaluated five probability distributions: Generalized extreme value (GEV), Gumbel, 147 

Pearson III, Gamma and the Generalized Logistic (GL) distribution. The equations for the 148 

M. a. flood (l/s/km2)

< 300
< 600
< 900
< 1200
< 1500

M. a. precipitation (mm)

< 800
< 1200
< 1600
< 2000
< 2400
< 2800
< 3200

M. a. temperature (oC)

< -2
< 0
< 2
< 5
< 8

Rain contribution

< 0.2
< 0.4
< 0.6
< 0.8
< 1



 

quantile functions and the probability density functions (pdf) are provided in the 149 

supplementary materials, below we provide the equations for the distribution functions. 150 

See also Bezak et al. (2014) for a recent overview. 151 

Generalized extreme value distribution 152 

The extreme value theorem is also known as the Fisher-Tippet theorem says that the 153 

maximum value from a sample of independent and identically distributed (iid) random 154 

variables follows the GEV distribution (e.g., (Embrechts et al., 1997; Fisher and Tippett, 155 

1928) 156 

���� = ���� 	− �1 −  ����� ��� �⁄ ���� �−��� �− ���� ��  ≠ 0 = 0       (1) 157 

Where m is a location parameter, α scale parameter and k a shape parameter. Defined on 158 

the region 1 − �� − �� �⁄ > 0. The mean exists if k > -1.0, and the variance if k > -0.5. 159 

The shape parameter k is important in the GEV distribution as it shapes the tail of the 160 

distribution. A negative value indicates a heavy tail, whereas positive values describe a 161 

light tail and an upper limit for the variable x. 162 

Gumbel distribution 163 

The Gumbel distribution is a special case of the GEV distribution (shape parameter k = 0) 164 

and is written as: 165 

���� = ��� �−��� �− ���� ��         (2) 166 

Where m is a location parameter and α a scale parameter. 167 

This distribution is often recommended for small datasets. Maximum values of random 168 

variables, with an exponential like upper tail (e.g. Normal, lognormal, Gamma), will 169 

theoretically follow a Gumbel distribution. 170 



 

Generalized logistic 171 

The Generalized logistic (GL) distribution (Hosking and Wallis, 1997) is recommended 172 

for flood frequency estimation in the United Kingdom (Robson and Reed, 1999) and was 173 

recently recommended for predicting floods in small ungauged catchments in Norway 174 

(Glad et al., 2014). The distribution is a re-parameterization of the log-logistic 175 

distribution (Ahmad et al., 1988), and has some similarities to the GEV distribution as 176 

shown in Equation 3: 177 

���� = �	1 + �1 −  ����� ��� �⁄ ���
�1 + ��� �− ���� ����  ≠ 0 = 0       (3) 178 

Where m is a location parameter, α scale parameter and k a shape parameter. As for the 179 

GEV distribution, the GL distribution has an upper bound if k > 0. This is the case only 180 

when the skewness is negative whereas for the GEV distribution, there is also an upper 181 

bound for positive skewness, i.e. L-skewness < 0.17 (Robson and Reed, 1999). Thus for 182 

flood data we could expect the shape parameter to be between -0.5 and 0.2. 183 

Gamma distribution 184 

The gamma distribution is a flexible two-parameter distribution often used in 185 

environmental sciences. 186 

���� = �!���" �, ���          (4) 187 

Here, Γ denotes the complete gamma function and γ the lower incomplete gamma 188 

function. 189 

Pearson III 190 

The Pearson type III distributions given as: 191 

���� = �!���" �, ���� �          (5) 192 

Where m is a location parameter, α a scale parameter and k a shape parameter. For m = 0, 193 

the P3 distribution reduces to the gamma distribution. Applied to log-transformed floods, 194 



 

this distribution is recommended for flood frequency analysis in the USA (Stedinger and 195 

Griffis, 2008; Dawdy et al., 2012) and Australia (Haddad and Rahman, 2008). Prior 196 

distributions are given in Reis and Stedinger (2005) 197 

Fitting methods 198 

Three methods for fitting the distributions to observed data were used: method of 199 

moments, method of linear moments and maximum likelihood. 200 

Ordinary moments (O-moments) 201 

The method of ordinary moments means that the moments (mean, variance and skewness) 202 

are estimated based on the data and subsequently the parameters of the selected 203 

distribution are calculated based on a theoretical relationship between the moments and 204 

the distribution parameters. Two parameter distributions need the estimates of mean and 205 

standard deviation whereas the three-parameter distributions would also require an 206 

estimate of the skewness. The specific equations for each distribution used in this study 207 

are given in Bezak et al. (2014) and are also provided as supplementary materials. 208 

Linear moments (L-moments) 209 

The method of linear moments is a popular method in hydrology since it is a direct 210 

analogue to the method of moments, easy to apply and the parameter estimates are less 211 

sensitive to outliers in the data (Hosking, 1990). As for the O-moments, the linear 212 

moments are estimated from the data and subsequently the parameters of the selected 213 

distribution are calculated based on a theoretical relationship between the L-moments and 214 

the distribution parameters. The specific equations for each distribution used in this study 215 

are given in Hosking (1990), and are also provided as supplementary materials. 216 

Maximum likelihood (ML) 217 

The maximum likelihood method chooses the values of the parameters estimates that 218 

maximize the probability of the data sample. This probability is the product of the 219 

probability density function evaluated at all observations (with a common parameter set) 220 



 

and is called the likelihood function l(θ | x) of the parameters θ  given data x. The 221 

objective is to maximize this function. The likelihood-functions are specified in Bezak et 222 

al. (2014). For numerical reasons, the log-likelihood (and not the likelihood) is 223 

maximized. For distributions used in flood frequency analysis, numerical optimization is 224 

needed for estimating the parameters. For small samples, the ML estimator is known to 225 

be more biased and to give larger estimation uncertainty compared to the two moment 226 

estimators for the GEV distribution (Hosking et al, 1985, Madsen et al., 1997). It might 227 

also provide absurd estimates of the shape parameter (Martins and Stedinger, 2000). 228 

Those issues are most conveniently minimized by adding a prior likelihood for the shape 229 

parameter (Coles and Dixon, 1999; Martins and Stedinger 2000). An alternative 230 

estimation approach is suggested in Laio (2004). Finally, the shape parameter of the 231 

Pearson Type III distribution is challenging to estimate using the ML-approach (Arora 232 

and Singh, 1989). An estimation strategy is suggested in in Laio (2004).  233 

Bayesian estimation 234 

Bayes theorem combines the knowledge brought by the prior distribution and the data 235 

(through the likelihood) into the posterior distribution of parameters, whose pdf is noted 236 

p�$|��. 237 

��$|�� = &�'�()$*�+,&�'�()$*�+-'          (6)  238 

The Bayesian method might include prior knowledge that could be expert knowledge, 239 

regional information (e.g. Gaume et al., 2010; Kuczera, 1982) or historical information 240 

(e.g. Reis and Stedinger, 2005; Viglione et al., 2013). It is also possible to express the 241 

prior knowledge on the estimated quantiles, i.e. design floods (Coles and Tawn, 1996). It 242 

is also easy to extend it to non-stationary model accounting for trends or shifts in 243 

extremes (Benito et al., 2004; Benjamin Renard et al., 2013; Renard et al., 2006). The 244 

Bayesian methods allows us to easily calculate predictive distributions, confidence 245 



 

intervals, and the median or mean of return levels based on the posterior sample from the 246 

distribution of parameters (Coles et al., 2003; B. Renard et al., 2013).  247 

Evaluation methods 248 

 We followed the evaluation strategy specified by Renard et al. (2013) and evaluated 249 

goodness-of-fit according to both reliability and stability indices. Reliability evaluates 250 

how well the estimated model predicts return levels whereas stability measures to which 251 

degree the design flood estimates depend on the data used for estimation. 252 

The approach used in Renard et al. (2013) is based on a split sample cross validation test 253 

where, at each station s, each sample is in turn used for estimation and evaluation. The 254 

aim of this study is to assess performance as a function of record length l. We therefore 255 

chose a bootstrapping strategy by drawing, with replacement, 50 random samples (noted 256 

m) for each record length l sampled every 5 years between 30 and 90 years (30, 35, 257 

40…). Subsequently, for each sample, we fitted a distribution Fl,s,m , and derived the 258 

associated return levels  XT,l,s,m and evaluation scores HT,l,s,m where T is the return period. 259 

The complete original flood data at each station was used for evaluation. Results were 260 

averaged over all subsamples to obtain average scores for each record length HT,l,,s. To 261 

yield general conclusions, station-specific results were then averaged over all sites and 262 

groups of similar sites in order to obtain evaluation score HT,l, as a function of record 263 

length, Both the fitted distribution parameters and the return levels were used for 264 

evaluation as described below.  265 

Stability 266 

The stability measure is a property of the statistical model only and we can thus evaluate 267 

it for any return period, including those greatly exceeding the length of record. Here we 268 

evaluated the stability by calculating the coefficient of variation (CV) of the return levels 269 

for each site s, each resampling record length l and each return period T over all 270 

subsamples m = 1,…, 50 : CVT,l,s,. Subsequently, we calculated the average coefficient of 271 



 

variation over all sites: CVT,l. This allowed us to show CV as a function of record length 272 

for individual sites as well as averaged over several sites.   273 

Reliability 274 

Evaluation of distributions 275 

The Anderson-Darling (AD) test measures the integral of the distance between empirical 276 

and fitted cumulative distribution functions. Here �(,.,�	is the fitted distribution to 277 

subsample m for record length l at site s and �0,.is the empirical distribution at site s with 278 

n data. It places more importance on the tail of the distribution than the Kolmogorov-279 

Smirnoff test. 280 

1(,.,� = 2 , �34,5	����36,5,7	����^936,5,7	���∗���36,5,7	����;�(,.,�	���       (7) 281 

The Kolmogorov-Smirnov (KS) test evaluates how well an empirical distribution fits to a 282 

parametric one. The statistics is based on the maximum distance between the two 283 

cumulative distributions and should therefore be as small as possible: 284 

<(,.,� = =>�? *�0,.	��� − �(,.,�	���*        (8) 285 

Evaluation of thresholds 286 

Since the aim of flood frequency analysis is to assess critical design flood, it is relevant to 287 

evaluate the fitted distributions according to how well they predict thresholds.  288 

The Brier score (Brier, 1950) is commonly used for evaluating, and was used in this paper 289 

for evaluating the predicted T-years event for flood frequency distributions. The Brier 290 

score (BS) compares the predicted probability of the exceedance of a threshold >@,. 291 

(given by 1 − �(,.,�)>@,.+) to actual exceedance of the threshold by independent data 292 

(given by AB�.,C > >@,.D�: 293 

E(,.,�)�(,.,�*>@,.+ = �05∑ )1 − �(,.,�)>@,.+ − AB�.,C > >@,.D+905CG�     (9) 294 

Where >@,. is the threshold defined by a return period T and A is an indicator function that 295 

is one if �.,C > >@,.  and otherwise zero.  296 



 

The Quantile score (QS) compares observed floods �.,C to the estimated flood quantile 297 

�(,.,��� �1 − 1 H⁄ �	for a given return period T and gives the difference a low weight if the 298 

observed flood is smaller than the estimated quantile. 299 

I(,.,�)�(,.,�*H+ = J�.,C − �(,.,��� �1 − �@�K J�1 − �@� − A ��.,C ≤ �(,.,��� �1 − �@��K  (10) 300 

 301 

Since the shortest records have 30 years of data, BS and QS were evaluated for return 302 

periods up to 30 years (2, 5, 15, 20 and 30). In particular, we selected the threshold >@,.  303 

in the BS equation from the empirical distribution of the complete dataset. For each 304 

station we applied the Hazen plotting position in Equation 11 (Makkonen, 2008), where i 305 

is the rank of the observation I�C� , n is the number of observations and MN′�C� is the 306 

estimated cumulative probability: 307 

MN′�C� = C�P.R0              (11) 308 

 309 

Evaluation of empirical L-moments 310 

The L-moment ratio diagram compares sample estimates of τ2, τ3 and τ4 (standard 311 

deviation, skewness and kurtosis) to the theoretical population for parametric 312 

distributions by plotting the relationship between τ4 and τ3 for three parameter 313 

distributions and between τ3 and τ2 for two parameter distributions. It was introduced by 314 

Hosking (1990), and approximations for several distributions are given in Hosking and 315 

Wallis (1997). The advantage of this evaluation is that we visually compare how several 316 

theoretical distributions fit to our data sample, and it has become a standard tool in 317 

regional flood frequency analysis (Peel et al., 2001). 318 

Results 319 



 

Computational methodology 320 

For the application of the Bayesian approach, we specified the priors for the shape 321 

parameters in the GEV and GL distributions to be Normally distributed with mean and 322 

standard deviations specified as N(0, 0.2) and N(-0.15, 0.175) respectively. The prior for 323 

the GEV parameters is suggested in Martins and Stedinger (2000), whereas the prior for 324 

the GL parameters were obtained from scatter plots of the L-moment skewness for flood 325 

data in UK (Robson and Reed, 1999). 326 

Based on the methods presented above, our research approach was highly multi-327 

dimensional and involved saving a high amount of data. For this reason, we chose to save 328 

the input and model data into a NetCDF database. The full computational chain was 329 

carried out with the R software (R Core Team, 2016)). The following libraries were used. 330 

RNetCDF (Michna and Woods, 2016) for managing the NetCDF files, doSNOW  331 

(Revolution Analytics and Weston, 2015a)  and doMC for parallel backend on Windows 332 

and Linux respectively, foreach (Revolution Analytics and Weston, 2015b) for parallel 333 

computation. In addition the following libraries were used for fitting the distributions: evd 334 

(Stephenson, 2002), nsRFA (Viglione, 2014), fitdistrplus (Delignette-Muller, and 335 

Dutang 2015), ismev (Heffernan and Stephenson. 2016) and pracma (Borchers, 2017). 336 

Two packages were created to facilitate the re-usability of this work. Code and data are 337 

available at https://github.com/NVE/FlomKart and https://github.com/NVE/fitdistrib. 338 

Given the size and multidimensionality of both NetCDF files (estimated parameters and 339 

goodness-of-fit indices), an easy-to-use visualization tool was required to analyse the 340 

data. The R package Shiny (Cheng et al., 2016) was used to create a browser-based 341 

graphical user interface. In addition the following libraries were used to create the 342 

graphical interface: shinyBS (Bailey, 2015), leaflet (Cheng and Xie, 2016), DT (Xie, 343 

2015) and formattable (Ren and Russell, 2015). 344 



 

The code of this visualization tool was organized as in R package available there: 345 

https://github.com/NVE/FlomKart_ShinyApp. For every station, key plots can be drawn 346 

to compare the modelled probability distribution to the empirical distribution of data, and 347 

the evaluation criterions are shown for each station. Since we in this study were interested 348 

in extracting general conclusions, we chose to present results aggregated over all stations. 349 

 350 

Station averaged results 351 

We starts by presenting the evaluation of reliability as average values over all stations and 352 

subsamples. The reliability measures, i.e. Kolmogorov-Smirnov test statistics, Anderson-353 

Darling test statistics, Brier score, and quantile scores (QS), are shown in Figures 3-6 354 

respectively. All 280 stations with more than 30 years of data were used, and the 355 

reliability measures are plotted as a function of the length of the sub-sample used for 356 

estimating distribution parameters. This allowed us to evaluate how the performance 357 

depends on the length of the available data. We made one subplot for each distribution 358 

and one line for each estimation procedure. In these plots, the lowest value indicates the 359 

best performance.  360 

 361 

Figure 3. Evolution of KS, as a function of length of record, averaged over all stations with more 362 

than 30 years of record. 363 
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 364 

Figure 4. Evolution of AD, as a function of length of record, averaged over all stations with more 365 

than 30 years of record. 366 

 367 

 368 

 369 

Figure 5. Evolution of BS, as a function of length of record, averaged over all stations with more 370 

than 30 years of record. 371 
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 372 

Figure 6. Evolution of QS, as a function of length of record, averaged over all stations with more 373 

than 30 years of record. 374 

The evaluation according to stability is shown in Figure 7 where the average coefficient 375 

of variation in return levels is plotted as a function of record length. The calculation of the 376 

CV was based on the 100 sub-samples for each record length. All distributions and 377 

methods become more stable as record length increases.  378 

 379 
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 381 

 382 

Figure 7. Evolution of the coefficient of variation (CV) of return levels averaged over all stations 383 

with more than 30 years of data. 384 
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 385 

In order to summarize the relative performance of the different distributions and 386 

estimation methods, Figure 8 contains a subplot of each of the performance measures. For 387 

each distribution, the estimation method providing the best performance was selected. For 388 

the three-parameter distributions, we excluded the maximum likelihood methods from the 389 

reliability criterions since it was only marginally performing better and provide unstable 390 

results. When selecting the estimation methods for the coefficient of variation, we 391 

excluded the method of moments from the three-parameter distributions, since this 392 

method never obtained the most reliable predictions. Figure 8 thus allowed us to compare 393 

the performance of the different distributions for the estimation method that performs the 394 

best for each of them.  395 

 396 

Figure 8. Plot of the best estimation method for each of the distribution as a function of 397 

record length.  398 

 399 

The L-moments ratios plotted in Figure 9 give a good visual impression of the spread in 400 

L-kurtosis and L-skewness across all stations. A moving average of L-skewness along L-401 

kurtosis removes much of the scatter and thus helps analysing the data.   402 
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 404 

Figure 9. L-moment ratios for the 280 stations, the moving average of L-skewness over 405 

L-kurtosis, together with the theoretical distributions used in this study. Gamma and 406 

Pearson overlap. The black square is for Gumbel. 407 
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Discussion 409 

The first research question raised in the introduction sought to determine which 410 

combination of distribution and estimation method best fits the data. From the results 411 

presented herein, we see that it is difficult to disentangle the performance of the 412 

estimation methods from the performance of the distributions, and that the combinations 413 

of estimation method and distribution that give the best performance vary between the 414 
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performance measures. The interpretation of the results in order to answer the research 415 

questions, is therefore challenging.  416 

 417 

From the performance of the reliability criterions, we see that the best estimation methods 418 

for the three-parameter distributions perform, in general, equally well or better than the 419 

best estimation methods for two-parameter distributions for all record lengths (Figure8). 420 

The gain in using a three-parameter distribution increases with record length. The only 421 

exception is the quantile score, where the Gumbel distribution is equally good as the three 422 

parameter distributions (Figure 8). Among the three-parameter distribution, the GEV and 423 

the GL distributions give the best performance. The GL distribution is better than the 424 

GEV distribution for the Brier score, whereas for the two other scores, the GEV 425 

distribution slightly outperforms the GL distribution. The GL distribution seems to be 426 

more challenging to estimate than the GEV distribution, since it is rather sensitive to the 427 

estimation methods used. Taking into account the stability criterion, the method of 428 

moments is most stable with the GL distribution. However, choosing to look only at the 429 

L-moments and Bayesian estimators that are the most reliable, we see that the difference 430 

in stability between the GEV and GL distribution according to stability is small 431 

(Figure 7). This indicates a slight preference for the GEV distribution. 432 

 433 

Concerning the choice of estimation methods, the ML method should not be used in 434 

combination with three-parameter distributions since this combination provides very 435 

unstable results (Figure 7) and is, in some cases, only marginally better than the Bayesian 436 

and L-moment approaches (Figures 4, 5 and 6). The method of moments is the most 437 

stable method for all distributions (Figure 7), but it also provides the most unreliable 438 

results in for several scores (Figures 4, 5 and 6). For all three-parameter distributions, 439 

either the L-moments or the Bayesian methods is preferred (Figure 8).  440 

 441 



 

An unexpected results, is the relatively low performance, as measured by the Brier- and 442 

Quantile scores, when the Bayesian and ML methods are used to fit the data to the 443 

Gumbel distribution. In contrast, these two estimation methods perform relatively well for 444 

the AD and KS test statistics (Figures 3 and 4). Further investigations revealed that this 445 

low performance is, to a large degree, controlled by the skewness for the original data. 446 

The relatively low performance for the Maximum Likelihood and Bayesian methods 447 

happens when the L-skewness is lower than 0.15, which is slightly lower than the L-448 

skewness of the Gumbel distribution (0.17). This indicates that, for the Gumbel 449 

distribution, the ML and Bayesian estimators are more sensitive to low outliers in the 450 

dataset than the other estimation methods, and that they should be avoided when the L-451 

skewness of the data is close to zero or negative. 452 

 453 

The second research question was whether the answer to (i) depends on local data 454 

availability. To answer this question, we plotted all evaluation scores as a function of 455 

record length. As expected, for all evaluation scores, the performance improves with 456 

increasing record length. The difference in reliability between the distributions increases 457 

with record length, indicating that for the shortest record lengths, there is little gain in 458 

choosing a three-parameter distribution (Figure 8). The Brier score is an exception where 459 

the three parameter distributions are better than the two parameter distributions for all 460 

record lengths (Figure 5). With the exception of the method of moments, three-parameter 461 

distributions show lower stability than two-parameter distributions, even for the longest 462 

record length. There is no clear threshold in record length above which one should rather 463 

use a three-parameter distribution rather than a two-parameter distribution. A threshold at 464 

50 years of record for switching from two- to three- parameter distributions could be 465 

justified if we only looked at the AD and QS test statistics. The difference between the 466 

GEV and Gumbel distributions is indeed small with those criterions. The Gumbel 467 



 

distribution is however considerably more stable for any length of record (Figure 8, upper 468 

right panel). 469 

 470 

The results presented herein might be influenced by several factors that are not directly 471 

related to the choice of distribution. For the Bayesian method in particular, the choice of 472 

prior distribution might influence our conclusions. For the GEV distribution, values were 473 

chosen from the literature. Less information is available for the GL distribution, and the 474 

prior for the shape-parameter was set subjectively based on previous studies. For the 475 

Pearson-III distribution, we used a non-informative prior. We might therefore expect the 476 

performance of the Pearson-III distribution to be lower than for the other two. The results 477 

are prior-sensitive, in particular for the shortest record lengths. Providing different priors 478 

might change our conclusions. In addition, many of the algorithms used herein, require 479 

numerical solutions, and the convergence of these algorithms might in some cases be 480 

misleading. For the MCMC in particular, we could not monitor the convergence of the 481 

more than 390 000 chains that were estimated using our resampling approach.  482 

The re-sampling with replacement approach allowed us to compare all stations with 483 

sample sizes longer than 30 years, i.e. resampled records of lengths up to 90 years were 484 

created from the original record of 30 years. The benefit of using this approach was that 485 

more stations could be included in the evaluation. We used 280 stations of which only 35 486 

of them had record lengths of 90 years or more. The drawback of this approach wass that 487 

stations with short record lengths will got resampled several times. By grouping stations 488 

according to their length of record and plotting the group-averaged coefficient of 489 

variation of return levels for each group, we saw that (i) the average CV is the lowest for 490 

the shortest record lengths, and (ii) the spread in CV is the largest for the shortest record 491 

lengths. An explanation for the second issue is that the resampling approach used here 492 

might be sensitive to outliers in the underlying data, as those might be sampled several 493 



 

times for short records. We identified three stations that may exhibit this behaviour, but 494 

excluding them from the evaluation showed little influence on the average performance. 495 

 496 

Conclusions and outlook 497 

The aim of this study was to evaluate the predictive fit of probability distributions to 498 

annual maximum flood data, and in particular to evaluate (i) which combination of 499 

distribution and estimation method gives the best fit and (ii) whether the answer to (i) 500 

depends on record length. These aims were achieved by assessing the sensitivity to record 501 

length of the predictive performance of several probability distributions. A bootstrapping 502 

approach was used by resampling (with replacement) record lengths of 30 to 90 years (50 503 

resamples for each record length) from the original records and fitting distributions to 504 

these sub-samples. Subsequently, the fits were evaluated according to several goodness of 505 

fit measures and to the variability of the predicted flood quantiles. 506 

Based on the results presented herein we conclude that: 507 

• The GEV and GL distribution provided the most reliable results. 508 

• The method of linear moments or the Bayesian method are the recommended 509 

estimation methods. 510 

• The maximum likelihood method was particularly unstable with three-parameter 511 

distributions, even for short return periods. This method should therefore be 512 

avoided. 513 

• For the Gumbel distribution, the L-moment approach is recommended. The 514 

Bayesian approach was sensitive to the skewness of the data.  515 

• The method of ordinary moments was consistently the most stable estimation 516 

method. This stability results in a light but consistent trade-off on goodness of fit 517 

against the method of linear moments. 518 



 

• There is no clear threshold in record length above which one should rather use a 519 

three-parameter distribution rather than a two-parameter distribution. 520 

• We focused on developing a reproducible workflow so that the methodology can 521 

be reused and improved as more data becomes available. 522 

The results herein shows that the use of the GEV or the GL distribution is challenging 523 

since, in particular, the shape parameter is sensitive to the underlying data resulting in 524 

more unstable results. Alternative approaches, i.e. using a mixture of two parameter 525 

distributions, should therefore be investigated. 526 
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