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ABSTRACT

Statistical postprocessing techniques are commonly used to improve the skill of ensembles from numerical

weather forecasts. This paper considers spatial extensions of the well-established nonhomogeneous Gaussian

regression (NGR) postprocessing technique for surface temperature and a recent modification thereof in

which the local climatology is included in the regression model to permit locally adaptive postprocessing. In

a comparative study employing 21-h forecasts from the Consortium for Small Scale Modelling ensemble

predictive system over Germany (COSMO-DE), two approaches for modeling spatial forecast error corre-

lations are considered: a parametric Gaussian random field model and the ensemble copula coupling (ECC)

approach, which utilizes the spatial rank correlation structure of the raw ensemble. Additionally, the NGR

methods are compared to both univariate and spatial versions of the ensemble Bayesian model averaging

(BMA) postprocessing technique.

1. Introduction

The first ensemble prediction systems were developed

in the early 1990s to account for various sources of

uncertainty in numerical weather prediction (NWP)

model outputs (Lewis 2005). Such systems have now

become state-of-the-art in meteorological forecasting

(Leutbecher and Palmer 2008). Additionally, the en-

semble forecasts are commonly postprocessed using

statistical techniques to improve calibration and correct

for potential biases, and a diverse range of post-

processing techniques has been proposed (e.g., Gneiting

et al. 2005; Raftery et al. 2005; Wilks and Hamill 2007;

Bröcker and Smith 2008). While these methods have

been shown to greatly improve the predictive perfor-

mance, many are only applicable to univariate weather

quantities and neglect forecast error dependencies over

time or between different observational sites. However,

correct multivariate dependence structure is often im-

portant in applications, especially when considering

composite quantities such as minima, maxima, or an

aggregated total. These quantities are crucial, for ex-

ample, for highway maintenance operations or flood

management, where subsequent risk calculations based

on the forecast require a calibrated probabilistic fore-

cast for both the original weather variable and the

composite quantity.

In this paper, we focus on spatial extensions of the

nonhomogeneous Gaussian regression (NGR) or en-

semble model output statistics method for surface tem-

perature, originally proposed by Gneiting et al. (2005).

NGR is a parsimonious postprocessing technique that,

for temperature, returns a Gaussian predictive distri-

bution where the mean value is an affine function of the

ensemble member forecasts while the variance is an

affine function of the ensemble variance. The parame-

ters of the model are estimated based on recent forecast
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errors jointly over a region or separately at each ob-

servation location (Gneiting et al. 2005; Thorarinsdottir

and Gneiting 2010; Hagedorn et al. 2008; Kann et al.

2009). Recently, Scheuerer and König (2014) proposed
a modification of the NGR methods of Gneiting et al.

(2005) in which the postprocessing at individual loca-

tions varies in space by parameterizing the predictive

mean and variance in terms of the local forecast anom-

alies rather than the forecasts themselves.

To obtain a multivariate predictive distribution based

on a deterministic temperature forecast, Gel et al.

(2004) propose the geostatistical output perturbation

(GOP) method to generate spatially consistent forecasts

fields in which the forecast error field is described

through a Gaussian random field model. Berrocal et al.

(2007) combine GOPwith the univariate postprocessing

method ensemble Bayesianmodel averaging (BMA) of

Raftery et al. (2005). Ensemble BMA for temperature

dresses each bias-corrected ensemble member with

a Gaussian kernel and returns a predictive distribution

given by a weighted average of the individual kernels.

By merging ensemble BMA and GOP, calibrated

probabilistic forecasts of entire weather fields are

produced. We propose a similar conceptualization,

combining the NGR methods of Gneiting et al. (2005)

and Scheuerer and König (2014) with a Gaussian ran-

dom field error model in an approach we refer to as

spatial NGR.

As an alternative multivariate method, we consider

the nonparametric ensemble copula coupling (ECC)

approach of Schefzik et al. (2013). ECC returns a post-

processed ensemble of the same size as the original raw

ensemble. The prediction values at each location are

samples from the univariate postprocessed predictive

distribution at that location. Multivariate forecast fields

are subsequently generated using the rank correlation

structure of the raw ensemble. ECC thus assumes that

the ensemble prediction system correctly describes the

spatial dependence structure of the weather quantity.

The method applies equally to any multivariate setting

and comes at virtually no additional computational cost

once the univariate postprocessed predictive distribu-

tions are available.

Figure 1 illustrates temperature field forecasts ob-

tained from the raw ensemble, the standard univariate

NGR method, NGR combined with ECC, and spatial

NGR. The raw ensemble is depicted in the first row. The

NWP model output has a physically consistent spatial

structure, but as we shall see later, it is strongly under-

dispersive and does not adequately represent the true

forecast uncertainty. The samples in rows 2–4 all share

the same NGR marginal predictive distributions that

have larger uncertainty bounds than the raw ensemble.

In the second row, the realizations have been sampled

independently for each grid point (i.e., no spatial de-

pendence structure is present). This results in unrealistic

temperature fields and, when considering compound

quantities, forecasts that are statistically inappropriate.

The combination of NGR and ECC in the third row

gives forecast fields with similar spatial structures as the

raw ensemble even though there is larger spread both

within each field and between the realized fields. As

a consequence of spatial correlations being modeled

through a discrete copula, the resulting temperature

fields feature some sharp transitions at locations where

the ranks of the raw ensemble change. The bottom row

depicts temperature field simulations obtained with

spatial NGR. Here, the spatial dependence between

forecast errors at different locations is modeled by

a statistical correlation model and the physical consis-

tency is implicitly learned from the data.

In a comparative study, we apply the various exten-

sions of NGR as well as ensemble BMA and its spatial

extension to 21-h forecasts of surface temperature over

Germany issued by the German Weather Service

through their Consortium for Small Scale Modelling

(COSME-DE) ensemble prediction system. The re-

mainder of the paper is organized as follows. The forecast

and observation data are described in the next section 2.

The univariate NGR postprocessing methods are in-

troduced in section 3, while the multivariate methods are

described in section 4. Forecast evaluation methods are

discussed in section 5. In section 6 we report the results of

the case study and a discussion is provided in section 7.

Finally, computational details regarding the calculation

of the evaluation methods are given in the appendix.

2. Forecast and observation data

The COSMO-DE forecast dataset consists of

a 20-member ensemble. Forecasts are made for lead

times from 0 to 21h on a 2.8-km grid covering Germany

with a new model run being started every 3 h. The en-

semble is based on a convection-permitting configura-

tion of the NWP model COSMO (Steppeler et al. 2003;

Baldauf et al. 2011). It has a 5 3 4 factorial design with

five different perturbations in the model physics and

four different initial and boundary conditions provided

by global forecasting models (Gebhardt et al. 2011;

Peralta andBuchhold 2011). The ensemblemembers are

thus not exchangeable. The preoperational phase of the

COSMO-DE ensemble prediction system started on 9

December 2010 and the operational phase was launched

on 22 May 2012.

We employ 21-h forecasts from the preoperational

phase initialized at 0000UTC; our entire dataset consists
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of forecasts from 10 December 2010 to 30 November

2011. As we use a rolling training period of 25 days to fit

the parameters of the statistical postprocessingmethods,

the evaluation period runs from 5 January 2011 to 30

November 2011. If at least one ensemble member

forecast is missing at all observation locations on a spe-

cific day, we omit this day from the dataset. This way, 10

days are eliminated with 346 days remaining. The

FIG. 1. The 21-h temperature forecasts over Germany at 2100 UTC 5 Jan 2011. (from top to bottom) Three

members from the COSMO-DE ensemble prediction system, the postprocessed nonhomogeneous Gaussian re-

gression (NGR) forecast, the NGR combined with ensemble copula coupling, and examples of the multivariate

spatial NGR1 forecast, respectively.
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temperature observations we employ stem from 514

synoptic observation (SYNOP) stations over Germany.

Their locations are shown in Fig. 2. The forecasts are

interpolated from the forecast grid to the station loca-

tions using bilinear interpolation. Many of the stations

have some missing data. In total, we evaluate forecasts

for 117 879 verifying observations over 346 days. The

COSMO model uses a rotated spherical coordinate

system in order to project the geographical coordinates

to the plane with distortions as small as possible (Doms

and Schättler 2002, their section 3.3), with 421 3 461

equidistant grid points in the meridional and zonal di-

rection. We adopt this coordinate system to calculate

horizontal distances within the framework of our spatial

correlation models.

3. Univariate postprocessing

a. NGR for temperature

The NGRmethod of Gneiting et al. (2005) generalizes

the common model output statistics (MOS) postprocess-

ing technique (see e.g., Wilks 2011). The distribution of

the future state ys of the temperature at location s is

modeled as a Gaussian distribution with parameters

depending on the M ensemble forecasts f1s, . . . , fMs:

ys j f1s, . . . , fMs;N (a1b1f1s 1⋯1 bMfMs, c1dS2s ) ,

(1)

where S2s is the ensemble variance, a, b1, . . . , bM 2 R

are regression coefficients, and c, d 2 R1 are nonnegative

coefficients. NGR is thus a linear model with the ensem-

ble forecasts as predictors and a nonhomogeneous error

term that is modeled as an affine function of the ensemble

variance S2s . This modeling setup counteracts a possible

over- or underdispersion of the ensemble while exploiting

a positive spread-error correlation. The normal predictive

distribution presents a reasonablemodel for variables like

temperature or surface pressure. While the Gaussian as-

sumption is not appropriate for all weather variables, the

basic idea of NGR can also be used with other types of

predictive distributions (Thorarinsdottir and Gneiting

2010; Thorarinsdottir and Johnson 2012; Lerch and

Thorarinsdottir 2013; Scheuerer 2014).

In the formulation in (1), the regression coefficients

b1, . . . , bM can take any value inR. However, as negative

values are difficult to interpret, Gneiting et al. (2005)

suggest an alternative formulation restricting the co-

efficients b1, . . . , bM to be nonnegative by iteratively

removing those ensemble members fm from the linear

model for which the coefficients bm are negative. We

follow Thorarinsdottir and Gneiting (2010) and obtain

nonnegative coefficients by setting b1 5b2
1, . . . , bM 5b2

M

with b1, . . . , bM 2 R. The (normalized) coefficients can

then be interpreted as weights and reflect the relative

performance of the ensemble members during the train-

ing period. In the following, we refer to this approach as

NGR1.

b. Locally adaptive NGR

The NGR postprocessing in (1) makes the same ad-

justments of ensemble mean and variance at all loca-

tions. However, it has been argued that systematic

model biases may vary in space due to incomplete res-

olution of the orography or different land-use charac-

teristics. Similarly, the prediction uncertainty may differ

between locations in a way that is not represented by the

ensemble spread (Kleiber et al. 2011; Scheuerer and

Büermann 2014; Scheuerer and König 2014).
As an alternative to the NGR model in (1), we con-

sider the locally adaptive NGR method of Scheuerer

and König (2014). Here, the local adaptation is obtained

by incorporating information about the short-term local

climatology in the covariates of the predictive distribu-

tion, thereby using forecast anomalies rather than the

original forecasts as covariates. Specifically, let yTs denote

FIG. 2. Map of Germany showing the location of a total of 514

SYNOP observation stations. The gray line illustrates a section of

the highway A3 with the surrounding observation stations in-

dicated by solid squares. Seven observation stations in the state of

Saarland are represented by solid triangles. Other stations are in-

dicated by solid circles.
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the average observed local temperature at location s over

all days t in the training period T and, correspondingly,

denote by f
T
ms the average temperature forecast by themth

ensemblemember. The predictive distribution then equals

ys j f1s, . . . , fMs,D
T
s ;N (yTs 1 b1( f1st 2 f

T
1s)1⋯

1 bM( fMs 2 f
T
Ms), cj

2
s 1 dS2s ) , (2)

where DT
s denotes the forecast and observation data at

location s during the training period and j2s is a predictor

variable for the location specific uncertainty. It is given

by the mean squared residuals:

j2s 5
1

jT j �t2T

"
yst 2 yTs 2 �

M

m51

b̂m( fmst 2 f
T
ms)

#2
,

where jT j denotes the number of days in the training

period, and b̂1, . . . , b̂M are estimates of the regression

coefficients obtained in a first step by a variant of

weighted least squares (see section 3d). The parame-

terization of the model in (2) is a compromise between

flexibility and parsimony. On the one hand, it retains the

assumption of universal slope parameters b1, . . . , bM and

variance parameters c and d in order to keep the number

of location specific parameters low and to avoid over-

fitting. On the other hand, it utilizes the parameters yTs
and j2s , which depend on the local climatology, permit

location specific bias correction and uncertainty quan-

tification, and thus improve local calibration. At loca-

tions without an observation station, those two local

parameters cannot be calculated, but predictive means

and variances can be obtained by spatial interpolation as

described in Scheuerer andKönig (2014). We refer to this

inclusion of local climatological information as NGRc.

c. Ensemble BMA

The univariate ensemble BMAmethod of Raftery et al.

(2005) is a kernel dressing approach where, for tempera-

ture, each bias-corrected ensemble member is dressed

with a Gaussian kernel with a fixed variance. That is,

ys j fms;N (am 1 bmfms,s
2) ,

for m 5 1, . . . , M, and s 2 S. The predictive density is

then given by a weighted average

�
M

m51

vmu(am1 bmfms,s
2) , (3)

where u denotes the Gaussian density. The weights

v1, . . . , vM are nonnegative with �M
m51vm 5 1, and re-

flect the skill of each ensemble member in the training

period T .

d. Parameter estimation in the univariate setting

We focus on the NGR1 formulation of the NGR

method in (1) and the NGRc extension in (2). The pa-

rameter estimation for both methods proceeds in a sim-

ilar manner. It is assumed that the forecast error

statistics change only slowly over time and a rolling

training window T of the jT j most recent dates with

forecasts and observations available is used to estimate

the model parameter. The model fitting is carried out

with all available data from the set of observation sites S
within the training window T . We denote this set by S in

the equations below even though observationsmight not

always be available at all observation sites. Note that

with NGR1 we can easily generate postprocessed fore-

casts at locations outside S since the parameters of the

postprocessing techniques are not site specific. When

NGRc is used, this can be achieved through an addi-

tional spatial interpolation step.

We follow Gneiting et al. (2005) and estimate the

NGR1 parameters by minimizing the continuous

ranked probability score (CRPS) (e.g., Gneiting and

Raftery 2007) over the training set. That is, we chose

them as a solution to

min
a,b

1
,...,b

M
,c,d

1

jT jjSj �t2T �
s2S

CRPS(Fst, yst) , (4)

where Fst is the Gaussian distribution function in (1) on

training day t at site s, yst is the corresponding verifying

observation, and

CRPS(Fst, yst)5

ð‘
2‘

[Fst(x)2 1
[ yst,‘)

(x)]2 dx , (5)

with 1[ yst,‘)(x) equal to 1 if x 2 [yst, ‘) and 0 otherwise.

For Gaussian distributions, the integral in (5) can be

expressed in a closed form that minimizes the compu-

tational costs (Gneiting et al. 2005). [Software for the

estimation and prediction is available through the en-

semble MOS package in R (R Core Team 2013), which

can be downloaded at www.r-project.org.]

The parameters of the NGRc method are estimated

in two steps. In a first step, the regression parameters

b1, . . . , bM in (2) are estimated by weighted least

squares using a penalized version of the loss function

to prevent overfitting [see Scheuerer and König (2014)
for details]. The estimated parameters b̂1, . . . , b̂1 are

then kept fixed, and in a second step the variance pa-

rameters c and d are estimated via CRPS minimization

as in (4) above.

We estimate the ensemble BMAparameters using the

R package ensemble BMA employing the same training

period T as for the univariate NGR methods.

MARCH 2015 FELDMANN ET AL . 959

http://www.r-project.org


4. Multivariate methods

a. Ensemble copula coupling

TheECCmethod of Schefzik et al. (2013) employs the

rank order structure of the raw ensemble to obtain

a postprocessed ensemble of forecasts fields with the

same multivariate correlation structure as the raw en-

semble, while retaining the univariate NGR marginals.

It is thus a semiparametric copula approach with con-

tinuous marginals and the nonparametric empirical

copula. For each s 2 S, we create a sample of size M

from the predictive distribution F̂s given by (1) or (2) of

the following form:

f̂ 1s 5F̂
21

s

�
1

M1 1

�
, . . . , f̂ Ms 5F̂

21

s

�
M

M1 1

�
. (6)

That is, it holds f̂ 1s #⋯# f̂ Ms. Let rs denote a permu-

tation of the integers f1, . . . , Mg defined by rs(m) 5
rank( fms) form5 1, . . . ,Mwith ties resolved at random.

Then it follows that the sample ff̂ rs(1)s, . . . , f̂ rs(M)sg has

the same rank order structure as the raw ensemble

ff1s, . . . , fMsg. The ECC ensemble of postprocessed

forecast fields is thus given by

ff̂ r
s
(m)sgs2S , m5 1, . . . ,M . (7)

Schefzik et al. (2013) discuss and compare several al-

ternative methods for generating a sample from each

univariate predictive distribution. We use the quantiles

in (6) as it follows from results in Bröcker (2012) that
this sample maintains the calibration of the univariate

forecasts.

b. Spatial NGR

The GOP (Gel et al. 2004) approach was originally

introduced as an inexpensive substitute of a dynamical

ensemble based on a single numerical weather pre-

diction. It dresses the deterministic forecast with a sim-

ulated forecast error field according to a spatial random

process, thus perturbing the outputs of the NWPmodels

rather than their inputs. We propose a spatial NGR

method that adopts the ideas from GOP and combines

them with the univariate NGR methods described in

sections 3a and 3b. The result is amultivariate predictive

distribution that generates spatially coherent forecast

fields, while retaining the univariate NGR marginals.

The spatial NGRmethod can thus also be seen as a fully

parametric Gaussian copula approach (Möller et al.
2013; Schefzik et al. 2013).

Denote by Y5 fys: s 2 Sg the vector whose compo-

nents represent the temperature at each location in S,
and byFm 5 ffms: s 2 Sg the corresponding weather field
forecast by the mth ensemble member. The vector m of

predictive means obtained by marginal NGR post-

processing is given by

m5

(
a11 b1F11⋯1 bMFM (NGR1) ,

YT 1 b1(F12F
T
1 )1⋯1 bM(FM 2F

T
M) (NGRc) ,

(8)

where 1 is a vector of length jSj with all entries equal to

1, YT is the average observed temperature vector over

the training period T , and F
T
m denotes the vector con-

sisting of the average temperature forecast by the mth

ensemble member over T , see also (2). Similarly, de-

note by D the diagonal matrix of the univariate pre-

dictive standard deviations ss with s2
s 5 c1 dS2s for

NGR1 and s2
s 5 cj2s 1 dS2s for NGRc.

The spatial NGR multivariate predictive distribution

corresponds to the sum of the bias-corrected forecast

mean vector given by (8), a scaled version of a zero-

mean random vector E1 with correlated components,

and a scaled version of an additional zero-mean random

vector E2 with uncorrelated components representing

small-scale variations that cannot be resolved with the

available data. That is,

Y jF1, . . . ,FM,DT
S 5m1D~E , (9)

where

~E5
ffiffiffiffiffiffiffiffiffiffiffi
12 u

p
E11

ffiffiffi
u

p
E2, u 2 [0, 1] .

If all components of E1 and E2 have unit variance, the

multiplication with D scales the components of ~E such

that their variances match those predicted by the uni-

variate NGR postprocessing methods. In particular, the

resulting multivariate model features spatially varying

predictive variances.

For the spatial correlations we follow Gel et al. (2004)

and assume a stationary and isotropic correlation func-

tion Cu,r of the exponential type. That is, we assume that

the correlation between two components of ~E corre-

sponding to locations si and sj depends only on their

Euclidean distance ksi 2 sjk and is given by

Cu,r(si, sj)5 (12 u) exp

 
2
ksi 2 sjk

r

!
1 udij , (10)
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where dij denotes to the Kronecker delta function, which

is equal to 1 if i 5 j and 0 otherwise. The parameter

u 2 [0, 1] has already been introduced above and con-

trols the relative contribution of the spatially correlated

random vector E1 and the spatially uncorrelated random

vector E2 to the overall variance. The range parameter

r. 0 determines the rate at which the spatial correlations

of E1 decay with distance. Once these parameters have

been estimated (see below), the correlation matrix P of

the random vector ~E can be defined via Pij 5 Cu,r(si, sj),

and the resulting spatial NGR multivariate predictive

distribution at locations within S is given by

Y jF1, . . . ,FM,DS ;N jSj(m,S), with S5DPD ,

(11)

whereN jSj denotes amultivariate normal distribution of

dimension jSj. Note that this definition can be extended

to locations outside the set S. As pointed out above,

both m and D can be defined for any set of locations

where ensemble forecasts are available: for NGR1 by

plugging the estimated, location-unspecific model pa-

rameters into (1), for NGRc via spatial interpolation.

Now, since (10) presents a well-defined correlation

function over the entire Euclidean plane, Cu,r can be

evaluated for arbitrary pairs of locations, and, hence, P

can be defined for any set of locations.

c. Spatial BMA

The spatial BMA approach by Berrocal et al. (2007)

combines ensemble BMA with the GOP method of Gel

et al. (2004) in a similar way as the spatial NGRmethods

described in the previous section except that M error

field models are constructed, one for each ensemble

member. It, thus, also differs from spatial NGR in

the manner in which realizations of the multivariate

predictive distribution are simulated. For simulating

a temperature forecast field under spatial BMA, we first

randomly choose a member of the dynamical ensemble

according to the ensemble BMAweights in (3), and then

dress the corresponding bias-corrected forecast field

with an error field that has a stationary covariance

structure specific to this member. As the forecast field is

chosen at random and the covariance function is mem-

ber specific, the final covariance structure becomes

nonstationary. This comes at the expense of having to

estimate M different covariance functions. The spatial

NGR approach, on the contrary, is based on a single

correlation function, which results in a rather simple

spatial dependence structure. Here, the corresponding

realizations become nonstationary through the scaling

of the stationary error field ~E according to (9).

d. Estimating the correlation parameters

To estimate the correlation parameters u and r in (10),

we consider the standardized forecast errors ~est :5
(yst 2mst)/sst at all locations s 2 S and on all training

days t 2 T , and study their half-squared differences

1/2(~esit 2 ~esjt)
2, si, sj 2 S. The stationary and isotropic

correlation model in (10) implies that Cu,r(si, sj) is

a function of the distance ksi 2 sjk only, and, hence, we
can write the variogram (e.g., Chilès and Delfiner
2012) of ~E:

gu, r(ksi 2 sjk) :5 12Cu,r(si, sj)5
1

2
Var(~Es

i
2 ~Es

j
) ,

as a function of a single, scalar argument:

gu, r(h)5 (12 u)

�
12 exp

�
2
h

r

��
1 u1

(0,‘)(h) . (12)

This allows us to aggregate the half squared differences

not only over all training days t 2 T , but also over all

pairs of locations with similar distance. Specifically, we

fix a certain cutoff distance hmax and partition the left-

open interval (0, hmax] into a family of left-open, disjoint

subintervals B1, . . . , BL (‘‘bins’’) with midpoints h1 ,
h2 ,⋯ , hL. If we denote by I l the set of all pairs (i, j)

such that ksi 2 sjk 2 Bl and nl 5 jI lj its size, then

ĝl :5
1

2nljT j �
(i,j)2I

l

�
t2T

(~es
i
t 2 ~es

j
t)
2

is an empirical approximation of gu,r(hl). For the calcu-

lation of ĝ1, . . . , ĝL, we employ the R package Ran-

domFields by Schlather (2011), choosing the number

and size of the bins such that the sets I 1, . . . , IL have

approximately the same size. Every day, we allocate

about 800 pairs of locations in 300 bins each. Now, the

parameters u and r can be estimated by fitting a theo-

retical variogram of the form in (12) to the pairs

(h1, ĝ1), . . . , (hL, ĝL) that define the empirical vario-

gram.We followBerrocal et al. (2007) by using weighted

least squares fitting (Cressie 1985), minimizing the

function:

S(u, r)5 �
L

l51

nl

"
ĝl 2 gu,r(hl)

gu,r(hl)

#2
.

To solve this minimization problem numerically we use

the optimization algorithm by Byrd et al. (1995) as im-

plemented in the R function optim (RCore Team 2013).

The range parameter r is constrained to be positive and

not larger than the maximum distance over the entire

domain, which equals 890km. Averaged estimates over
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the entire forecasting period obtained in earlier exper-

iments are used as starting values for the optimization.

Alternatively, the random field parameters could be

estimated via maximum likelihood. Under the assump-

tion of independent forecast errors between different

days, the log-likelihood that comes with the predictive

distribution model in (11) is given by

‘(u, r)52 �
t2T

�
jSj
2

log(2p)1
1

2
log det(DtPDt)

1
1

2
(Yt 2mt)

t(DtPDt)
21(Yt 2mt)

�
,

where Yt and mt are the vectors of observations and

predictive means, and Dt is the diagonal matrix of pre-

dictive standard deviations on training day t. The cor-

relation matrix P of the standardized forecast errors

depends on the two unknown parameters u and r, and

maximizing ‘(u, r) yields, under ideal conditions, statis-

tically more efficient estimates than the variogram-

based approach presented above. The latter is, however,

more robust to outliers and computationally less ex-

pensive, and, therefore, we prefer it over maximum

likelihood estimation in line with Berrocal et al. (2007).

Indeed, results obtained with maximum likelihood es-

timation (not shown here) slightly reduced the pre-

dictive performance of the spatial NGR forecasting

methods.

5. Forecast evaluation methods

Statistical postprocessing aims at correcting sys-

tematic biases and/or misrepresentation of the fore-

cast uncertainty in the raw ensemble and, in our case,

returns full probabilistic distributions. To evaluate the

predictive performance of the methods under consid-

eration, we follow Gneiting et al. (2007) who state that

the goal of probabilistic forecasting is to maximize

the sharpness of the predictive distribution subject to

calibration.

a. Assessing calibration

Calibration refers to the statistical compatibility be-

tween forecasts and observations; the forecast is cali-

brated if the observation cannot be distinguished from

a random draw from the predictive distribution. For

continuous univariate distributions, calibration can be

assessed empirically by plotting the histogram of the

probability integral transform (PIT)—the value of the

predictive cumulative distribution function in the ob-

served value (Dawid 1984; Gneiting et al. 2007)—over

all forecast cases. A forecasting method that is cali-

brated on average will return a uniform histogram,

a \-shape indicates overdispersion and a <-shape in-

dicates underdispersion, while a systematic bias results

in a triangular shape histogram. The discrete equivalent

of the PIT histogram, which applies to ensemble fore-

casts, is the verification rank histogram (Anderson 1996;

Hamill and Colucci 1997). It shows the distribution of

the ranks of the observations within the corresponding

ensembles and has the same interpretation as the PIT

histogram. To facilitate direct comparison of the various

methods, we only employ the rank histogram. That is,

for the continuous predictive distributions, we create

a 20-member ensemble given by 20 random samples

from the distribution.

For multivariate settings, we employ the band depth

rank histogram proposed by Thorarinsdottir et al.

(2014). This approach ranks the observation within the

sample of M ensemble forecasts by assessing the cen-

trality of the observation within the sample. Let

X 5 fx1, . . . , xM11g5 fY, F1, . . . , FMg denote the set

consisting of the observation vector Y and forecast

vectors F1, . . . , FM. Here, the dimension jSj of these
vectors corresponds to the number of locations con-

sidered simultaneously. To calculate the band depth

rank of the observation Y in X , we first apply the

prerank function:

r(x)5
1

jSj �s2S �
1#i

1
,i

2
#M11

1
[minfx

i1s
,x

i2s
g,maxfx

i1s
,x

i2s
g](xs)

5
1

jSj �s2S
[M1 12 rankX (xs)][rankX (xs)2 1]1M ,

to all vectors x 2 X , where rankX (xs) is the rank of the

sth component of the vector xwithin the setX . The band

depth rank of the observationY5 x1 is then given by the

rank of r(x1) in fr(x1), . . . , r(xM11)gwith ties resolved at

random. Calibrated forecasts should result in a uniform

histogram. However, the interpretation of miscalibra-

tion in the band depth rank histogram is somewhat dif-

ferent than that of the classic univariate rank histogram.

A skew histogram with too many high ranks is an in-

dication of an overdispersive ensemble, while too many

low ranks can result from either an underdispersive or

biased ensemble. Furthermore, too high correlations

in the ensemble produce a \-shaped histogram, while

a <-shaped histogram is an indication of a lack of cor-

relation in the ensemble.

Alternatively, we also investigate the fit of the corre-

lation structure by investigating the calibration of pre-

dicted temperature differences between close-by

stations that we define to be all stations within a 50-km

neighborhood of the station under consideration. The

form of the predictive distribution of the temperature
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differences under the various models is given in the

appendix. If the strength of spatial correlations implied

by the respective postprocessing approach is adequate,

the predictive distributions of temperature differences

are calibrated and the corresponding PIT values are

uniformly distributed on [0, 1]. Underestimating the

correlation strength would entail \-shaped PIT histo-

grams (i.e., PIT values would tend to accumulate

around 0.5). Conversely, overestimating the correla-

tion strength would yield PIT values closer to 0 or 1.

A station-specific PIT histogram may thus be summa-

rized by the mean absolute deviations (MADs) of the

PIT values from 0.5 over all verification days and all

temperature differences between this station and sta-

tions within the 50-km neighborhood. A flat histogram

translates into anMAD of 0.25, smaller values go along

with \-shaped histograms, and larger values go along

with <-shaped histograms.

The information provided by a rank histogram may

also be summarized numerically by the reliability index

(RI), which is defined as

RI5 �
I

i51

				zi2 1

I

				 ,
where I is the number of (equally sized) bins in the

histogram and zi is the observed relative frequency in

bin i5 1, . . . , I. The reliability index, thus, measures the

departure of the rank histogram from uniformity (Delle

Monache et al. 2006).

b. Scoring rules

While rank histograms are a useful calibration di-

agnostic tool, they do not yield information on the

sharpness of the predictive distributions. The latter can

be evaluated by studying the average width of prediction

intervals, which should be as small as possible, provided

that the empirical coverage is close to the nominal

coverage. As a quantitative measure for predictive

performance that takes both calibration and sharpness

into account, we employ several proper scoring rules

(Gneiting and Raftery 2007). The different scores assess

different aspects of the forecasts. However, they are all

negatively oriented in that a smaller score indicates

a better forecast. For events with a binary outcome (e.g.,

‘‘the temperature y does not exceed a threshold x’’), we

use the Brier score (BS; Brier 1950):

BSx(G, y)5 [G(x)2 1
[ y,‘)(x)]

2 ,

where G(x) is the predicted probability for y # x.

The continuous ranked probability score (CRPS) in

(5) is the integral of the Brier scores over all thresholds

x 2 R and, thus, an overall performance measure. For

multivariate distributions, the energy score (ES) pro-

vides a similar measure of predictive skill (Gneiting and

Raftery 2007). It is given by

ES(G,Y)5EkX2Yk2 1

2
EkX2X0k , (13)

where k�k denotes the Euclidean norm, andX andX0 are

independent random vectors that are distributed ac-

cording to G.

It has been noted (Pinson and Tastu 2013) that the

sensitivity of the energy score tomisrepresentation of the

correlation structure is rather limited. As an additional

score, we therefore consider the Dawid–Sebastiani (DS)

score that depends on the predictive mean vectormG and

the predictive covariance matrix SG of the multivariate

predictive distribution G via

DS(G,Y)52log detSG 2 (Y2mG)
tS21

G (Y2mG)

(14)

(Dawid and Sebastiani 1999; Gneiting and Raftery

2007).

Finally, we provide some error measures of the de-

terministic forecasts that are obtained as functionals

(e.g., mean or median) of the predictive distributions.

For univariate probabilistic forecasts, the mean absolute

error (MAE) and the root-mean-squared error (RMSE)

assess the average proximity of the observation to the

center of the predictive distribution. The absolute error

is calculated as the absolute difference between the

observation and the median of the predictive distribu-

tion, while the squared error is calculated using the

mean of the predictive distribution (Gneiting 2011). The

Euclidean error (EE) is the natural generalization of

the absolute error to higher dimensions. It is given by the

Euclidean distance between the observation and the

median of the predictive distribution.

Approaches to calculate the various scores under our

prediction models are discussed in the appendix.

c. Confidence intervals for score differences

To assess the statistical significance of the score dif-

ference between two different approaches, we provide

95% confidence intervals for some of the more in-

teresting pairings. Following Efron and Tibshirani

(1993) and Hamill (1999) we generate 10 000-member

bootstrap sample of the daily score differences (uni-

variate scores are averaged over all locations), take the

average over each sample, and report the 2.5% and

97.5% quantiles of the 10 000 average score differences

obtained in this way. The implicit assumption that score
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differences are approximately independent from one

day to the next seems justified in our setting where

a forecast lead time of less than 1 day is considered,

which implies that the underlying NWP model is re-

initialized between two consecutive forecast days. We

consider the score difference between two methods

significant if zero is outside the 95% confidence interval.

6. Results

In this section we present the results of applying the

univariate NGR1 and NGRc postprocessing methods as

well as their spatial extensions to forecasts from the

COSME-DE ensemble prediction system, described in

section 2. Additionally, we provide a comparison to the

univariate ensemble BMA method of Raftery et al.

(2005) and the multivariate spatial BMA approach,

proposed by Berrocal et al. (2007).

a. Univariate predictive performance

Measures of univariate predictive performance of the

raw COSMO-DE ensemble and the postprocessed

forecasts under NGR1, NGRc, and BMA are given in

Table 1. A simple approach to assess calibration and

sharpness of univariate probabilistic forecasts is to cal-

culate the nominal coverage and width of prediction

intervals. If the ensemble members and the observation

are exchangeable, the probability that the observation

lies within the ensemble range is 19/213 100%’ 90.5%,

and so we take this as the nominal level of the consid-

ered prediction intervals. While the raw ensemble re-

turns very sharp forecasts, it is severely underdispersive

as can be seen by the insufficient coverage. This is also

reflected in the numerical scores that are significantly

better for all three postprocessing methods. NGR1 and

ensemble BMA return essentially identical scores, im-

proving upon the ensemble by 34% in terms of the

CRPS and by approximately 18% in terms of bothMAE

and RMSE. Ensemble BMA returns minimally wider

prediction intervals than NGR1, but yields an empirical

coverage that is closest to the nominal 90.5%. The lo-

cally adaptive postprocessing of NGRc is slightly un-

derdispersive, but yields the best overall scores and

approximately 10% narrower prediction intervals than

NGR1 on average. The station-specific reliability in-

dices indicate that the postprocessing improves the cal-

ibration consistently across the country with the

postprocessing methods always yielding lower indices

than the raw ensemble. The 95% confidence intervals

(not shown here) for the differences in CRPS, MAE,

andRMSE between the different methods show that the

performance of NGR1 and BMA is not statistically

significant; all other score differences observed in Table 1

are statistically significant.

b. Spatial calibration

In Fig. 3 we assess the calibration of the joint forecast

fields at all 514 observation stations in Germany using

multivariate band depth rank histograms. Without ad-

ditional spatial modeling (i.e., assuming independent

forecast errors at the different stations) the multivariate

calibration of BMA, NGR1, and NGRc is rather poor,

despite their good marginal calibration. The three spa-

tial forecasts that are based on parametric modeling of

the error field (spatial BMA, spatial NGR1, and spatial

NGRc) significantly improve upon the calibration of the

univariate methods, in particular spatial NGRc. How-

ever, the strength of the correlations seems somewhat

too low as the observed field is too often either the most

central or the most outlying field resulting in a<-shaped

histogram [see also section 4 of Thorarinsdottir et al.

(2014)]. In contrast, the combination of ECC and NGR

produces forecast fields where the strength of the cor-

relations appears slightly too high. This result is consis-

tent with the spatial correlation patterns portrayed in

Fig. 1 where the raw ensemble—and thus also the ECC

fields—appears to have distinctly less spatial variability

than the estimated Gaussian error fields.

In our spatial NGR1/NGRc model we made the

simplifying assumption of a stationary and isotropic

correlation function. To check whether this assumption

is appropriate or whether correlation strengths vary

strongly over the domain considered here, we study the

PITs of predicted temperature differences between

close-by stations. We focus on the NGRc model and its

spatial extensions where we can assume that the uni-

variate predictive distributions have no local biases and

reflect the local prediction uncertainty reasonably well

TABLE 1. Mean CRPS, MAE, and RMSE for 21-h temperature forecasts aggregated over all 514 stations and 346 days in the test set.

Also reported here are the average width (PI-W) and coverage (PI-C) of 90.5% prediction intervals aggregated over the entire test set

and the mean (RI-mean), minimum (RI-min), and maximum (RI-max) station-specific reliability indices.

CRPS (8C) MAE (8C) RMSE (8C) PI-W (8C) PI-C (%) RI-mean RI-min RI-max

Raw ensemble 1.56 1.77 2.27 1.50 26.0 1.29 0.72 1.63

BMA 1.04 1.46 1.86 5.91 88.9 0.35 0.14 0.97

NGR1 1.04 1.46 1.87 5.76 88.0 0.35 0.12 0.93

NGRc 0.96 1.35 1.73 5.17 86.6 0.23 0.13 0.84
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(Scheuerer and König 2014). Departures from unifor-

mity can then be attributed to misspecifications of the

correlation strength. Figure 4 depicts, for each station,

the mean absolute deviations of the PIT values from 0.5

over all verification days and all temperature differences

between this station and stations within a 50-km neigh-

borhood. As expected, in the absence of a spatial model

themagnitude of temperature differences is overestimated.

FIG. 3.Multivariate band depth rank histograms to assess the calibration of joint forecast fields at 514 stations inGermany aggregated over

the 346 days in the test set.

FIG. 4. Mean absolute deviations (from 0.5) of the PIT values of temperature differences between each station and all stations within

a radius of 50 km. The depicted values are averaged over the respective neighborhoods and the 346 days in the test set.
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WhenECC is used to restore the rank correlations of the

raw ensemble, it is underestimated (i.e., spatial corre-

lations are too strong), which is in line with our con-

clusions from Fig. 3. On average, the mean absolute

deviations from 0.5 of the PIT values corresponding to

spatial NGRc are closest to the value 0.25, which cor-

responds to perfect calibration. However, the adequate

correlation strength varies across the domain. The as-

sumption of stationarity and isotropy of our statistical

correlation model entails too weak correlations over the

north German plain and too strong correlations near the

Alpine foothills and in the vicinity of the various low

mountain ranges. That is, (10) presents a good first ap-

proximation, but a more sophisticated, nonstationary

correlation model may yield further improvement.

c. Case study I: Predictive performance in Saarland

For a more quantitative assessment of multivariate

predictive performance, we focus on two smaller subsets

of the 514 stations. This is necessary because in our own

experience, the lack of sensitivity of the energy score in

(13) tomisspecifications of the spatial correlation structure

(Pinson and Tastu 2013) becomes even worse as the di-

mension of locations considered simultaneously increases.

First, we consider the joint predictive distribution at

the seven stations in the state of Saarland (see Fig. 2).

The corresponding multivariate band depth rank histo-

grams in Fig. 5 confirm the conclusions from the

preceding subsection in that spatial modeling signifi-

cantly improves the joint calibration of the standard

(nonspatial) postprocessing methods. The histograms

for spatial BMA and spatial NGR1 are still somewhat

<-shaped, while the one for ECC NGRc is \-shaped.
Those for spatial NGRc and ECC NGR1 are slightly

\-shaped, but closest to uniformity, which suggests that

the corresponding predictions have the best calibration

overall. In all histograms the lower ranks are somewhat

more populated than the higher ranks, which is in line

with our conclusion from Table 1 that the postprocessed

forecasts tend to be slightly underdispersive.

Table 2 shows the multivariate scores over this region,

and while these results are subject to some sampling

FIG. 5.Multivariate band depth rank histograms to assess the calibration of joint temperature forecasts at the seven observation stations in

the state of Saarland in Germany aggregated over the 346 days in the test set.

TABLE 2. Average ES, EE, and DS of joint temperature fore-

casts at seven observation stations in the state of Saarland in

Germany over all 346 days in the test set.

ES (8C) EE (8C) DS

Raw ensemble 5.27 5.86 21 210.9

BMA 3.59 4.90 20.6

NGR1 3.59 4.91 20.7

NGRc 3.28 4.55 17.4

Spatial BMA 3.56 4.90 16.8

Spatial NGR1 3.57 4.91 16.9

Spatial NGRc 3.25 4.55 14.2

ECC NGR1 3.69 4.92 1112.9

ECC NGRc 3.36 4.55 1665.1
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variability, they show again a clear tendency of the

spatial models yielding better multivariate perfor-

mance than their univariate counterparts with spatial

NGRc being especially competitive. Somewhat sur-

prisingly, the energy scores of ECC NGRc and ECC

NGR1 are larger than those of NGRc and NGR1. A

look at Fig. 4 suggests that in the particular region

considered here the overestimation of spatial de-

pendence by the ECC technique might be more serious

than its underestimation by completely ignoring spatial

correlations. While the latter seems to have a strong

impact on the band depth rank histograms (see Fig. 5),

the energy score seems to be more sensitive to over-

estimation of spatial dependence, putting the ECC-based

spatial models to the rear places in the performance

ranking. The confidence intervals in Table 3 show that

the energy score differences observed in Table 2 are

statistically significant with the exception of the dif-

ference between spatial BMA and spatial NGR1. With

respect to the Euclidean error of the predictive me-

dians, on the contrary, there are no significant differ-

ences between spatial and nonspatial methods. Here, it

is mainly the local adaptivity of the NGRc approach

that yields a significant improvement over NGR1 and

BMA. Finally, the Dawid–Sebastiani scores confirm

the ranking between the spatial and nonspatial vari-

ants of BMA, NGR1, and NGRc. They do not permit

a reasonable comparison with the ECC ensembles and

the raw ensemble, though. The latter consist of only 20

members—as opposed to a very large sample that can

be generated by all other methods—which does not

warrant a stable estimation of the empirical covariance

matrix. This can be disastrous when calculating the

Dawid–Sebastiani score in (14) and it shows that it can

be problematic in certain contexts that ECC NGR1

and ECCNGRc inherit the sometimes close to singular

correlation matrices from the raw COSMO-DE en-

semble forecasts.

d. Case study II: Minimum temperature along the
highway A3

As a second example in which the multivariate aspect

of the predictive distributions becomes noticeable, we

consider the task of predicting the minimum tempera-

ture along a section of the highway A3, which connects

the two cities Frankfurt am Main and Cologne, Ger-

many. For consistency with the forecasts at the in-

dividual stations and with other composite quantities,

we do not set up a separate postprocessing model for

minimum temperature, but derive it by taking the min-

imum over 11 stations along this section of the A3.

Since the minimum of several random variables de-

pends not only on their means and variances, but also on

their correlations, we expect that only the spatial post-

processing methods can provide calibrated probabilistic

forecasts. Indeed, the histograms in Fig. 6 show that

without spatial modeling the minimum temperature is

systematically underestimated. This is a consequence of

the fact that the minimum over independent random

variables is on average much smaller than the minimum

over positively correlated random variables. This sys-

tematic underestimation is largely avoided by spatial

BMA, spatial NGR1, and spatial NGRc while the ECC

techniques here yield the histograms closest to unifor-

mity. This clear advantage of postprocessing methods

that account for spatial correlations is further confirmed

by the CRPS and MAE scores in Table 4, and the cor-

responding confidence intervals in Table 5.

As an application and example of the relevance of

spatial modeling in practice, consider the decision

problem of dispatching or not dispatching salt spreaders

when the temperatures along the considered section of

the A3 are predicted to fall below 08C. The event

‘‘temperature falls below 08C at at least one location

along the A3’’ is equivalent to ‘‘minimum temperature

along the A3 falls below 08C,’’ and good decisions are,

therefore, taken if this event is predicted accurately. The

last column of Table 4 shows the corresponding average

Brier scores (BS) over the verification days in the winter

months of January, February, and November, and il-

lustrates once again that appropriate consideration of

spatial dependence is required to take full advantage of

statistical postprocessing.

7. Discussion

In this paper we have proposed a postprocessing

method for temperature that uses the information of

a dynamical ensemble as inputs and generates a cali-

brated statistical ensemble as an output. By following

this approach, it not only yields calibrated marginal

TABLE 3. The 95%bootstrap confidence intervals for differences

in the average ES and EE between selected postprocessing

methods for seven observation stations in the state of Saarland in

Germany over all 346 days in the test set.

DES (8C) DEE (8C)

BMA vs spatial BMA [0.016, 0.039] [20.003, 0.004]

NGR1 vs spatial NGR1 [0.018, 0.041] [20.004, 0.002]

NGRc vs spatial NGRc [0.018, 0.043] [20.003, 0.004]

NGR1 vs ECC-NGR1 [20.120, 20.077] [20.031, 0.003]

NGRc vs ECC-NGRc [20.099, 20.066] [20.021, 0.013]

Spatial BMA vs spatial NGR1 [20.016, 0.006] [20.024, 0.006]

Spatial BMA vs spatial NGRc [0.190, 0.432] [0.188, 0.510]

Spatial NGR1 vs spatial

NGRc

[0.193, 0.439] [0.198, 0.519]
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predictive distributions but entire temperature forecast

fields, thus aiming for multivariate calibration. The im-

portance of this property is underlined by the results

presented in section 6 where forecasts of spatially ag-

gregated quantities are studied and spatial correlations

have to be considered. Our spatial NGR1 approach per-

forms similar to the spatial BMA approach of Berrocal

et al. (2007). However, it is conceptually simpler and

computationally more efficient; the estimation of the

spatial correlation structure of spatial BMA is M times

more expensive than that of spatial NGR1, whereM is the

size of the original ensemble. This makes it an attractive

alternative, especially since further extensions—such as

the spatial NGRc method presented here—are also easier

to implement.

In our case study using the ensemble forecasts of the

COSMO-DE-EPS, the performance of the parametric

spatial methods was overall slightly better than the re-

sults obtained by modeling spatial dependence via ECC.

However, this result may not hold in all cases. When the

(spatial) correlation structure of the ensemble repre-

sents the true multivariate uncertainty well, methods

that use or retain the rank correlations (Roulin and

Vannitsem 2012; Schefzik et al. 2013; Van Schaeybroeck

and Vannitsem 2014) have the potential advantage that

they can feature flow-dependent dependence structures

while the statistical models presented here rely on the

assumption that correlations are constant over a certain

period of time. A statistical approach, on the other hand,

has the advantage that it determines the correlation

structure based on both forecasts and observations, and

thus does not inherit (or even amplify) spurious and

wrong correlations that may be present in the ensemble.

The exponential correlation function used by Gel

et al. (2004), Berrocal et al. (2007), and in the present

paper is, of course, a somewhat simplistic model. While

replacing it by a function from the more general Matérn
class, which nests the exponential model as a special
case, did not improve the performance of our method,
Fig. 4 suggests that a nonstationary correlation function

TABLE 4. CRPS and MAE for minimum temperature forecasts

over 11 stations along the highway A3 averaged over all verifica-

tion days. The last column gives the BS for the event that the

temperature drops below freezing (08C) at at least one of these

stations, averaged over the subset of verification days in January,

February, and November 2011.

CRPS (8C) MAE (8C) BS0

Raw ensemble 1.74 1.92 0.120

BMA 1.08 1.41 0.121

NGR1 1.05 1.37 0.114

NGRc 0.96 1.27 0.103

Spatial BMA 0.86 1.20 0.079

Spatial NGR1 0.86 1.20 0.082

Spatial NGRc 0.82 1.16 0.079

ECC NGR1 0.84 1.18 0.085

ECC NGRc 0.84 1.17 0.083

FIG. 6. Verification rank histograms for forecasts of the minimum temperature over 11 stations along a section of the highway A3, where

the different cases correspond to the days of the verification period.
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might yield a better approximation of the true spatial

dependence structure. There are a number of non-

parametric modeling approaches that can potentially

deal with these kinds of effects (Anderes 2011; Lindgren

et al. 2011; Jun et al. 2011; Kleiber et al. 2013). However,

this is rather challenging and left for future research.

A further extension of the approach presented here

concerns correlations between different lead times. In-

stead of modeling spatial correlations only once, one

would need to set up a model that captures correlations

in both space and time. Similarly, some applications

require appropriate correlations between different

weather variables. This presents yet another multivari-

ate aspect that has been addressed by Möller et al.
(2013). Taking all three aspects—space, time, and dif-

ferent variables—into account would be the ultimate

goal in multivariate modeling. At the same time, this

further increases the level of complexity so that in this

very general setting the ECC approach might be pre-

ferred just for the sake of simplicity.
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APPENDIX

Predictive Distributions for Temperature
Differences

Under the multivariate predictive distribution model

in (11), the predictive distribution of the temperature

difference between location si and sj is given by

(Dy)s
i
s
j
j f1s

i
, f1s

j
, . . . , fMs

i
, fMs

j
,DT

S

;N (ms
i
2ms

j
,s2

s
i
2 2rs

i
s
j
ss

i
ss

j
1s2

s
j
) , (A1)

where msi
, msj

and s2
si
, s2

sj
are the predictive means and

variances at si and sj and rsisj 5Cu,r(si, sj) is the corre-

lation between the forecast errors at those two loca-

tions. For each station, we calculate the observed

temperature differences between this station and all

stations within a radius of 50 km, and calculate the PIT

values of the predictive distributions given by (A1). In

the absence of a spatial model, we take rsisj 5 0 for all

si, sj 2 S. For a combination of ECC and NGR where

the multivariate distribution is represented by an en-

semble, we approximate (A1) by the empirical cumu-

lative distribution function (CDF) of the temperature

differences predicted by the individual ensemble

members.

Assuming no local biases and marginal calibration,

the calibration of the temperature difference forecasts

mainly depends on the correct specification of rsisj . It will

be underdispersive if rsisj is overestimated and over-

dispersive if rsisj is underestimated. If the strength of

spatial correlations implied by the respective post-

processing approach is adequate, the predictive distri-

butions of temperature differences are calibrated and

the corresponding PIT values are uniformly distributed

on [0, 1].

Calculation of scoring rules

When the integral defining the continuous ranked

probability score (CRPS) in (5) is not available in

a closed form, the equivalent formulation

CRPS(G, y)5EjX2 yj2 1

2
EjX2X 0j (A2)

may be employed instead (Gneiting and Raftery 2007).

Here, E denotes expectation, j � j stands for the absolute
value, andX andX0 are independent copies of a random

variable with cumulative distribution function G. To

estimate the expression in (A2), we generate two in-

dependent samples x5 fxjgJj51 and x0 5 fx0jg
J

j51
from the

predictive distribution and calculate

TABLE 5. The 95% bootstrap confidence intervals for differences in the CRPS, MAE, and BS between selected postprocessing methods

for minimum temperature forecasts over 11 stations along the highway A3 averaged over all verification days.

DCRPS (8C) DMAE (8C) DBS0

BMA vs spatial BMA [0.170, 0.260] [0.151, 0.264] [0.013, 0.073]

NGR1 vs spatial NGR1 [0.150, 0.238] [0.119, 0.225] [0.007, 0.059]

NGRc vs spatial NGRc [0.091, 0.185] [0.049, 0.171] [20.003, 0.052]

NGR1 vs ECC-NGR1 [0.134, 0.288] [0.094, 0.294] [20.009, 0.068]

NGRc vs ECC-NGRc [0.049, 0.190] [0.001, 0.187] [20.013, 0.057]

Spatial BMA vs spatial NGR1 [20.008, 0.009] [20.010, 0.016] [20.008, 0.002]

Spatial BMA vs spatial NGRc [0.009, 0.074] [20.006, 0.103] [20.012, 0.012]

Spatial NGR1 vs spatial NGRc [0.010, 0.072] [20.006, 0.095] [20.009, 0.013]

Spatial NGR1 vs ECC-NGR1 [20.022, 0.054] [20.039, 0.081] [20.020, 0.013]

Spatial NGRc vs ECC-NGRc [20.047, 0.011] [20.064, 0.029] [20.016, 0.009]
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dCRPS(G, y)5
1

J
�
J

j51

jxj2 yj2 1

2J
�
J

j51

jxj2 x0jj ,

where we typically set J 5 5000. The energy score (ES)

in (13) may be approximated in a similar manner.

For multivariate Gaussian distributions such as the

spatial NGRpredictive distributions, theDawid–Sebastiani

score in (14) is equal to the negative log-likelihood and

may be calculated directly. For spatial BMA, the mean

and covariance matrix may be calculated as follows. Let

Y be a random vector with a distribution that is given by

a mixture of M Gaussian distributions each with mean

mm, covariance Sm, and weight vm for m 5 1, . . . , M.

Then it holds that

E(Yi)5 �
M

m51

vmmmi

and

E(YiYj)5 �
M

m51

vm[(Sm)ij 1mmi mmj] .

The former formula can now be used to calculate the

meanmG, while the covariancematrix may be calculated

by noting that (SG)ij 5E(YiYj)2E(Yi)E(Yj). When SG

must be estimated nonparametrically from a sample,

such as for ECC, the calculations may be numerically

unstable. In this case, we add 0.000 01 to all elements on

the diagonal in order to improve the numerical stability

(Rasmussen and Williams 2006).

The Euclidean error (EE) requires the median of

a multivariate predictive distribution. It is estimated using

the functionality of the R package ICSNP (Nordhausen

et al. 2014).
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