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Abstract8

Spatial maps of extreme precipitation are a critical component of flood estimation in hydrological9

modeling, as well as in the planning and design of important infrastructure. This is particularly relevant10

in countries such as Norway that have a high density of hydrological power generating facilities and are11

exposed to significant risk of infrastructure damage due to flooding. In this work, we estimate a spatially12

coherent map of the distribution of extreme hourly precipitation in Norway, in terms of return levels,13

by linking generalized extreme value (GEV) distributions with latent Gaussian fields in a Bayesian14

hierarchical model. Generalized linear models on the parameters of the GEV distribution are able15

to incorporate location-specific geographic and meteorological information and thereby accommodate16

these effects on extreme precipitation. Our model incorporates a Bayesian model averaging component17

that directly assesses model uncertainty in the effect of the proposed covariates. Gaussian fields on the18

GEV parameters capture additional unexplained spatial heterogeneity and overcome the sparse grid on19

which observations are collected. Our framework is able to appropriately characterize both the spatial20

variability of the distribution of extreme hourly precipitation in Norway, and the associated uncertainty21

in these estimates.22
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1 Introduction29

Heavy rainfall over a short period of time often causes damage to infrastructure and thus represents30

an economic challenge as well as a threat to human safety. Such intense events are driven by complex31

spatio-temporal processes and are usually characterized by limited predictability and small spatial extent.32

Estimation of the distribution of these events is exacerbated by a relatively sparse observational network.33

Nevertheless, in the planning and design of important infrastructure, such as roads and railways, dams,34

and urban environment, there is a great need for spatially continuous estimates of extreme short-duration35

precipitation. The need for meteorological information on smaller time-scales than a day is also becoming36

a requirement in hydrological modeling. In addition to the large spatial variability and relatively few ob-37

servational sites, the complex terrain and different weather systems present in Norway further complicate38

such a task.39

Most official data and products from the Norwegian Meteorological Institute (MET Norway) are40

freely available for use, distribution and processing, see http://met.no/English/Data_Policy_and_41

Data_Services/. This includes weather station data as well as gridded data products for daily temper-42

ature and precipitation at 3-hour temporal resolutions (Tveito et al., 2002; Mohr, 2009; Jansson et al.,43

2007; Vormoor & Skaugen, 2013). The aim of the current study is to investigate the feasibility of pro-44

ducing gridded data sets of extreme hourly precipitation for Norway in terms of return levels based on45

hourly precipitation measurements from a relatively sparse network of observation stations combined46

with geographic and other meteorological information. Here, the extremal properties of the available47

measurements are distributed in space through their relationship to the covariates which are collected on48

a considerably denser grid.49

To accommodate both the diversity of precipitation patterns present in Norway and account for50

the difficulty in data collection, we specify a hierarchical framework consisting of several components,51

which are estimated via Bayesian methods. This involves specifying a generalized extreme value (GEV)52

distribution at each point in space. The parameters of these GEV distributions then depend on location-53
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specific variables, implying a structure similar to generalized linear modeling. The complicated dynamics54

of extreme precipitation in Norway lead to heterogeneity in the manner that these variables affect the GEV55

parameters. To accommodate such overdispersion, a Gaussian field is used to allow for local adaptivity.56

Our strategy follows that of Davison et al. (2012) who compare such a latent variable approach to methods57

based on copulas and max-stable random fields when applied to summer maximum daily rainfall in the58

Plateau region of Switzerland. Both Davison et al. (2012) and Apputhurai & Stephenson (2013) found59

that a latent variable approach is capable of estimating the spatial distribution of marginal properties,60

which is our main objective.61

In the model applied here we introduce Bayesian inference to make use of any prior knowledge and to62

obtain a measure of uncertainty, which has long been a shortcoming in return level estimation in Norway.63

Such a Bayesian Hierarchical Model (BHM) is estimated via Markov chain Monte Carlo (MCMC) methods,64

and our particular implementation is freely available in the R package spatial.gev.bma. As discussed65

below, our algorithm is constructed such that little tuning is necessary on the part of the user, by relying66

on second-order Taylor series expansions to construct focused Metropolis-Hastings (M-H) proposals (Rue67

& Held, 2005). While purely algorithmic in its innovation, such a development alleviates considerable68

burden when attempting to fit such highly structured models. Cooley et al. (2007) were the first to apply69

this type of model for daily precipitation threshold exceedance. They estimate parameters describing the70

Generalized Pareto distribution, and were able to produce maps of return levels for daily precipitation71

in Colorado, US. Gaetan & Grigoletto (2007) use a spatio-temporal BHM to assess trends in extreme72

rainfall over the Triveneto region (Italy) and Sang & Gelfand (2009) apply a similar model to study73

extreme precipitation events from an interpolated dataset in the Cape Floristic Region of South Africa.74

Ghosh & Mallick (2011) also propose a spatio-temporal BHM to model extreme precipitation events in75

the US, incorporating spatial and temporal information explicitly at the data level. Cooley & Sain (2010)76

and Schliep et al. (2010) study output from regional climate models via a spatial BHM, and Reich &77

Shaby (2013) propose a new BHM for analyzing max-stable processes, and apply this to analyze annual78
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maximum precipitation using RCM output from the eastern US.79

Here, we apply a BHM to spatially interpolate the parameters of a GEV distribution for hourly80

precipitation in Norway, with the aim of producing return level maps. We believe this is currently among81

the best methods to create spatially continuous high-resolution maps that further include a measure of82

uncertainty. The maps can easily be updated and improved with increasing time series lengths and future83

observational sites. This work therefore serves to apply the overall methodology discussed above to a new84

geographic area which is highly relevant in the context of extreme precipitation.85

The rest of the article is organized as follows. Section 2 introduces our data. We then introduce86

our BHM framework in Section 3, and discuss the particulars of our model fitting to the Norwegian87

data. Section 4 presents some comparisons and results for the Norwegian data while Section 5 contains88

some concluding discussion. Much of the technical material related to fitting the BHM is supplied in the89

Appendix.90

2 Data91

2.1 Hourly precipitation measurements92

Precipitation in Norway falls in three categories: frontal, orographic and convective. Most of the precipi-93

tation is frontal, caused by cyclone activity where warm and humid air in the south transitions with cold94

and dry air in the north. Orographic precipitation is caused by high speed vertical transmission of air,95

also called orographic lifting, observed in coastal mountain regions. Orographic and frontal precipitation96

dominate the climate along the western coast of the country which receives most of its precipitation in97

autumn and winter. The western coast receives the largest amounts of total annual precipitation while98

hourly precipitation levels might not be very high. Convective, or showery precipitation, on the other99

hand, occurs in unstable air given vertical currents and usually occurs in the heat of summer. Finnmark in100

the north and Østlandet in the south-east, see also Fig. 1, are somewhat sheltered from the large frontal101

systems which mainly come from the west and these regions are dominated by summer precipitation.102
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While the total annual precipitation in these areas is relatively low, intense showers are common, partic-103

ularly in the warmer south. There are important differences in the spatial structure of daily and hourly104

precipitation extremes in Norway. While daily extremes are higher in the Southwest where frontal pre-105

cipitation dominates, hourly extremes are more closely associated with convective events which dominate106

the Southeast. For further information, see http://met.no/English/Climate_in_Norway/.107

Two types of rain gauges are used to measure hourly precipitation in Norway: Tipping bucket and108

weight pluviometer. The first tipping bucket stations were established in the spring of 1967 and the first109

weight pluviometer stations in December 1991. While some weight pluviometer stations are associated110

with technical difficulties resulting in erroneous values, the quality of the tipping bucket measurements111

is generally known to be good. The data used in the current study have undergone a “cleaning-process”112

(J.Mamen, 2012, personal communication), removing unrealistic values and obvious errors. Due to gaps113

in the data series caused by missing data and the removal of erroneous values, the data has been reduced114

to annual maxima. Our data set thus consists of the annual maxima from 59 tipping bucket stations and115

10 weight pluviometer stations, which time series vary in length from 10 to 45 years. In addition to the116

station network being sparse, the spatial distribution is highly inhomogeneous. As shown in Fig. 1, the117

majority of the stations are located in the south, especially in the surroundings of Oslo. This feature118

is, however, partly justified by the fact that the southern parts often experience the most intense and119

local showers, requiring a denser network. A lack of observations obviously introduces uncertainty and120

represents a challenge when attempting to distribute the statistical characteristics in space.121

2.2 Gridded spatial covariates122

The explanatory variables (hereafter referred to as covariates) in our model, which serve to distribute the123

statistical characteristics of the extreme hourly precipitation in space are generated from gridded datasets124

on a 1× 1 km2 grid, covering the Norwegian mainland. A list of the covariates we use is given in Table 1.125

Geographic information is obtained from a digital elevation model (DEM) based on a 100 m resolution126
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Figure 1: Map of Norway with observation stations indicated by red dots and the boundary of areas with

dominated summer precipitation indicated with orange lines. The topography is shown in gray scale, with

black denoting sea level and white denoting a height of approximately 2500m. The Oslofjord with Oslo

located at the head of the fjord, is enlarged in the right square. Three stations analysed in Section 4.2

are indicated by green circles.
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terrain model from the Norwegian Mapping and Cadastre Authority (Kartverket) (Mohr, 2009). Here,127

we consider latitude, longitude, elevation and distance to sea as potential geographic covariates.128

Table 1: Gridded spatial covariates included in the generalized linear models on the parameters of the

GEV distribution.

Covariate Abbreviation Source

Latitude lat Digital elevation model

Longitude lon Digital elevation model

Elevation elev Digital elevation model

Distance to sea distSea Digital elevation model

Mean June-July-August temperature JJAtemp Daily temperature grid

Mean annual precipitation MAP Daily precipitation grid

Mean summer (April-October) precipitation MSP Daily precipitation grid

Mean number of wet days wetDays Daily precipitation grid

Additionally, we consider temperature and precipitation climatological covariates. MET Norway pro-129

duces a gridded dataset for daily temperature based on measurements at over 200 locations, interpolated130

to a map for the period 1957-today. A residual kriging approach is applied for the interpolation, using131

terrain and geographic position to describe the deterministic component (Tveito et al., 2002; Mohr, 2009;132

Jansson et al., 2007). We reduce this dataset to a single spatial covariate by taking the mean temper-133

ature during the months of June, July and August over all available years. As discussed above, this134

climatological information may be related to the intensity of summer showery precipitation.135

MET Norway’s gridded dataset for daily precipitation results from an interpolation of precipitation136

measurement at approximately 400 locations and it is also available for the period 1957-today (Tveito137

et al., 2002; Mohr, 2009; Jansson et al., 2007). For the interpolation, triangulated irregular networks138

(TINs) were applied; a precipitation TIN based on measured precipitation and an elevation TIN based139
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on the altitude at the meteorological stations. Furthermore, a terrain adjustment was performed on the140

precipitation grid based on the assumption that precipitation increases by 10% per 100 m up to 1000141

m above sea level (masl) and 5% above that (Førland, 1979, 1984). We extract three different spatial142

covariates from this dataset to capture the spatial variability in the climatological precipitation patterns:143

the mean annual precipitation, the mean summer (April-October) precipitation and the mean number of144

wet days per year.145

While the geographic variables are considered relatively accurate, large uncertainties are associated146

with the climate datasets. For daily data these uncertainties are mainly related to the gridding procedure,147

particularly in regions with complex topography and a sparse network of stations, where the influence of148

a single station may cause biases. The terrain adjustment on daily precipitation (Engeset et al., 2004;149

Saloranta, 2012) also adds additional uncertainty. However, especially as we have performed smoothing in150

terms of temporal averages, we assume the spatial distribution to be sufficiently accurate for our purposes.151

3 Methods152

3.1 Extreme value statistics153

Extreme value theory provides a framework to model the tail of probability distributions. Let V1, . . . , Vn154

denote continuous, univariate random variables that are assumed to be independent and identically dis-155

tributed. If the normalized distribution of the maximum max{V1, . . . , Vn} converges as n → ∞, then it156

converges to a generalized extreme value (GEV) distribution (Fisher & Tippett, 1928; Jenkinson, 1955).157

For this reason, the GEV distribution is commonly used to model block maxima such as the annual158

maxima. Alternatively, if the full data series is available, extreme value theory states that exceedances159

(the amounts that the observations exceed a given threshold v) should approximately follow a generalized160

Pareto (GP) distribution as v becomes large and the sample size n increases (Pickands, 1975; Cooley161

et al., 2007). Coles (2001) provides an introduction to the statistical applications of extreme value theory.162

As our data are given by the annual maxima only, we employ the GEV modeling framework. Let S163
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denote the spatial region of interest (e.g. Norway) and s ∈ S a specific site in this region. Our focus is164

on yts, the maximum hourly precipitation at location s in a year t. We assume that yts follows a GEV165

distribution with spatially dependent parameters,166

yts ∼ GEV(µs, σs, ξs).

That is, the density of yts is given by167

pr(yts|µs, κs, ξs) = κsh(yts)
−(ξs+1)/ξs exp

(
− h(yts)

−ξ−1
s

)
, (1)

for h(yts) > 0 with168

h(yts) = 1 + ξsκs(yts − µs).

The GEV distribution has three parameters which in our parameterization are location µs ∈ R, inverse169

scale κs ∈ R+ and shape ξs ∈ R. The distribution is often parameterized using the scale σs = 1/κs rather170

than the inverse scale (e.g. Coles, 2001). However, the current parameterization is common in Bayesian171

contexts, for instance in the R-INLA toolbox (http://www.r-inla.org, Rue et al., 2009), and is chosen172

since derivations related to posterior densities are considerably easier in this representation.173

The tail behavior of the GEV distribution is driven by the value of the shape parameter ξs and174

generally falls in three classes; the Fréchet type (ξs > 0) has a heavy upper tail, the Gumbel type (ξs → 0)175

is characterized by a light upper tail, and the Weibull type (ξs < 0) is bounded from above. The shape176

parameter thus provides vital information on the statistical properties of the variable of interest and is,177

concurrently, difficult to estimate due to the involved parametric form of the density in (1) as a function178

of ξs. Note that the model formulation in (1) assumes stationarity in time. While non-stationarity might179

generally be a more realistic assumption, for instance due to the effects of climate change, our data records180

are only 10 to 45 years. This simultaneously renders the inclusion of non-stationarity assumptions difficult181

due to lack of data and reduces the risk of the data being severely affected by long-term non-stationarities.182

The goal of the current analysis is to provide spatial measures of extreme hourly precipitation. A183

common approach is to construct spatial maps of return levels. The return level zsp associated with the184
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return period 1/p at location s is the quantile that has probability p of being exceeded in a particular185

year. For the GEV density in (1), it is given by186

zps = µs − (κsξs)
−1[1− {− log(1− p)}−ξs

]
, (2)

which is the quantile function of the GEV distribution function for the quantile 1− p.187

3.2 Modeling spatial dependence188

The model in (1) assumes that each location s ∈ S has its own set of parameters (µs, κs, ξs). The spatial189

variability is the result of a number of factors related to the variation in terrain and climate. To capture190

this information, we collect the additional covariates xs listed in Table 1 which aim to incorporate these191

features. The model for e.g. µs is then specified as192

µs = x>s θ
µ, (3)

and similarly for κs and ξs. Here, we assume that θµ ∈ Θµ
Mµ for a fixed model Mµ in which some of the193

elements of θµ are assumed to take values on the real axis R while others may be restricted to be equal194

to zero. The constraint θµi = 0 implies that the i-th covariate does not influence the location parameter195

under the model Mµ. Bayesian model averaging over all possible models is discussed in Section 3.3 below.196

The linear model in (3) assumes that the variability in the GEV parameters µs is fully determined by197

the covariates xs. In practice, there appears to be additional heterogeneity that is not directly captured198

by xs, requiring µs to be locally adaptive to overdispersion. This is done by specifying the model199

µs = x>s θ
µ + τµs , (4)

where we follow Davison et al. (2012) and give the overdispersion term τµs a mean zero Gaussian Process200

prior with exponential decay, and hence any finite collection (τµs1 , . . . , τ
µ
sT ), with st ∈ S, t ∈ {1, . . . , T} is201

jointly normally distributed such that202

E(τµst) = 0 (5)

cov(τµst , τ
µ
sr) = Kαµ,λµ(st, sr) =

1

αµ
exp

(
−dstsr

λµ

)
, st, sr ∈ S, (6)
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where dstsr is the Euclidean distance between locations st and sr. The hyperparameters αµ and λµ203

determine the properties of this Gaussian process and we write this as τµs ∼ GP(αµ, λµ).204

The models for ξs and κs are specified in a similar manner and our entire model may be written as205

yts ∼ GEV(µs, κs, ξs)

µs = x>s θ
µ + τµs

κs = x>s θ
κ + τκs (7)

ξs = x>s θ
ξ + τ ξs

τνs ∼ GP(αν , λν), ν ∈ {µ, κ, ξ}.

The scale parameter σs = 1/κs is often modeled with a logarithmic link function to ensure its positivity.206

We have chosen to use the identity link function for the inverse scale and to ensure κs ∈ R+, the proposal207

distribution is designed such that negative proposals are automatically rejected. In practice, we find208

that negative values are very rarely proposed once the chain is past the burn-in stage. Friederichs &209

Thorarinsdottir (2012) compare the logarithmic and the identity link functions for the scale parameter210

under frequentist inference in a prediction setting and find only a minor difference in the predictive211

performance, with the identity link resulting in minimally higher skill.212

This model imposes a conditional independence assumption on the full likelihood. Letting Yo denote213

all observed responses, the likelihood satisfies214

pr(Yo|{µs, κs, ξs}s∈So) =
∏
s∈So

TS∏
t=1

pr(yts|µs, κs, ξs)

which implies more generally that yts and yts′ are conditionally independent for any s 6= s′ where s, s′ ∈ S,215

given the site-specific GEV parameters. Such a conditional independence assumption is clearly a simpli-216

fying assumption, since neighboring sites would likely be affected by the same extreme events. However,217

the purpose of the study is to construct characterizations of the marginal behavior at individual sites, for218

which this model is likely to give appropriate estimates. We note that more involved methodologies (see219

e.g. Sang & Gelfand, 2009; Ribatet et al., 2012; Ghosh & Mallick, 2011, among others) would be capable220
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of incorporating such residual dependence. The additional complexity imposed by these frameworks, and221

their demands on the data make them largely unhelpful for answering the marginal questions required in222

our data product. See Section 4.3 for a further investigation of this feature.223

Inference is performed via Markov chain Monte Carlo (MCMC) under the model in (7) where each224

component of the model is updated in turn. The joint update of the regression parameters θν and the225

model Mν for ν ∈ {µ, κ, ξ} is discussed in the next section. The updates for the Gaussian processes226

{τνs }s∈So and the corresponding hyperparameters αν and λν for ν ∈ {µ, κ, ξ} together with the associated227

prior assumptions are discussed in the Appendix. Here, we use second-order Taylor expansions of the228

log-likelihood of the model in (1) to construct Gaussian proposal densities, thereby eliminating the need229

for user-defined tuning parameters for the proposal distributions, see e.g. Chapter 4.4 of Rue & Held230

(2005).231

3.3 Bayesian model averaging232

We now discuss updating the regression parameters θµ, θκ, θξ and their associated models Mµ, Mκ, M ξ.233

The general strategy is the same for each of µ, κ and ξ. For clarity of exposition, we thus discuss the234

updates in terms of a generic θ and M where we omit the parameter index. Let So ⊂ S denote the set of235

locations in which observations are collected, denote by Υ the current vector of µs, κs, or ξs for s ∈ So,236

that is Υs = x>s θ + τs, and let XSo be the |So| × |M | matrix of covariates, where |So| is the number237

of observation locations and |M | is the number of regression parameters not restricted to zero under the238

model M . Conditional on Υ, XSo and the associated hyperparameters α and λ, the full conditional239

distribution of θ and M is independent of all other model parameters. That is, we aim to simultaneously240

update θ and M by sampling from the distribution241

pr(θ,M |Υ,XSo , α, λ) = pr(θ|M,Υ,XSo , α, λ)pr(M |Υ,XSo , α, λ)

via a blocking, two step procedure. First note that242

pr(θ|M,Υ,XSo , α, λ) ∝ pr(Υ|θ,XSo , α, λ,M)pr(θ|M).
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We assign θ a Gaussian prior distribution, θ|M ∼ N (θ0,Ξ0), where Ξ0 is a matrix of dimension243

|M | × |M | and we have suppressed the zero elements of θ. It follows from the Gaussian process prior244

assumptions on τs that245

pr(Υ|θ,XSo , α, λ,M) = N (X>Soθ,Kα,λ(So,So)).

Standard results (see e.g. Hoff, 2009) then yield the posterior distribution246

θ|M,Υ,XSo , α, λ ∼ N (θ̂,Ξ), (8)

where247

Ξ = X>SoKα,λ(So,So)−1XSo + Ξ0

θ̂ = Ξ−1
[
X>SoKα,λ(So,So)−1Υ + Ξ−10 θ0

]
.

The choice of the prior parameters θ0 and Ξ0 is discussed in Section 4 below.248

Sampling from the full conditional distribution of M follows a conditional Bayes factor evaluation.249

The full conditional distribution fulfills250

pr(M |Υ,XSo , α, λ) ∝ pr(Υ|XSo , α, λ,M)pr(M)

=
[ ∫

θ
pr(Υ|θ,XSo , α, λ,M)pr(θ|M)dθ

]
pr(M). (9)

We assume that all models with a non-zero constant term are a priori equally likely such that pr(M) ∝ 1251

while models with a zero constant term have a priori probability of zero. From (8) it then follows that252

pr(Υ|θ,XSo , α, λ,M)pr(θ|M) ∝ (2π)−|M |/2 exp
(
− 1

2

[
− 2θ̂

>
Ξθ + θ>Ξθ

])
,

and we see that the integrand in (9) is the canonical form of the kernel of a Gaussian distribution.253

Appropriate completion therefore gives254

pr(M |Υ,XSo , α, λ) ∝ |Ξ|−1/2 exp
(1

2
θ̂
>

Ξθ̂
)
.

For a joint update of θ and M , we first sample a new model proposal M ′ at random from the255

neighborhood of M . That is, one of the non-zero regression parameters in M is set to zero or vice versa256
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(excluding the constant term which is always included in the model). The proposal M ′ is then accepted257

with probability258

min
{pr(M ′|Υ,X ′So , α, λ)

pr(M |Υ,XSo , α, λ)
, 1
}
.

In a second step, we sample a new value of the regression parameters θ according to (8) based on the259

current model. Given the posterior distributions, it is then simple to calculate the marginal posterior260

inclusion probability of a given covariate from the proportion of instances in which the corresponding261

regression parameter is non-zero. However, it is generally not meaningful to consider the posterior prob-262

abilities of individual models when in the context of large hierarchies.263

The use of conditional Bayes factors and the MC3-within-Gibbs style of sampling above is just one264

approach to incorporating model uncertainty which has proven useful in a number of contexts involving265

model averaging in hierarchical models (see Holmes et al., 2002; Karl & Lenkoski, 2011; Cheng & Lenkoski,266

2012, for related examples). Other approaches, such as reversible jump MCMC (Green, 1995), spike-and-267

slab priors (George & McCulloch, 1993) or approximations involving information criteria (Raftery, 1995)268

could also have been entertained. In practice, we feel that each of these methods would have yielded269

comparable results. We note, however, that our method involving CBFs offers the ability to completely270

integrate out the parameter set θ when comparing two models (unlike reversible jump and spike-and-slab271

approaches) while still transitioning according to the exact posterior distribution (unlike approaches based272

on information criteria). Further, in our study, mixing appeared straightforward, as shown below.273

3.4 Posterior return level maps274

The MCMC algorithm returns a chain of length R (after an appropriate burn-in period has been removed)275

with values for all parameters in the model above that approximate their joint posterior distribution. That276

is, in the rth iteration of the MCMC we have the elements277

{
θµ, {τµs }s∈So , αµ, λµ

}[r]
,
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that fully describe the model for µs, and a similar set for κs and ξs. We note that from these chains alone278

the posterior of the return level zps for any s ∈ So may be derived by calculating the return level in (2),279

(zps )[r] = µ[r]s − (κ[r]s ξ
[r]
s )−1

[
1− {− log(1− p)}−ξ

[r]
s
]
,

for r = 1, . . . , R. The sample (zps )[1], . . . , (zps )[R] then gives an MCMC approximation of the posterior280

distribution of zps .281

For locations q ∈ S\So we utilize the Gaussian process prior and the states of {τνs }s∈So for ν ∈ {µ, κ, ξ}282

to interpolate the relevant µ
[r]
q , κ

[r]
q and ξ

[r]
q parameters at each stage r of the MCMC output to the283

location q. Suppose A and B are two finite subsets of S and let Kα,λ(A,B) be the |A| × |B| matrix with284

[Kα,λ(A,B)]ab = Kα,λ(a, b) for a ∈ A and b ∈ B, where we have omitted the parameters ν and r for clarity.285

Then, if τs ∼ GP(α, λ) it holds that286

τq|{τs}s∈So ∼ N (τ̂q, κ̂q) (10)

where287

τ̂q = Kα,λ(q,So)Kα,λ(So,So)−1τS0

κ̂q = α−Kα,λ(q,So)Kα,λ(So,So)−1Kα,λ(So, q),

with τSo the vector of current τs for s ∈ So. Thus, at iteration r in the MCMC chain, we may estimate288

(τνq )[r] using
{
{τνs }s∈So , αν , λν

}[r]
for ν ∈ {µ, κ, ξ} according to (10) and obtain {µq, κq, ξq}[r], thereby289

deriving (zpq )[r] and approximating the marginal posterior distribution for zpq at all sites q ∈ S. We note290

that this could be done in a joint manner (for all S) by modifying (10). However, in practice such a joint291

estimation incurs a prohibitive computational overhead (particularly due to memory constraints) and292

is largely unnecessary, since the site-specific marginal distribution is of primary interest in constructing293

return level maps.294
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4 Results295

This section shows some results from using the methodology above to estimate the spatial GEV distri-296

bution using our data from Norway. The first subsection conducts a leave-one-out cross validation study297

and compares our full approach utilizing Bayesian model averaging with several other options. In the298

second subsection we investigate these results in-depth for three stations chosen in particular. Finally, we299

conclude with a discussion of the fit of the model using all stations and highlight both the performance300

of our algorithm, as well as the ability to draw return level maps.301

4.1 Cross-validation302

We begin with a leave-one-out cross-validation (CV) study in which we compare our overall approach303

(which we call BMA for short) to three alternatives. The first alternative includes all covariates and304

makes no attempt to model average and we refer to this approach as Full. The second alternative305

(referred to as NoCovar) represents the other extreme: only the constant term, latitude and longitude306

are included, which is meant to investigate the additional benefit of the other covariates in the model fit.307

Finally, we consider a case in which the shape parameter ξs is set to a fixed value (referred to as Fixed).308

Estimation of the shape parameter ξ is known to be extremely uncertain, particularly when time series309

are short, which is the case in this study. The value of ξ for daily precipitation has been analyzed in several310

papers. Papalexiou & Koutsoyiannis (2013) studied annual maximum daily rainfall of 15 137 records from311

all over the world, and declared the Fréchet distribution (ξ > 0) to be “the winner”. This distribution312

represents the lowest risk for engineering structures. Koutsoyiannis (2004) indicated a shape value of313

0.15 as appropriate for daily precipitation in mid-latitude areas of the Northern Hemisphere after using314

several different methods of estimation. Wilson & Toumi (2005) fitted a GEV distribution to long daily315

precipitation records from the UK and found a mean ξ estimate of 0.10. Daily precipitation in Norway316

was studied by Dyrrdal et al. (2014) who found that ξ varies spatially according to dominating weather317

systems. Positive values are seen in the continental inland, while more negative values are seen along318
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the coast in the south and west. ξ for hourly precipitation is not well studied, due to fewer observations319

combined with larger spatial variance, however it is likely to be higher than for daily precipitation. This320

is confirmed in e.g. Overeem et al. (2010) and Van de Vyver (2012). As there are substantial differences321

between the spatial distribution of daily and hourly precipitation in Norway, it is not feasible to transfer322

the spatial variability of ξ for daily precipitation directly to the hourly precipitation. Instead, in the Fixed323

approach we choose to fix ξ at a constant value of 0.15 over the entire country. This value is equivalent324

to the upper range of established values for daily precipitation.325

For each modeling framework, the model is run 69 times, where in each instance one station is left326

out. For reasons discussed in detail in Section 4.3, each instance is run for 200 000 iterations and the327

first 20 000 iterations are discarded as burn-in. A single run takes approximately 2 hours on a 2.8 gHz328

multicore server using the present R implementation. In Section 5 we discuss implementation issues that329

should prove to reduce this computing time dramatically.330

Now, suppose that site s ∈ S0 is the site that is left out. The predictive distribution pr(Ys|Y −s)331

is thus formed as discussed in Section 3.4 and this distribution is compared to the observations Y s =332

{Y1s, . . . , YTss}. We consider two scores: The continuous rank probability score (CRPS) as well as the333

logarithmic score (LS). Table 2 shows the scores averaged over the 69 sites, revealing two interesting334

features. First, we note that CRPS and LS scores are often, in magnitude, unlikely to show substantial335

numerical differences. However, while 2.525 and e.g. 2.520 are not far from each other numerically, such336

a difference is substantive, as a simple permutation test (Good, 1995) readily shows. In Table 2 we see337

that the BMA approach has slightly better CRPS and LS scores than the Fixed approach, both of which338

considerably outperform the Full and NoCovar approaches. This indicates that the BMA approach is339

able to trade-off the desire for parsimony with the ability to chose covariates that have predictive impact.340

This, in turn, yields a more realistic predictive distribution that is able to capture the full spread of341

the observations. This leads to lower CRPS and LS scores than, most notably, the Full and NoCovar342

approaches. Since the Fixed approach will introduce less uncertainty in the predictive distributions the343
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Table 2: Predictive Scores for the leave-one-out cross validation study

CRPS LS

BMA 2.520 2.823

Full 2.543 2.840

NoCovar 2.542 2.839

Fixed 2.525 2.826

increase in sharpness is rewarded.344

345

Figure 2 shows the predictive distributions for Station 15720 (left panel) and Station 40880 (right346

panel), as examples of the relationship between predictive distributions in the various methods. In these347

panels we see two features. First, the predictive distribution involving no covariates beyond latitude and348

longitude tends to be centered somewhat differently than the other three methods (this is particularly349

pronounced for Station 15720). Secondly, the method that does not model average tends to yield a more350

peaked predictive distribution, evidence of “over-fitting” which is shown clearly in the distribution for351

Station 40880. The method that fixes ξ and the BMA approach often have roughly similar predictive352

distributions. These examples serve to therefore show that covariate information is indeed important,353

yet having the flexibility to remove covariates more appropriately reflects uncertainty in the predictive354

distribution. Furthermore, the introduction of uncertainty in the shape parameter ξ does not appear to355

markedly affect the bulk of the predictive distribution.356
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Figure 2: Out of sample predictive distributions for stations 15720 and 40880 in the cross validation

study. The dotted gray lines show the observed levels and the two numbers in the legend correspond to

the CRPS and LS for each method.
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4.2 Example of three stations357

Figure 3 shows the return levels from a leave-one-out CV study for three representative stations 18701358

(Oslo, 94 masl), 12290 (Hamar, 132 masl) and 64300 (Kristiansund, 39 masl) (cf. Figure 1). In each359

panel the return levels (and associated uncertainty at the 90% level) from each spatial method (BMA,360

Full, NoCovar and Fixed) is compared to the MLE estimated locally at the site, with the local confidence361

bands given by bootstrapping. The first column shows the fit of the methods for the station at the head362

of the Oslo fjord, revealing several things. First, there is an across-the-board reduction in the uncertainty363

in return levels from the spatial model versus the bootstrapped local version. This is sensible, since there364

is such a high concentration of observation sites in the vicinity of this location. Secondly, we see that365

all methods contain the MLE return levels, with the Fixed method apparently performing best. This is366

unsurprising, as the MLE for ξ at this location is .17, and thus fixing ξ to a value nearby will concentrate367

estimates of the return levels about those of the local estimate.368

The second column of Figure 3 shows the estimated return levels for station 12290, located in the369

continental Southeast. In this case, we see that the three methods that statistically estimate ξ match the370

locally estimated return levels better than the method which fixes ξ. This is because the local MLE for371

ξ at this site is .025, much below .15. Indeed, we see that return levels for this site are over-estimated as372

a result of fixing ξ to too high a level.373

Finally, the third column of Figure 3 shows results for the observation station on the west coast of374

Norway. In this column we see that all methods contain the MLE return levels in their posterior predictive375

intervals. For the three methods that estimate all parameters in the model, we see that the uncertainty is376

larger using the spatial model than a local bootstrapped MLE. This seems sensible to us, as the network377

of observation sites is much more sparse here and thus the uncertainty around the return levels would378

be expected to be greater than when using the information at that site to estimate the model locally.379

However, we note that the Fixed approach exhibits considerably less uncertainty in the estimated return380

levels. We do not view this as a positive feature, as we believe that this is under-representing the true381
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uncertainty at this site.382

The general conclusion is that the spatial model provides an interpolation into sites without observa-383

tions that is broadly consistent with return levels that would be estimated via maximum likelihood at the384

site when data are present. This provides some evidence that the spatial modeling framework can yield385

useful interpolation over Norway. Further, there is some evidence that incorporating the uncertainty in386

the shape parameter does not cause undue difficulty, more appropriately captures the spatial variability387

in this term and gives a more accurate characterization of return level uncertainty.388

Taken together, the results of this section and Section 4.1 indicate the benefit of using the BMA frame-389

work. We have shown that BMA, along with Fixed, outperform the two other approaches in estimating390

the main characteristics of hourly precipitation (cf. Table 2 and Figure 2). Further, when estimating391

extreme values, the three methods that allow ξ to vary appear to offer estimates that are more consistent392

across Norway (cf. Figure 3). The fact that the BMA approach performs better than the alternatives in393

both estimating the ”bulk“ of the predictive distribution and its tail, demonstrates its enhanced flexibility.394

4.3 Return level maps395

Here we discuss the return level maps constructed using the full dataset. As mentioned above, we ran396

all studies for 200 000 iterations and discarded the first 20 000 iterations as burn in. Figure 4 indicates397

why this chain length seemed appropriate. In this figure we see the running estimate of the posterior398

mean on the intercept term of θµ, plotted by log iteration for 15 different chains run independently with399

different random seeds. As shown in the figure, after about 100 000 iteration the 15 chains essentially agree400

on the value of the posterior expectation for the intercept and after 180 000 iterations these estimates401

are identical. Other quantities considered show a similar agreement and imply that the chain length is402

sufficient for approximating the posterior distribution. Appendix B details our choice of prior settings403

and further investigates the sensitivity of return levels maps to these settings.404

Table 3 shows the estimates for linear terms taken from this run. We see several interesting features405
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Figure 3: Return levels and observed returns for each method/station compared to a local bootstrapped

MLE.
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Figure 4: Convergence assessment for the run over the full dataset. We see that 15 separate chains run

independently with different starting seeds all agree on the value of the intercept term after 180 000

iterations (with 20 000 iterations first used as burn-in).

from this table. First, in the location term µ, the MSP has the highest inclusion probability at 0.9,406

while JJAtemp, lat, lon, MAP and elevation also feature strongly, and all covariates have a non-negligible407

inclusion probability. The estimated regression coefficients for MSP and JJAtemp reveal strictly positive408

95% confidence bands. The combination of covariates with high inclusion probabilities accounts for both409

geographic (lat, lon, elev) and meteorological (MSP, JJAtemp, MAP) features that are known to influence410

short-duration precipitation in Norway. Summer indices seem essential as a majority of the most extreme411

hourly precipitation events occur during summer, and many events are a result of convective instability412

created by surface heating. Latitude and longitude are good covariate candidates due to the strong413

gradients in both temperature (north-south) and precipitation (east-west), although the orientation of414

the country from southwest to northeast represents a challenge. Elevation is likely to be important in415

regions where orographic precipitation plays a role.416

The situation is much different for both the precision term κ and shape ξ. In both instances, there is417
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considerable statistical uncertainty and no covariate is given appreciable inclusion probability. The most418

influential covariates, however, seems to be lat and lon. We note that the lower quantile of the constant419

on the precision term is, unintuitively, negative. However, this is a result of the fact that the mean of the420

random effects τκs for s ∈ So is not forced to be 0 in our implementation. See Appendix B for a discussion421

of this aspect.422

Table 3 also corroborates the values for ξ that have been suggested in the literature, with a posterior423

mean of .11. However, as can be shown from the wide band about this value (with a .025 quantile of -.65424

and .975 quantile of .87), there is significant statistical uncertainty regarding this quantity and none of425

the presently collected covariates appear to have a substantive impact on these estimates.426

The M-H proposal scheme outlined in Section 3 and detailed in Appendix A was developed with the427

dual goal of eliminating the need for user-specified tuning parameters and the hope that by matching local428

curvature, acceptance probabilities would remain high. Table 4 shows the acceptance probabilities for the429

MCMC chain run over the full data and indicates very high acceptance probabilities across the board.430

The average acceptance probability for the random effects is well above .9 with the worst acceptance431

probability being a random effect for the shape parameter, at .8. Likewise, the acceptance probabilities432

for the Gaussian process term λ is above .8 for all three models. This indicates that the MCMC proposal433

constructed in our implementation offers a useful solution. The algorithm automatically tunes the propos-434

als to the local curvature in the posterior distribution and is able to achieve high acceptance probabilities435

while doing so. There are many improvements that could be made (which we discuss in Section 5) but436

the convergence shown in Figure 4 and the acceptance probabilities below suggest our implementation is437

effective at approximating the posterior distribution.438

The BMA run is finally used to construct return level maps over all of Norway, an example of which is439

shown in Figure 5. The map of estimated M20 reveals that BMA is able to reproduce reasonable values440

and a similar spatial pattern to what we expected. We have the largest values along the coast in the441

South, while the lowest values are seen in mountain regions and in the northern counties Nordland and442
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Table 3: Posterior estimates for the linear terms in the BHM under the BMA approach. This table shows

the probability that a given covariate is included in the model as well as the posterior mean, .025 and

.975 quantiles of the posterior distribution.

Location (µ) Precision (κ) Shape (ξ)

Prob Mean 2.5% 97.5% Prob Mean 2.5% 97.5% Prob Mean 2.5% 97.5%

Intercept 1 7.92 6.64 9.17 1 0.3 -0.46 1.05 1 0.11 -0.65 0.87

lat 0.6 -0.49 -1.89 0.18 0.14 0.01 0 0.19 0.12 0 -0.11 0.1

lon 0.48 0.26 -0.34 1.42 0.09 0 -0.05 0.06 0.12 0 0 0.11

JJAtemp 0.65 0.49 0 1.6 0.03 0 0 0 0.05 0 0 0

elev 0.41 0.16 -0.08 0.8 0.02 0 0 0 0.03 0 0 0

distSea 0.23 0.02 -0.29 0.43 0.03 0 0 0 0.06 0 0 0

MAP 0.46 0.01 -1.15 1.17 0.03 0 0 0 0.06 0 0 0

MSP 0.9 0.96 0 2.05 0.03 0 0 0 0.05 0 0 0

wetDays 0.3 -0.01 -0.63 0.57 0.04 0 0 0 0.07 0 -0.01 0

JJAtemp.1 0.18 0.02 -0.14 0.3 0.02 0 0 0 0.04 0 0 0

λ – 0.84 0.19 2.37 – 7.08 4.01 11.74 – 5.29 2.37 10.5

α – 0.44 0.18 0.94 – 4.17 2.37 7.02 – 3.4 1.67 6.62
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Table 4: Acceptance probabilities for M-H steps in the MCMC run over the full dataset. This shows the

acceptance probability for the λ term, as well as the worst, the average and best acceptance probabilities

for the random effects for each of the three linear models in the BHM.

Model λ Worst τ Mean τ Best τ

Location (µ) 0.84 0.83 0.96 1

Precision (κ) 0.82 0.92 0.97 1

Shape (ξ) 0.82 0.8 0.94 1

Troms. Mamen & Iden (2010) analyzed precipitation measurements of various durations in Norway and443

found that the largest return levels for hourly precipitation is seen in the southernmost coastal counties,444

including the Oslo-region. Relatively large values are also seen along the southwestern coast. We note445

that our model estimates somewhat lower values in the Oslo-region than in the southernmost regions.446

This is also reflected by a slight underestimation of the largest values in Figure 6, where we plot our447

BMA estimates against the local MLE’s. We believe this is a feature of the relatively short observational448

series at many stations and the nature of intense showers. As the most extreme hourly events in this area449

are produced by small convective cells that hit locally, not all stations will experience them within their450

operative period, and the spread between single stations is larger. In constrast, in areas dominated by451

frontal and orographic precipitation the extreme values are more spatially consistent.452

The range of the confidence interval strongly depends on the number of stations nearby (cf. Fig. 1) and453

also on the magnitude of M20. In regions with very scarce station network (North-Norway and elevated454

areas), and where the terrain is more complex, the estimated return levels are subject to additional uncer-455

tainty both related to the gridding procedure in the covariates and the uncertain influence of these. We456

also recognize that there might be some correlation between the observational dataset and the covariates,457

as daily observations from the same locations go into the development of the gridded datasets. However,458

since we are using hourly observations these effects should be small.459
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Figure 5: Left: Map of the modeled 20 year return level (M20) for hourly precipitation in Norway,

estimated by the BMA approach. The dots refer to M20 estimated from a MLE fit to observations at the

69 locations. Right: The range of the 95% confidence band for modeled M20.
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Figure 6: Scatterplot of modeled M20 for hourly precipitation at the 69 locations estimated by the BMA

approach versus a local MLE fit to observations. Axis labels are in mm.
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We finally conclude with a discussion of the conditional independence assumption. The madogram460

(Cooley et al., 2006) is an analogue to the variogram that assesses spatial dependence in extreme values.461

Figure 7 shows the madogram taken over our data where the marginal model used is either the empirical462

distribution (left panel) or the MLE (right panel). As discussed in Section 2, individual sites exhibit463

missing information between years. In order to obtain a sensible plot, pairs of observations are included464

only when they share 10 or more years of data. In total, this still resulted in 1010 data points.465
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Figure 7: The madogram showing residual spatial dependence when using the empirical distribution for

the marginal (left panel) and the MLE (right panel).

Figure 7 does not display any tendency in ν towards 0 as h decreases and therefore shows no evidence466

of spatial dependence in observation pairs. This appears to be due to the highly local behavior of extreme467

short-duration precipitation in Norway and furthermore suggests that the conditional independence as-468

sumption discussed in Section 3.2 appears reasonable for constructing marginal return levels estimates469

using the observation at hand. Clearly, if observations were on a much finer scale, we would expect at470

that point to observe a higher degree of spatial residual dependence.471
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5 Discussion472

We have developed a BHM for producing spatially continuous maps of return levels for hourly precipita-473

tion in Norway. The model spatially interpolates the GEV parameters estimated from observations via474

their relationship to geographical and meteorological variables on a fine grid. The inclusion of variable475

uncertainty was handled through BMA, in particular the use of conditional Bayes factors and M-H pro-476

posals were formed using Taylor-series expansions of posterior densities. This system was then shown to477

perform well at estimating return levels, both in terms of magnitude and spatial distribution, and repre-478

sents an improvement on current methodology in Norway. As new and longer observational series become479

available, these can easily be incorporated, and the model can, with simple adjustments, be adapted to480

other durations and regions, given that a minimum amount of observations are available.481

Considerable work remains, both from the alghorithmic/methodological and application domains.482

While we have been happy with the present performance of the revised MCMC algorithm, block updating483

(Rue & Held, 2005) is a clear next step. Ultimately, incorporating concepts related to Riemannian484

manifold Hamiltonian sampling (Girolami & Calderhead, 2011), should be entertained, especially as the485

observation network grows. Furthermore, the current implementation is coded solely in R and therefore486

exhibits a considerably slower run-time than other comparable methods that use lower-level programming487

languages. A next step, once the algorithm is further developed methodologically, will be to rewrite the488

code base in e.g. C++.489

On a scientific level, it may be useful to consider segmenting Norway geographically to better address490

the various regimes present. In particular, a multiresolution approach to the Gaussian process could491

allow for the spatial over-dispersion to take on both global and local characteristics. As the quality of492

data improves, a peak-over-threshold approach, such as the GP model used in Cooley et al. (2007), could493

give more accurate estimation of local extremes. We would also like to test other covariates that might494

to a higher degree capture the spatial variability of the precision term κ and shape ξ, such as one that495

more accurately separates areas dominated by convective and frontal precipitation and one that reflects496
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orographic lifting. An obvious limitation in our model is the assumed stationarity in the covariates which497

leads to them competing over the degree of influence in different regions, thus an interesting next step498

would be to let the regression coefficients associated with the covariates vary in space.499

The latent variable approach applied here can reproduce the marginal behavior which is of main500

interest in infrastructure planning and support. However, it is important to note that the conditional501

independence assumption does not allow for estimation of single precipitation events since dependency502

between extremes at adjacent sites would not be modeled correctly. This means that while our model is503

able to capture climatological information at a given site, the total precipitation at this site at a specific504

time (in other words the weather) would most likely be under estimated.505
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A MCMC updates of the random effects and the related hyperparam-604

eters605

Here, we discuss the MCMC updates of the Gaussian processes τµs , τκs and τ ξs for each s ∈ So as well as606

the related hyperparameters αν and λν for ν ∈ {µ, κ, ξ}. Most of these parameters require a Metropolis-607

Hastings update and the associated Hastings ratios (e.g. Hoff, 2009) can be calculated in a straight-forward608

manner. That is, assume we want to update the parameter η in our model, where η is the current value. We609

then draw a new value η′ from a proposal distribution pr(η′|η, ·) and accept the proposal with probability610

min{r, 1} where611

r =
pr(y|η′, ·)pr(η′|·)pr(η|η′, ·)
pr(y|η, ·)pr(η|·)pr(η′|η, ·)

.

Here, pr(y|η, ·) denotes the likelihood of our full data set y which depends on η and potentially other612

parameters which are kept fixed throughout, and pr(η|·) is the prior distribution of η which similarly613

might depend on the other parts of the model. Given the complexity of our model, it is vital to design614

efficient proposal distributions which return good proposals and are robust in that they do not require615

fine-tuning for each individual data set.616

A.1 Random effects617

Under the Gaussian process model in (5) and (6), the conditional distribution of τs (omitting the index618

ν) conditional on the remaining values τSo\s = {τs′}s′∈So\s is given by619

τs|τSo\s, α, λ ∼ N (τ̂s, ςs), (11)

where620

τ̂s = Kα,λ
(
s,So \ s

)
K−1α,λ

(
So \ s,So \ s

)
τSo\s

ςs = Kα,λ
(
s, s
)
−Kα,λ

(
s,So \ s

)
K−1α,λ

(
So \ s,So \ s

)
Kα,λ

(
So \ s, s

)
.

We use this distribution as the prior distribution for τs.621
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For designing the proposal distribution, we employ the Gaussian approximation discussed, for instance,622

in Chapter 4.4 of Rue & Held (2005). Assume that the posterior distribution of the parameter τ ′s is written623

on the form624

pr(τ ′s|·) ∝ exp
(
f(τ ′s)

)
,

for some function f . A quadratic Taylor expansion of the log-posterior f(τ ′s) around the value τs gives625

f(τ ′s) ≈ f(τs) + f ′(τs)(τ
′
s − τs) +

1

2
f ′′(τs)(τ

′
s − τs)2

= a+ bτ ′s −
1

2
c(τ ′s)

2,

where b = f ′(τs)−f ′′(τs)τs and c = −f ′′(τs). The posterior distribution pr(τ ′s|·) may now be approximated626

by627

p̃r(τ ′s|·) ∝ exp
(
− 1

2
c(τ ′s)

2 + bτ ′s

)
,

the density of the Gaussian distribution N (b/c, c−1). We thus choose N (b/c, c−1) as our proposal distri-628

bution, where τs is the current state of the MCMC chain. From (11) it follows that629

f ′(τs) =

Ts∑
t=1

∂

∂τs
log pr(yts|τs, ·)−

τs − τ̂s
ςs

f ′′(τs) =

Ts∑
t=1

∂2

(∂τs)2
log pr(yts|τs, ·)−

1

ςs
,

where pr(yts|τs, ·) is the GEV density in (1) and Ts is the total number of observations available at location630

s.631

For the random effect in the location parameter µ, we obtain632

∂

∂τµs
log pr(yts|τµs , ·) = (ξs + 1)κsh(yts)

−1 − κsh(yts)
−ξ−1−1

∂2

(∂τµs )2
log pr(yts|τµs , ·) = ξs(ξs + 1)κ2sh(yts)

−2 − (ξs + 1)κ2sh(yts)
−ξ−1

s −2.

Let κ̂s = x>s θ
κ denote the fixed effect in the inverse scale parameter at location s and denote by εts =633

yts − µs the location residual at time t and location s. The derivatives with respect to the random effect634
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in the inverse scale parameter κ are then given by635

∂

∂τκs
log pr(yts|τκs , ·) =

1

κ̂s + τκs
− (ξs + 1)εtsh(yts)

−1 + εtsh(yts)
−ξ−1−1

∂2

(∂τκs )2
log pr(yts|τκs , ·) = − 1

(κ̂s + τσs )2
+ (ξs + 1)ξsε

2
tsh(yts)

−2 − ε2ts(ξs + 1)h(yts)
−ξ−1−2

The calculations for the shape parameter ξ are somewhat more involved. Let ξ̂s = x>s θ
ξ denote the636

fixed effect and set637

f1 =
ξ̂s + τ ξs + 1

ξ̂s + τ ξs
log h(yts)

f2 = exp
(
− (ξ̂s + τ ξs )−1 log h(yts)

)
We then obtain638

ḟ1 =
∂f1

∂τ ξs
= − log h(yts)

(ξ̂s + τ ξs )2
+
ξ̂ + τ ξs + 1

ξ̂ + τ ξs
h(yts)

−1εtsκs

ḟ2 =
∂

∂τ ξs
f2 = f2

[
log h(yts)

(ξ̂s + τ ξs )2
− h(yts)

−1κsεts

ξ̂s + τ ξs

]
,

from which it follows that639

∂

∂τ ξs
log pr(yts|τ ξs , ·) = −ḟ1 − ḟ2.

For the second derivative, similar calculations return640

∂2

(∂τ ξs )2
log pr(yts|τ ξs , ·) =

∂

∂τ ξs

(
− ḟ1 − ḟ2

)
= g1 − g2 − g3 + g4,

where641

g1 = −2(ξ̂s + τ ξs )−3 log h(yts) + (ξ̂s + τ ξs )−2h(yts)
−1κsεts

g2 = −h(yts)
−1εtsκs

(ξ̂s + τ ξs )2
− ξ̂s + τ ξs + 1

ξ̂s + τ ξs
h−2ε2tsκ

2
s

g3 = ḟ2

[
log h(yts)

(ξ̂s + τ ξs )2

]
+ f2

[
−2

log h(yts)

(ξ̂s + τ ξs )3
+
h(yts)

−1κsεts

(ξ̂s + τ ξs )2

]

g4 = ḟ2

[
h(yts)

−1κsεts

ξ̂s + τ ξs

]
− f2εtsκs

[
h(yts)

−1

(ξ̂s + τ ξs )2
+
h(yts)

−2εtsκs

ξ̂s + τ ξs

]
.
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A.2 Hyperparameters642

Each Gaussian process prior has two hyperparameters α and λ which determine the marginal variance643

and the range of the correlation in the random effects, respectively, see the model definition in (6). The644

updating steps for these parameters are the same for the three Gausssian processes, so we omit the index645

ν ∈ {µ, κ, ξ} in the following. Let E(λ) be the |So| × |So| matrix where [E(λ)]ij = exp(−dij/λ) and thus646

Kα,λ(So,So) = α−1E(λ), and denote by τ = {τs}s∈So the collection of τs at all locations s in So. Assuming647

that the prior for α is of the form α ∼ Γ(aα/2, bα/2), where the gamma distribution is parameterized in648

terms of shape and rate, simple calculations show that649

α|λ, τ ∼ Γ

(
|S0 + aα|

2
,
τ>E(λ)−1τ + bα

2

)
.

This parameter may therefore be sampled via a Gibbs step.650

For the range parameter λ we proceed in a similar manner as for the random effects above. However,651

the range parameter must fulfil λ > 0; our prior distribution is thus given by λ ∼ Γ(aλ, bλ) and we truncate652

the Gaussian proposal distribution at zero. Let D be the |So| × |So| matrix such that [D]ij = dij . We653

then have that654

log pr(τ |α, λ,D) ∝ −α
2
τ>E(λ)−1τ +

|So|
2

logα− 1

2
log |E(λ)|.

To ease the notation, define655

Ė(λ) =
∂

∂λ
E(λ) =

1

λ2
D ◦E(λ)

Ë(λ) =
∂

∂λ
Ė(λ) = − 2

λ3
[D ◦E(λ)] +

1

λ2
[D ◦ Ė(λ)],

where ◦ denotes the Hadamard product. Setting656

M(λ) =
∂

∂λ
E(λ)−1 = E(λ)−1[−Ė(λ)]E(λ)−1,

we have that657

∂

∂λ
log pr(τ |α, λ,D) = −α

2
τ>M(λ)τ − 1

2
tr
{
E−1(λ)Ė(λ)

}
.
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Further calculations give658

N(λ) =
∂

∂λ
M(λ) = M(λ)[−Ė(λ)]E(λ)−1 +E(λ)−1[−Ë(λ)]E(λ)−1

+E(λ)−1[−Ė(λ)]M(λ)

tr
{
L(λ)

}
=

∂

∂λ
tr
{
E(λ)−1Ė(λ)

}
= tr

{
M(λ)Ė(λ) +E(λ)−1Ë(λ)

}

from which it follows that659

∂2

(∂λ)2
log pr(τ |α, λ,D) = −α

2
τ ′N(λ)τ − 1

2
tr{L(λ)}

These results, together with the derivatives of the Γ(aλ, bλ) prior distribution then give660

f ′(λ) = −α
2
τ ′M(λ)τ − 1

2
tr
{
E(λ)−1Ė(λ)

}
− bλ + (aλ − 1)λ−1

f ′′(λ) = −α
2
τ>N(λ)τ − 1

2
tr{L(λ)} − (aλ − 1)λ−2.

B Prior Settings and Sensitivity661

We discuss the prior settings for our model and give some indication of the sensitivity of our results to662

these specifications. For the parameters θκ and θξ we chose standard normal priors N (0, Ip). In point of663

fact, we saw almost no change in behavior at different settings of these priors. The prior for θµ, however,664

required a slight modification, where we set θ0 = (8, 0, . . . , 0). We found that if the prior on the constant665

in this linear model was set to 0, the lack of identification in the linear specification caused the random666

effects to occasionally become “stuck” at a mean value of 8 while the constant term itself went to 0.667

This is a clear issue with identification (see van Dyck & Meng, 2001, for a detailed study of these sorts668

of issues). Centering the prior for the constant term about 8 is not only considerably more sensible in669

this application than 0, it nullifies these identification issues. Table 5 shows the settings for the gamma670

distribution components for each of the Gaussian process parameters in each of the linear models. These671
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values were chosen based on ellicitation of the experience and intuition of the meteorologists working on672

this project.

Table 5: Settings for the prior parameters of the Gaussian Process components used in our study

Model µ κ ξ

Parameter α λ α λ α λ

a 2 2 2 1.5 2 2

b 6 2 2 1.5 1 1

673

After running the full model with these settings, we tested the sensitivity to these settings. We did674

this by running 24 additional scenarios, where each hyper prior parameter was halved and doubled while675

holding all other parameters at the levels reported in Table 5. Table 6 shows the results of this study.676

In each case, we report the median posterior value of the α and λ variables for the model affected by a677

given alternative. We note that technically all models would be affected by each alternative. In practice,678

spill-over effects to other models were minimal.679

Table 6 shows that the posterior estimates of the hyperparameters are indeed affected by prior choices,680

in the directions that would be expected. This is understandable, as hyperparameters are often sensitive681

to prior choice in hierarchical models. However, Figure 8 shows that while the estimates of the hyperpa-682

rameters are affected by prior choice, there is barely any concomitant effect on estimated return levels. In683

Figure 8 we see the estimated return level for Station 18701. The black line shows the median estimate684

from the base prior choice, while the grey lines show medians from alternative choices. For reference, the685

shaded volume shows the 90% posterior interval for each return level under the base prior choice. Finally,686

we considered both the case where Station 18701 is included during estimation, and when its return levels687

are estimated out of sample.688

Figure 8 clearly shows that while the hyperparameter estimates are sensitive to prior settings, this689

has almost no subsequent effect on return level estimates. The estimates for the out of sample study690
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Table 6: Posterior median of the α and λ parameter for a given Gaussian process model when one of the

associated prior parameters is altered by being

Model µ κ ξ

Scenario α λ α λ α λ

Base 0.437 0.825 4.183 7.069 3.4 5.29

aα Halved 0.335 1.078 3.81 7.323 2.864 5.682

aα Doubled 0.614 0.606 4.691 6.755 4.122 4.912

bα Halved 0.579 0.732 7.094 5.723 4.141 4.827

bα Doubled 0.314 1.121 2.826 8.179 2.546 5.905

aλ Halved 0.584 0.373 4.249 6.716 3.564 4.629

aλ Doubled 0.349 1.515 4.044 7.813 3.106 6.733

bλ Halved 0.319 1.716 3.498 11.542 2.876 8.538

bλ Doubled 0.522 0.528 4.974 4.211 3.979 3.192
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(b) Out of Sample

Figure 8: Posterior median return levels for Station 18701–both in and out of sample–under the base

prior setting (black line) and alternative cases (grey lines) along with 90% posterior interval under the

base prior (shaded volume).
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are naturally slightly more diffuse than for the in sample estimates, but these differences are minor in691

comparison to the overall statistical uncertainty in these values. This indicates the prior values we have692

chosen are not having undue influence on our estimated return level maps.693
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