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There is no doubt that global 
temperatures are increas-
ing, and that human 

greenhouse gas emissions largely 
are to blame, but how do we go 
about measuring global tempera-
ture? It is not just a matter of reading 
an instrument. 

In Figure 1, we see a variety of 
curves depicting annual global mean 
temperature. They are not the same, 
although they all show a strong 
increase after about 1980. Differ-
ent groups, using different data and 
different techniques, have computed 
the different curves. It would be 
hoped that the curves would all be 
measurements of the annual global 
mean temperature, but global mean 
temperature is not something that 
can be measured directly using an 
instrument. On the other hand, it is 
the quantity most commonly used 
to indicate global warming. 

How We Know that the 
Earth is Warming
Peter Guttorp

Where do the numbers come 
from? We will go through some 
issues that are associated with 
determining surface temperature, 
and illustrate some of the uses of  
these temperatures.

Local Daily Mean
The basic measurements that go 
into the calculation of global mean 
temperature are readings of ther-
mometers or other instruments 
determining temperature. For land 
stations, these instruments are typi-
cally kept in some kind of box in 
an open, flat space covered with 
grass (see Figure 2). The box keeps 
direct sunlight from hitting the  
instrument but allows wind to pen-
etrate the box. 

Readings are done at different 
schedules in different countries. The 
modern instruments measure con-
tinuously, but the measurements are 

not always recorded. In the United 
States, daily maximum and mini-
mum temperature are recorded, and 
their average is the daily mean tem-
perature. In Sweden, three hourly 
readings throughout the day are 
combined with the minimum and 
the maximum to calculate the daily 
mean temperature. In Iceland,  
linear combinations of two read-
ings in the morning and afternoon 
are used.

Modern instruments can com-
pute the daily average automatically, 
but to compare to historical data, a 
specific averaging method has to 
be applied.

Local Annual  
Mean Temperature
Once you have a daily mean tem-
perature, it is easy to compute an 
annual mean temperature: Sum all 
the daily means and divide by the 
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Figure 1. Five estimates of the annual global mean anomalies relative to 1981–2010: Black is from Berkeley Earth, 
red from the UK Met Office Hadley Center, purple from the Japanese Met Office, blue from the Goddard Institute for 
Space Science (GISS), and green from the National Oceanic and Atmospheric Administration (NOAA).

Figure 2. Thermometer and other instruments at Stockholm Observatory, where measurements have been made daily 
since 1756. The station has been moved short distances twice during this time. The box to the left is a Stephenson 
screen, and was used for the measurements until 2006. The pipe sticking up in the middle contains the modern mea-
surement devise that has been used since then. 
Photograph courtesy of Peter Guttorp.

number of days in the year. What 
is often used instead of the annual 
mean is something called a mean 
anomaly: How much did the year 
deviate from the average over a ref-
erence period? This makes it easier 
to compare sites at different alti-
tudes, for example. A station at a 
higher elevation always tends to be 
colder than one at a lower elevation, 
but anomalies allow us to see if both 
sites are colder than usual.

The largest collection of land sta-
tion data, used in the Berkeley Earth 
global temperature series, has some 
39,000 stations and a total of 1.6 
billion temperature measurements.

Sea Surface 
Temperature
Since more than two-thirds of the 
surface of our planet is water, it is 
not enough to take temperature 

measurements on land to compute 
a global average. Ocean-faring 
ships have long kept daily logbooks,  
with measurements of wind, air 
temperature, and water tempera-
ture. The water temperature used 
to be taken in a bucket of seawater. 
Later, it would be measured at the 
cooling water intake for the motor. 
Of course, ships do not travel every-
where on the oceans and, therefore, 
there are fairly large areas of ocean 
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scientists have developed some 
methods on their own (through 
what they call objective analysis). 

In essence, a statistician would 
treat the problem as one of regres-
sion, with data that are spatially 
dependent. The process has to take 
into account the fact that data are 
on a globe and not in the plane. The 
average temperature anomaly for 
land and ocean can be computed 
separately, and the global mean 
temperature would then be the area 
weighted average of the two means. 

Uncertainty
There are several sources of uncer-
tainty in the determination of global 
mean temperature. First of all, each 
measurement has error associated 
with it. Second, how to deal with 
missing areas of measurement 
causes uncertainty. The choice of 
measurement stations can also be 
a source of uncertainty, as can the 
homogenization of measurements, 
such as when stations are moved 
or measurement devices updated. 
There are other sources of uncer-
tainty as well. 

It is important to try to quan-
tify the uncertainty in global mean 
temperature. Different groups 
approach this issue in different 
ways. Figure 3 uses the Hadley 
series uncertainties to compute a 
simultaneous Bonferroni-based 
95% confidence band for global 
average temperature. The term 
simultaneous means that the con-
fidence band covers all the true 
temperatures at the same time 
with 95% probability, as opposed 
to a pointwise confidence interval, 
which only covers the true tem-
perature at a particular time point 
with 95% probability.

Ranking
In January 2017, NOAA made the 
claim that the global mean tem-
perature had set a record for the 
third straight year. This statement 

A simultaneous confidence band for n normally distributed 
estimates can be obtained by the Bonferroni inequality  

In fact, we want the complement—   

Let Ei be the event that the true value at time i is not covered by its 
(pointwise) confidence set. If we let each confidence set have level 
1   / n, we see that the probability that all parameters (in our 
case, the global average temperature for each year) are covered 
by their respective intervals is at least 1  n ( / n) = 1  .The 
confidence band then is ti  - 1  (1   / n)se(ti ) where ti is the 
estimated global mean temperature for year i, se(ti) is the standard 
error of the estimate, and -1 is the normal quantile function (inverse 
of the cdf).

The main groups estimating global mean temperature 

• Hadley Center of the UK Met Office with the Climate 
Research Unit of the University of East Anglia, United 
Kingdom 

• Goddard Institute for Space Science (part of NASA), USA 

• National Centers for Environmental Information (part of 
NOAA), USA

• Japanese Met Office, Japan

• Berkeley Earth Project, USA

.

.

where we have no sea surface tem-
perature measurements from ships. 

In some of these areas, there are 
buoys that measure the temperature. 
Over the last several decades, there 
have been satellite measurements of 
sea surface temperature; for over a 
decade, floats that measure the tem-
perature profile of the water have 
been dropped all over the oceans. 

The largest collection of ocean 
data, the ICOADS 3.0 data set, uses 
about 1.2 billion different records.

Combining All  
the Measurements
To combine the many measure-
ments over land and oceans into 
an average global temperature 
requires estimating the temperature 
anomaly where there are no actual 
measurements, such as on a regular 
grid, and then averaging the esti-
mates and measurements (if any) 
over the grid. Such estimation tools 
are derived in what is called spatial  
statistics, although atmospheric  
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Figure 3. Hadley series with red dashed line being the lower 95% simultaneous confidence bound on the 2016 
temperature and blue dashed line the upper bound on the 2015 temperature.

Figure 4. 10 realizations (blue) of possible Hadley temperature series and the Hadley estimate of global mean tem-
perature (black).

is not quite accurate: For the third 
straight year, the estimated global 
mean temperature had set a record. 
In fact, four of the five series had 
this feature, while the Berkeley 
series showed 2005 as warmer than 
and 2010 tied with 2014. Only two 
of the estimates (the Hadley series 
and the Berkeley series) provide 
uncertainty estimates. 

Figure 3 shows the Hadley series 
with associated simultaneous 95% 
confidence bands. If the 2015 actual 
temperature (which we do not 

know) were at the high end of its 
confidence band (blue dashed line), 
and the 2016 was at the low end of 
its band (red dashed line), it is quite 
possible that 2015 could have been 
substantially warmer than 2016, but 
that 2016 clearly was warmer than 
any year before 1998.

How can we say something about 
the uncertainty in the rankings as 
opposed to the estimates? One way 
is to simulate repeated draws from 
the sampling distribution of the 
estimates. Since we are averaging 

a large number of measurements, 
many of which are nearly uncorre-
lated, a central limit theorem leads 
us to treat the estimates as normal, 
with mean equal to the actual esti-
mate and standard deviation equal 
to the standard error of the estimate. 
Figure 4 shows 10 such realizations 
of the Hadley temperature series.

For each of the realizations, we 
can calculate the rank of 2016. The 
distribution of that rank tells us 
how likely 2016 is to be the warm-
est year on record: It is warmest 
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Figure 5. Global annual mean temperature anomalies from 32 CMIP5 models with historical simulations (gray), and 
the Hadley Center data series (black). Reference period is 1970–1999.

Figure 6. QQ-plots of historical climate model simulations against Hadley Center data or two 30-year periods. The 
gray lines are simultaneous 95% confidence bands, and the red lines are lines of equal distributions.
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Many tests have been developed to compare some aspects of 
distributions, such as means or medians. To compare two entire 
distributions, we can plot the quantiles of one against the other 
(called a quantile-quantile plot or QQ-plot). An advantage of 
this plot is that if the distributions are the same, then the plot will 
be a straight line. Of course, we will be estimating the quantiles 
from data, so there will be uncertainty. Another advantage of the 
QQ-plot is being able to develop simultaneous confidence bands, 
enabling a simple test of equal distributions: Does the line y=x fit 
inside the confidence band?

in 58% of the simulations, while 
2015 is warmest in 42%. In 10,000 
simulations, 2016 was as low as the 
eighth-warmest in one of them.

How about all three years—
2014–2016—being record- 
breakers? That happened in 21%  
of the simulations, and in the  
actual Hadley estimates, of course.

Models and Data
Climate, from a statistical point of 
view, is the distribution of weather. 
Climate change means that this 
distribution is changing over time. 
The World Meteorological Organi-
zation recommends using 30 years 
to estimate climate. This definition 
indicates, for example, that it does 
not make sense to look at shorter 
stretches of data to try to assess 
questions such as “Is global warm-
ing slowing down?”

What is a  
Climate Model?
A climate model is a deterministic 
model describing the atmosphere, 
sometimes the oceans, and some-
times also the biosphere. It is based 
on a numerical solution of coupled 
partial differential equations on a 
grid. In fact, the equations for the 
atmosphere are essentially the same 
as for weather prediction, but the 
latter is an initial value problem 
(we use today’s weather to forecast 
tomorrow’s) of a chaotic system, 
while the climate models has to 
show long-term stability. Many 
processes, such as hurricanes or 
thunder storms, are important in 
transferring heat between different 
layers in the model, but often take 
place at a scale that is at most simi-
lar to a grid square, and sometimes 
much smaller. 

Different climate models deal 
with this subgrid variability dif-
ferently and, as a consequence, 
the detailed outputs are different. 
CMIP5 is a large collection of 
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model runs, using the same input 
variables (solar radiation, volcanic 
eruptions, greenhouse gas concen-
trations, etc.). These model outputs 
were used for the latest IPCC report 
in 2013. Figure 5 shows the global 
mean temperature anomalies (with 
respect to 1970–1999) with the cor-
responding Hadley Center series.

Comparing 
Distributions
It is  not trivial to compare climate 
model output to data. Remember, 
the climate model represents the 
distribution of the data. The obser-
vations in Figure 5 are, therefore, 
not directly comparable to the 
model runs. Instead, we need to 
compare the distributions of model 
output and data, respectively.

Figure 6 compares these distri-
butions using QQ-plots for two 
different 30-year stretches. In both 
cases, the distribution of the data 
fit the distribution of the ensemble 
of model outputs quite well, in that 
the red y=x line falls inside the 
simultaneous 95% confidence 
bands. Since we have 32 x 30 
observations of the models, and 
only 30 of the data, the empirical 
tails of the model distribution are 
much longer than the tails of the 
data, but the confidence band is 
quite wide in the tails, meaning 
that we are very uncertain there. 
Thus, for these two time intervals 

and for the global mean tempera-
ture variable, the ensemble of 
CMIP5 models and the Hadley 
Center data seem to have the same 
distribution—they are describing 
the same climate.  

Further Reading
Arguez, A., Karl, T.R., Squires, 

M.F., and Vose, R.S. 2013. 
Uncertainty in annual rank-
ings from NOAA’s global tem-
perature time series. Geophysical 
Research Letters 40:5,965–5,969.

Doksum, K. 1974. Empirical prob-
ability plots and statistical infer-
ence for nonlinear models in the 
two-sample case. Ann. Statist. 
2:267–277.

Guttorp, P. 2014. Statistics and 
Climate. Annual Reviews of 
Statistics and its Applications 1, 
87–101.

Katz, R.W., Craigmile, P.F., Gut-
torp, P., Haran, M., Sanso, B., 
and Stein, M.L. 2013. Uncer-
tainty analysis in climate change 
assessments. Nature Climate 
Change 3, 769–771.


