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Advanced Metering Infrastructure

▪ a part of smart grid framework 

▪ collect, process & report data from large number of devices

▪ monitoring, alarm, billing, remote home control, intrusion 

detection, fault tolerance, software updates

▪ optimize the usage of electrical resources
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Motivation

► Data integrity is one of the concerns

▪ Deng, R., Xiao, G., Lu, R., Liang, H., Vasilakos, A.V.: False 

data injection on state estimation in power systems attacks, 

impacts, and defense: A survey.IEEE Transactions on

Industrial Informatics 13(2), 411{423 (April 2017).

► Message authentication schemes are computing-intensive

► Numerous wireless devices with limited resources 

► Trading off security and computational constraints 

▪ AMIs must carefully decide when, what, and how to 

authenticate 
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Problem Outline
► Multiple adversaries can coexist, cooperate and evolve

▪ To meet the challenges of possible intelligent cooperation between 

adversaries and their ability to learn from each other experience

► Defenders can also cooperate and learn from each other 

experience the effectiveness of defensive strategies should 

be addressed in multiple defender scenarios

▪ To help nodes of an AMI to cooperate and to work out a joint 

protection

We need a tool that analyses behavior & models dynamics 

 Classical GT: used for decision making in smart grid frameworks but it 

is a static approach and it is rational

 EGT: borrowed notation from CGT but logic is different!
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Main Concepts of EG

► A (large) population of players

▪ Evolving from generation to generation

► Two key elements that govern evolution

▪ Mutation

▪ Selection

► Mutation: Evolutionary Stable Strategy

▪ a group of players choosing ESS will not be replaced by 

players that choose a different strategy 

► Selection: Replicator dynamics

◦ governs evolution of populations
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Evolutionary Stable Strategy

► Main group of players in a population chooses strategy 𝑥

► Small group of mutants whose population share is 𝜖
choosing a different strategy 𝑦

► Strategy 𝑥 is evolutionary stable if it is robust against any 

alternative mutant strategies 𝑦

𝑈 𝑥, 1 − 𝜖 𝑥 + 𝜖𝑦 ≥ 𝑈 𝑦, 1 − 𝜖 𝑥 + 𝜖𝑦
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Hawk-Dove Game example

► Players competing for a resource 𝑣 at cost 𝑐

► 2 possible strategies: hawk and dove

► If 𝑣 > 𝑐, then the players choose “Hawk”

Payoff matrix
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Hawk Dove

Hawk ( Τ1 2 (𝑣 − c), Τ1 2 (𝑣 − c)) (𝑣, 0)

Dove (0, 𝑣) ( Τ1 2𝑣, Τ
1
2𝑣)



Suppose:

► A population playing “Dove” 

► A small group of players (mutation) starts playing “Hawk”

► This group will invade the population, because they will 

have greater payoff. 
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Replicator dynamics

► Dynamics of populations that lead to evolutionarily stable 

strategies

► We consider: 

▪ Population of N players 

▪ Set of strategies S. 

▪ 𝑁𝑖 of players assigned strategy 𝑆𝑖
▪ Proportion of population playing strategy 𝑆𝑖 at time 𝑡

𝑥𝑖(𝑡) = ൗ𝑁𝑖
𝑁

▪ Each period, a player is randomly matched with another 

player and they play a game

◦ Payoff matrix 𝑃𝑖,𝑗
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Replicator dynamics

► Expected utility for strategy 𝑠𝑖 given the population 

distribution X 

𝑈𝐸,𝑖 𝑠𝑖 , 𝑋 =

𝑗=0

𝑁

𝑥𝑗(𝑡)𝑃𝑖,𝑗

► Average utilily

ഥ𝑈𝐴 𝑋 = 

𝑖=0

𝑁

𝑥𝑖 𝑡 𝑈𝐸,𝑖
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Replicator dynamics

► Dynamics of the population share 𝑥𝑖
𝜕𝑥𝑖(𝑡)

𝜕𝑡
= (𝑈𝐸,𝑖 𝑠𝑖 , 𝑋 − ഥ𝑈𝐴 𝑋 )𝑥𝑖(𝑡)

► ESS can be reached at
𝜕𝑥𝑖(𝑡)

𝜕𝑡
= 0

► Intuitively:

▪ The greater is the utility of a strategy relative to the average utility, 

the greater is its relative increase in the population. 

▪ The reproduction rate of each strategy depends on the payoff 

(players will switch to strategy that leads to higher payoff)
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Why would EG matter?
► Evolutionary stable strategy (ESS) is a refinement to the 

Nash equilibrium 

▪ Nash equilibrium is not necessarily efficient, (Dubey, Pradeep. 

“Inefficiency of Nash Equilibria.” Mathematics of Operations 

Research, vol. 11, no. 1, 1986 )

▪ multiple Nash equilibria in a game

► The strong rationality assumption is not required 

► Evolutionary game is based on an process

▪ is dynamic in nature 

▪ can model and capture the adaptation of players to change 

their strategies and reach equilibrium over time

▪ populations can evolve according to the relative success of 

individual strategies compared to the overall population
13



AMI Model
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EG formulation: integrity strategy space
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Attacker k (Cost

to attack)

Node i (Cost to 

defend)

𝑠𝑖
𝑑𝑖

𝑣𝑖

𝑠 ∈ 0,1 𝑁

𝑑 ∈ 0,1 𝑁



Game formulation
Probability distributions over strategy spaces

Attackers (K strategies): 𝜎 𝑡 = (𝜎0 𝑡 , … , 𝜎𝐾 𝑡 )

Defenders (M strategies):  𝛿 𝑡 = (𝛿0 𝑡 , … , 𝛿𝑀 𝑡 )

Node 𝑖 payoffs for (𝑘,𝑚):

𝑈𝐷𝑖 = − 𝑣𝑖 × 1 − 𝑑𝑖
𝑚 × 𝑠𝑖

𝑘 + 𝑠𝑖
𝑘 × 𝑐𝑖

𝑑 −

𝑗=0

𝜃(𝑖)

𝑣𝑗 × (1 − 𝑑𝑗
𝑚) × 𝑠𝑖

𝑘

𝑈𝐴𝑖 = 𝑣𝑖 × 1 − 𝑑𝑖
𝑚 × 𝑠𝑖

𝑘 + 𝑠𝑖
𝑘 × 𝑐𝑖

𝑎 +

𝑗=0

𝜃(𝑖)

𝑣𝑗 × (1 − 𝑑𝑗
𝑚) × 𝑠𝑖

𝑘

Payoffs: 𝑈𝐷,𝐴
𝑘,𝑚 = σ𝑖=0

𝑁 𝑈𝐷𝑖/𝐴𝑖
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Game formulation
Expected utilities

𝑈𝐸𝐴 𝑠𝑘 , 𝛿 =

𝑗=0

𝑀

𝛿𝑗(𝑡)𝑈𝐴
𝑘,𝑚

𝑈𝐸𝐷 𝑑𝑚, 𝜎 = σ𝑗=0
𝐾 𝜎𝑗(𝑡)𝑈𝐷

𝑘,𝑚

Average utilities

ഥ𝑈𝐴 𝜎, 𝛿 = 

𝑖=0

𝐾

𝜎𝑖 𝑡 𝑈𝐸𝐴 𝑠𝑘 , 𝛿

ഥ𝑈𝐷 𝜎, 𝛿 = σ𝑖=0
𝑀 𝛿𝑖 𝑡 𝑈𝐸𝐷(𝜎, 𝑑𝑚) 
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Replicator Equation

Attackers at time t:
𝜕𝜎𝑘(𝑡)

𝜕𝑡
= (ഥ𝑈𝐴 𝜎, 𝛿 − 𝑈𝐸𝐴 𝑠𝑘 , δ )𝜎𝑘(𝑡)

Defenders at time t:
𝜕𝛿𝑚(𝑡)

𝜕𝑡
= (ഥ𝑈𝐷 𝜎, 𝛿 − 𝑈𝐸𝐷 𝑑𝑚, 𝜎 )𝛿𝑚(𝑡)
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Expected utility for

strategy i
Average expected

utility



Case study: AMI topology & setup  
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Case study: Game parameters
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► 3 attack strategies

• not attack node

• moderate attack

• fully attack node

► 3 defense strategies

• not protect node

• moderate protect

• fully protect node



Case study: Game parameters
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Evolution of average utilities
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Average attack and defense rates
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Evolution of defence rate
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Evolution of attack rate
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Summary and future work

► Modeled attacks/defenses on data integrity as an 

evolutionary game 

► Studied the interactions between the attackers and the AMI 

nodes

► Larger trees for AMIs (Scalability!)

► Dynamic tree as option for defender’s strategy space

► How to use the results and how to adapt defense in real 

time?

► Combine with machine learning for benchmarking and 

optimization
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