
Predicting Mortgage Default using Convolutional

Neural Networks

H̊avard Kvammea,∗, Nikolai Sellereiteb, Kjersti Aasb, Steffen Sjursenc

aDepartment of Mathematics, University of Oslo, Niels Henrik Abels hus Moltke Moes
vei 35, 0851 Oslo, Norway

bStatistical Analysis, Machine Learning and Image Analysis, Norwegian Computing
Center, Gaustadalleen 23a, 0373 Oslo, Norway

cGroup Risk Modelling, DNB ASA, Dronning Eufemias gate 30, 0191 Oslo, Norway

Abstract

We predict mortgage default by applying convolutional neural networks to

consumer transaction data. For each consumer we have the balances of the

checking account, savings account, and the credit card, in addition to the

daily number of transactions on the checking account, and amount trans-

ferred into the checking account. With no other information about each

consumer we are able to achieve a ROC AUC of 0.918 for the networks, and

0.926 for the networks in combination with a random forests classifier.

Keywords: Consumer credit risk, Machine learning, Deep learning,

Mortgage default model, Time series

∗Corresponding author. Tel: +47 917 02 717.
Email addresses: haavard.kvamme@gmail.com (H̊avard Kvamme),

nikolai.sellereite@nr.no (Nikolai Sellereite), kjersti.aas@nr.no (Kjersti Aas),
sasjurse@gmail.com (Steffen Sjursen)

Preprint submitted to Expert Systems With Applications February 16, 2018

Manuscript
Click here to download Manuscript: article.pdf Click here to view linked References

http://ees.elsevier.com/eswa/download.aspx?id=727031&guid=2405d609-eded-4512-962f-a401ee728931&scheme=1
http://ees.elsevier.com/eswa/viewRCResults.aspx?pdf=1&docID=50361&rev=3&fileID=727031&msid={C4762D0C-E714-43A6-8913-BB74A3039A21}

1. Introduction

The ability to discriminate bad customers from good ones is important

for banks and other lending companies. A small improvement in prediction

accuracy may result in a large gain in profitability. Early identification of

high risk consumers may aid the prevention of loan defaults and help the

consumers to better manage their personal economy.

In credit scoring, one builds a model for the correspondence between

default and various loan obligor characteristics based on a relevant sample

of people, and use this model to predict the probability that a person will

repay his debts.

There is an extensive literature on credit scoring, both for assessing pri-

vate loans (Butaru et al., 2016; Chi and Hsu, 2012; Khandani et al., 2010;

Sousa et al., 2016) and corporate loans (Jones et al., 2015; Ravi Kumar

and Ravi, 2007). Some recent work include Chen et al. (2017), Xia et al.

(2017), Abellán and Castellano (2017), and Barboza et al. (2017). For an

overview and comparison of papers, see Garćıa et al. (2014) and Lessmann

et al. (2015).

All the papers above attempt to model delinquencies and defaults by

applying machine learning algorithms to a set of explanatory variables. While

there are variations in the information that is available to researchers (see

e.g. Lessmann et al. (2015)), the constructed explanatory variables tend to

be quite similar. Papers typically use information from credit bureaus, such

as number of outstanding accounts, delinquent accounts, and balance on

other loans; individual account characteristics, such as current balance of

the individuals accounts and monthly income; and demographic data, such

2

as age and marital status. Butaru et al. (2016) also include macroeconomic

variables, such as interest rates and unemployment statistics, as an attempt

to make the delinquency model generalize better over longer periods of time.

As all these papers use similar explanatory variables, the researchers com-

monly explore differences between scoring models rather than the benefit

of adding new explanatory variables. There are however some exceptions:

Khandani et al. (2010) explore the benefit of adding information from de-

tailed purchase volumes to their models. This includes travel expenses, gas

station expenses, bar expenses, etc. Chi and Hsu (2012) also introduce con-

sumer transaction data through an aggregated measure called average uti-

lization ratio of credit.

In this paper we further investigate how transaction data can be used

for credit scoring. In a joint research with Norway’s largest financial ser-

vice group, DNB, we use transaction data to predict mortgage defaults. In

2012, the average Norwegian made 323 card transactions, where 71% of the

value transferred was through debit payments (Norges-Bank, 2012). Hence,

transactional data may provide a useful description of user behavior, and

subsequently consumer credit risk.

The transaction information consists of the daily balances on consumers’

credit, checking, and savings accounts, in addition to the daily number of

transactions on the checking account, and the amount transferred into the

checking account. Our dataset is thus a collection of time series for each

customer. We do not use any of the common covariates mentioned above, as

our goal is to investigate the value of the information available in the time

series data. In a production setting, our model can be combined with existing

3

risk models to improve the overall performance.

The idea behind this paper is to use deep learning, or deep neural net-

works (LeCun et al., 2015), to predict mortgage defaults. Deep learning

have had a dramatic impact in fields like image classification, text mining,

and speech recognition. Common to these three fields is that the data is un-

structured. Thus, the original data (pixels, letters, words, frequencies) needs

to be transformed into meaningful covariates before they can be passed to a

classical algorithm. Until recently, such tasks have been solved by the man-

ual creation of informative covariates from the data. Deep neural nets, on

the other hand, process the data in a sequential manner, learning multiple

levels of abstraction. Hence, a deep net use data to “learn” how to create

good explanatory variables for the problem at hand.

In this paper we apply a type of deep neural networks denoted convo-

lutional neural networks (CNNs). To the extent of our knowledge, we are

the first to apply CNNs to consumers’ account balances to predict mortgage

defaults. Transaction data has previously been used for credit scoring, see

e.g. Khandani et al. (2010). However, most existing work relies on heuris-

tic hand-crafted feature design. It is often hard for us humans to figure

out appropriate features or covariates for credit scoring. Hence, the purpose

of this study is to use a convolutional neural network to automate feature

engineering from the raw time series, in a systematic way. The learned fea-

tures resulting from such a model may be viewed as the higher level abstract

representation of the low level raw time series signals.

There have been some successful attempts applying deep neural nets to

time series data in other application areas. In the field of human activity

4

recognition, Yang et al. (2015), Ordóñez and Roggen (2016), and Hammerla

et al. (2016) use sensor data to recognize activities improving the state-of-

the-art. Zheng et al. (2014), Prasad and Prasad (2014), Cui et al. (2016),

and Le Guennec et al. (2016) present network structures for time series clas-

sification across multiple domains. Also, Sirignano et al. (2016) assess mort-

gage risk using a deep net on 294 explanatory variables. However, on the

contrary to our work, they use multilayer perceptrons instead of CNNs, and

the majority of the variables are loan-level feature and performance vari-

ables. The deep net is mainly used to identify complex interactions between

the input variables.

Much work in credit scoring is related to regulatory frameworks such as

the Basel Accord. The Basel II regulations require transparency in the loan-

granting process. Due to their non-linear structure, CNNs are usually con-

sidered as black boxes. That is, it is usually not obvious what exactly makes

them arrive at their predictions. However, since this lack of transparency

in many applications is considered a major drawback, the development of

methods for explaining and interpreting deep learning models has recently

attracted increased attention, see e.g. Shrikumar et al. (2016), Samek et al.

(2017), Lundberg and Lee (2016), and Ribeiro et al. (2016). Hence, it is not

obvious that CNNs will remain inappropriate for building regulatory models

in the future. Meanwhile, a credit scoring system based on a CNN may be

useful in many other applications. Financial institutions may e.g. use them

in their own internal risk estimation or as part of a validation exercise (Pillar

2 of the Basel framework).

A lender commonly makes two types of credit decisions: first, whether to

5

grant credit to a new applicant, and second, how to deal with existing appli-

cants, including whether to increase their credit limits. The first problem is

denoted application scoring and the latter behavioral scoring. The majority

of previous work focus on application scoring, while prior work on behav-

ioral scoring is much less developed, see e.g. Thomas (2000) and Kennedy

et al. (2013). The methodology proposed in this paper may be used both

for application and behavioral scoring. Consumer transaction histories con-

tain implicit repayment behavior, making them suitable for behavior scoring.

However, as the new Revised Payment Service Directive (PSD2) becomes im-

plemented across the EU and the European Economic Area during 2018, the

banks (and other lending institutions) will have access to transaction data

even for new customers. Hence, this kind of data may also be used for ap-

plication scoring.

The remainder of the paper is organized as follows. In Section 2 we

describe our dataset and how it was processed before fitting the neural net-

works. In Section 3 we introduce convolutional neural networks, and show

how they were applied to our problem. In Section 4 we evaluate the perfor-

mance of the proposed algorithms. Finally, in Section 5, we summarize our

findings.

2. Data

This study is a collaboration with the largest Norwegian financial service

group, DNB, using data from their banking services. The dataset consists

of a sample of 20,989 customers who either previously had a mortgage, or

got approved for a mortgage at some point between January 2012 and April

6

2016. For every customer we have the daily balances on their checking ac-

count, savings account, and credit card, in addition to the daily number of

transactions on the checking account. We also know the daily amounts that

are transferred into the checking account (e.g. from salary, payments from

friends, etc.). Hence, we have a set of five time series for each customer. Fi-

nally, adding the sum of checking account, savings account, and credit card

as a new time series, we end up with a total of six series. A summary of the

six series can be found in Table 1.

Table 1: Time series

Series Abbrev. Explanation

Checking account ch Balance on the checking account.

Savings account sa Balance on the savings account.

Credit card cc Balance on the bank issued credit card.

Checking transactions trch Number of transaction on the checking account.

Into checking in Sum of transactions into the checking account.

Sum sum Sum of series ch, sa, and cc.

The time series used in this paper. Each time series consists of values aggregated to a daily level.

For a customer to be granted a mortgage by DNB, he or she is required to

open a checking account at the bank, given that this criterion is not already

satisfied. There are however no requirements as far as savings accounts and

credit cards are concerned. As a result, there are many missing series in the

dataset.

Our definition of default is the one used in Basel II, i.e. that the obligor

is past due for more than 90 days on the obligation to the bank. Housing

7

prices in Norway have generally increased steadily since 2003, and thus, the

mortgage market has seen few defaults (Finanstilsynet, 2016). The lack of

defaults poses a problem due to the fact that our algorithms need large

datasets to generalize well. In addition to this, the large class imbalance

(ratio between non-defaults and defaults) is commonly regarded as a problem

for classification algorithms. Both issues are addressed in later sections.

2.1. Training and test set

We divide our data into a training set and a test set. For training, we

extract transaction histories from the time period December 31, 2012 to

December 31, 2013 and use the outcome (default / non-default) in the period

from January 1, 2014 to January 1, 2015 as response variables. A subset of

the training set was held out from training and used as a validation set

for tuning of our algorithms. For testing, we extract transaction histories

from the time period February 28, 2014 to February 28, 2015, and response

variables from the period March 1, 2015 to March 1, 2016. There are no

customers who appear in both the training and test set, meaning that our

study is both “out-of-time” and “out-of-sample”. Customers for whom we did

not have a full year of transaction data, were removed both from the training

and the test set. However, we evaluate the performance of our methods on

customers with missing data in Section 4.5. For a further specification of the

datasets, see Table 2.

2.2. Preprocessing time series

Convolutional neural networks require the input to be scaled. Hence, for

images it is common to normalize the pixels to lie in the range [0, 1] (Good-

8

fellow et al., 2016). Pixels however have the benefit of all being in [0, 255]

and somewhat evenly distributed in this interval. On the contrary, there

are great differences in the magnitude of the accounts. If we scale all series

based on the most extreme account values, most of the series will have very

small variations, making it hard for our neural net to learn from the data.

Therefore, the time series were scaled such that each individual series is in

the range [0, 1] through

x =
x−min(x)

max(x)−min(x)
, (1)

where x denotes one time series. With this scaling, the neural net receives

inputs of similar magnitude. However, this comes at the cost of removing the

magnitude of the individual series. Hence, the network can only find infor-

mation in the relative patterns of the series, and has no knowledge about the

actual size of the different accounts. Missing series were treated as accounts

without any movements.

3. Methods

While there is an extensive literature on time series classification, we

have chosen to focus only on the subset of algorithms that falls under deep

learning. For a review of other state-of-the-art methods, see e.g. Bagnall

et al. (2016).

In the following, we will first, in Section 3.1, introduce convolutional

neural networks and how they were applied to our credit scoring problem.

Then, in Section 3.2, we will discuss methods used to avoid overfitting and

how we approached the class imbalance problem.

9

3.1. Convolutional neural networks

Deep learning arguably owes much of its success to its extent of modu-

larity. The framework is based on combining differentiable transformations,

where each such transformation is commonly referred to as a layer. The way

one organizes the layers is called the network architecture. When fitting such

a network to a dataset, or performing the “training” as it is denoted in ma-

chine learning, it is necessary to define a loss function that can be optimized.

The loss function does not necessarily need to be the objective we actually

want to optimize, but rather a function that indirectly optimizes our true

goal (Goodfellow et al., 2016). For binary classification it is common to use

the binary cross entropy

Loss = −
∑
i

{yi log pi + (1− yi) log(1− pi)}, (2)

where yi denotes the true class label as {0, 1}, and pi denotes our prediction

for customer i in [0, 1]. Equation (2) is the same as the negative log likelihood

used in logistic regression. Note that the loss decreases as the pi’s move closer

to the yi’s, hence reducing the loss should improve our objective.

During training the data is passed through the network, the loss is calcu-

lated, the gradients are computed with respect to all the parameters in the

network, and the parameters are optimized through some version of gradient

descent. The gradients can be obtained in a nice way using backpropaga-

tion (LeCun et al., 1998), which basically is application of the chain rule

for differentiation. Backpropagation calculates the gradients in a sequential

manner, such that the gradients of each transformation can be derived solely

from the error passed back from the succeeding layer. The main takeaway

10

here is that layers can be implemented independent of each other, simplifying

the process of combining them in an architecture.

Convolutional neural networks (CNNs) constitute the subset of neural

networks that contain convolutional layers. However, they typically contain

other layers as well. The following sections describe the different types of

layers that have been used in our neural networks.

3.1.1. Convolutional layers

The first two layers of our network are presented in Figure 1. The left

block shows an input time series that is 365 days long. For now, assume that

the dataset only consist of a single time series per customer (instead of six).

A convolutional layer consists of multiple filters that are applied to the

input series. A filter is simply a vector (or matrix) consisting of weights that

need to be optimized. The first convolutional layer has filters of length 9,

as shown in the figure. The application of such a filter to the input series is

just a sum over the element-wise product of the filter weights and the time

series, resulting in a convolved feature (or activation). A convolved feature

is therefore a measure of the correlation between the filter and the relevant

part of the input. The middle block of Figure 1 displays all the convolved

features from the input, using 32 different filters. Each filter is slided across

the input to generate as many convolved features as the length of the time

series1. Due to the fact that the 32 filters are randomly initialized, they end

up extracting different information from the input.

After applying the filters to a time series, the convolved features are

1Zero-padding is used to preserve the temporal dimension (Goodfellow et al., 2016).

11

passed through a ReLU transform, which is simply max{0, x}. Such ac-

tivation functions are applied to make the transformation non-linear, and

they are commonly considered a part of the convolutional layer rather than

a separate layer. See Gu et al. (2017) for a discussion of other activation

functions.

Figure 1: The first convolutional layer and first pooling layer of our model. The left block is

the input series. The gray area marks the part of the series for which a convolutional filter

is currently being applied. The middle block shows the convolved features (or activations)

resulting from the 32 different convolutional filters. The right block shows the result of

applying max pooling to the middle block.

3.1.2. Max pooling layers

A convolutional layer preserves the resolution in the temporal dimension.

There can however be some benefits of reducing the temporal resolution, such

as reducing the number of parameters in the next layer, and introducing some

shift-invariance (Gu et al., 2017). As a result, many CNNs include so-called

max pooling layers, which simply replace a set of values with their maximum.

12

Note that this layer does not introduce any additional parameters.

We use max pooling after each convolutional layer. An example is shown

to the right in Figure 1, where four values of each column of the convolved

features are pooled into one. As shown in the figure, pooling is applied

separately for each feature series. Thus, the pooling layer preserves the

number of feature series, while reducing the temporal resolution. See Gu

et al. (2017) for a discussion of other pooling layers.

3.1.3. Fully connected layers

To perform the actual classification, it is necessary to combine the con-

volved features into a binary classifier. This is typically done through one or

more fully connected (or dense) layers, which form a multilayer perceptron (a

classical neural net). A dense layer requires a one-dimensional input, so the

columns of the last layer are concatenated into a single vector x. The trans-

formation is then simply the inner product with a weight matrix, z = xTW ,

with some non-linear activation function (typically ReLU). The number of

columns in W determines the dimension of the output. Our final layer has

only two outputs, one for each class, and therefore a softmax activation func-

tion is applied to ensure that the predictions are in the interval [0, 1].

Softmax(z)c =
ezc∑
j e

zj
, (3)

where c and j refers to classes. Note that the softmax can be applied for

an arbitrary number of classes, but for binary classification it it equivalent

to the logit function. As a result, in combination with our choice of loss

function, this final layer is equivalent to a logistic regression.

13

3.1.4. Network architecture and training

In our network architecture we alternate between a convolutional layer

and a max pooling layer two times, followed by two fully connected layers.

For an input of length 365 days, this results in 199,234 weights that need to

be optimized. The whole structure is displayed in Figure 2, were we also show

the length of the filters and number of filters for the convolutions, the size of

the pooling kernels, and the number of output nodes in the dense layers. This

architecture was developed manually by evaluating on a validation set2, and

the hyper parameter search was therefore not as rigorous as with e.g. a grid

search. However, it was found that a variety of model configurations resulted

in quite similar performance. In particular, further increasing the number of

nodes, filters, or layers did not really seem to affect the performance.

We train one network for each of our six time series, completely indepen-

dently, using the Adam optimization algorithm (Kingma and Ba, 2014) with

default parameters and batch size of 512. The resulting six predictions are

averaged to give a final prediction for each customer. When computing the

averages, predictions corresponding to missing series are discarded. We also

experimented with averaging the log-odds instead of the predictions, which

resulted in a slight performance decrease.

We also tried an alternative model where we train a network on all six

series simultaneously. Thus, the input is 365×6 rather than 365×1, meaning

that the first convolutional filter will have size 9×6, rather than 9×1. Apart

from this, the architecture is identical to the architecture for the individual

2Note that the validation set is not the same as the test set.

14

Figure 2: Our convolutional neural net. The blue layers are convolutional layers and the

yellow layers are fully connected layers. All activations are ReLU, with the exception of

softmax in the final layer. Dropout, with rate 0.5, is performed between the last two

layers.

series. By combining all series in the input, the network has the potential to

learn interactions between a customer’s time series. However, as this model

is more complex, it will require more data than the previous model.

In addition to the two models presented here, we have also tried deeper

and more shallow models, as we will get back to in Section 4.2. In early stages

of the project, we even experimented with recurrent neural networks in the

form of Long Short-Term Memory networks (LSTM). They were found to be

outperformed by the CNNs, in addition to being much more computationally

expensive. Hence, they were dropped from further investigation.

15

3.2. Overfitting and class imbalance

In the following sections we explain the techniques we have used to prevent

the models from overfitting and how we handled the large class imbalance

between defaulting and non-defaulting customers.

3.2.1. Regularization

Deep neural networks are commonly overparameterized, making them

prone to overfitting (Gu et al., 2017). Subsequently, regularizing techniques

have been introduced to cope with these problems. Among the more common

is the use of a validation set for monitoring the training process. We used

this set to stop the gradient descent iterations when the net starts to overfit.

This technique is commonly referred to as early stopping.

Another common form of regularization is dropout (Srivastava et al.,

2014), which simply sets activations to zero with a given probability dur-

ing training. This prevents units in the network from co-adapting too much.

At test time, the dropout layer scales the activations according to the dropout

rate. We use dropout with rate 0.5 between the two last layers, but it can in

practice be applied between any two layers.

See Goodfellow et al. (2016) and Gu et al. (2017) for a further review of

regularization.

3.2.2. Data augmentation

The problem of predicting mortgage defaults is highly imbalanced in that

the number of defaults is very small compared to the number of non-defaults.

As a classifier’s performance commonly deteriorates under imbalance, we

under-sample the non-defaulting customers to make the two classes more

16

similar in size. Moreover, to increase the number of defaults in the training

set, we use delinquencies of 60 days in addition to those of 90 days. Hence,

we ended up with a training set consisting of 12,696 customers, 10% of whom

where characterized with default.

Deep neural nets commonly require more data than classical machine

learning algorithms to perform well. As a result, data augmentation schemes

have been explored in the literature (Krizhevsky et al., 2012; Goodfellow

et al., 2016). Most of this work has been on images, and does not necessarily

generalize well to other data sources. However, recently some attempts of per-

forming data augmentation on time series have been proposed. Le Guennec

et al. (2016) explore the possibilities of training a CNN in a semi-supervised

manner using time series from other datasets. Cui et al. (2016) propose a

sliding window technique where they split the time series in many overlap-

ping slices, and train a classifier using each slice as an individual series.

This is in some sense similar to other time series prediction tasks where the

dataset originally consists of many overlapping series of data (e.g. Ordóñez

and Roggen (2016)).

In this paper, we use a slight variation of the sliding windows approach

of Cui et al. (2016). Our approach can be described as follows. For each

defaulting customer we first define a training period which ends one month

before the default, and starts two years earlier. If the customer did not exist

in the dataset at the start of this period, the start was set to the earliest date

the customer existed. We then extract the time series corresponding to the

first 365 days of the training period and use that as an observation. By jump-

ing a fixed number of days, called stride in the machine learning literature,

17

we can get a new observation that is partially overlapping with the previous

observation. This process is repeated until the end of our defined training

period is reached. In this way, we get a training set consisting of multiple

overlapping series from each defaulting customer. This augmentation scheme

is illustrated in Figure 3. The gray area shows the defined training periods

for three different customers, and the red dots mark the time of their de-

faults. For id: 2 we show three of the observations (windows) that are added

to the training set. Note that the first of the corresponding periods ends one

year before the default occurs, while the last ends one month before. Thus

both these observations, and all in between, fit our objective of predicting a

default in the following 365 days.

Figure 3: Illustration of our data augmentation scheme. The gray area identifies the time

period from which we extract data, and the red dots show the time of default. The sliding

window approach is illustrated for id: 2.

We also need to perform a similar augmentation for the non-defaulting

individuals. Our first experiments showed that sampling non-defaulting and

defaulting customers from different time periods made our net learn different

18

characteristics of these periods instead of the actual objective. Hence, to

avoid this sampling bias, we had to sample the start and end dates for the

non-defaulting customers from the ones of the defaulting customers.

Ideally one would use strides of 1 as this would give most diversity in the

training data. However, our preliminary analysis showed that strides of 1

did not give better results than strides of 5. Hence, since the memory usage

of the latter is only a fifth of the first, we decided to use strides of 5 in our

final analysis.

In Table 2 we have shown the size of our training set, the training set

augmented with the sliding windows, the validation set, and the test set. The

financial group DNB does not want to disclose its true default ratio. Hence, to

generate the test set, 2,000 customers were randomly sampled in such a way

that the fraction of defaulting customers was 5%. After removing customers

with missing history, we ended up with a test set of 1,921 customers. The

size of the test set is quite small, which results in larger variance in our

results. Note however that we have experimented with different test sets

from different time periods, and the results seem to be quite consistent.

Table 2: Data proportions for training, validation, and test sets.

Dataset Defaults Non-defaults Total Default type

Training 1,298 11,398 12,696 90 or 60 days past

Training augmented 95,647 841,247 936,894 90 or 60 days past

Validation 329 6,043 6,372 90 or 60 days past

Test 96 1,825 1,921 90 days past

19

4. Experiments

In the following, we first present the measures used to evaluate the per-

formance of our models. We then describe our experiments and their results.

4.1. Evaluation measures

The Receiver Operating Characteristic (ROC) curve is a common measure

for evaluating a classifier’s ability to separate two classes. The ROC curve

is a plot of the true positive rate (for default) against the false positive rate,

for all thresholds. A threshold is the chosen cut-off in the estimated scores

from the neural net.

Since the ROC curve is based on the true positive rates and the false

positive rates, it is invariant to class proportions. Moreover, it is not depen-

dent on the quality of the predictions (probability estimates), only on the

classifier’s ranking capabilities.

ROC curves are often summarized through the area under the curve, or

AUC. With perfect classification, the AUC will be 1, while random predic-

tions result in an AUC of 0.5 on average.

AUC is a general measure of binary classification, and is widely used

across disciplines. There are however more specialized measures for evalu-

ating a credit scoring model. One such measure is the Expected Maximum

Profit (EMP) (Verbraken et al., 2014), which is a profit based performance

measure accounting for the benefits generated by healthy loans and the costs

caused by loan defaults. We have chosen not to use EMP in this paper. The

main reason is that this measure is heavily dependent on the class propor-

tions. As stated earlier, we have used a fictive default rate, since the bank

20

did not want to disclose its true ratio. Hence, it does not make any sense

to use a measure that significantly changes when the class proportions are

altered.

Our convolutional neural network is initialized with random weights.

Moreover, we use dropout by multiplying random Bernoulli variables with

the input to the last layer, and the net is trained with stochastic gradient

descent. As a result, the network will be slightly different every time it is

trained. Hence, to control how our results are influenced by randomness,

we repeat all experiments 10 times and report the average and standard

deviation of the 10 resulting AUC values.

4.2. Competing architectures

In the following section, the two CNNs introduced in Section 3.1.4 are

compared and evaluated. The architectures of the two models are identical,

except that the first takes individual time series as input (Indiv model), while

all six time series are input to the latter (Full model). Note that all training

sets are augmented as described in Section 3.2.2. Summary statistics for the

AUCs are shown in Table 3 under the names Indiv, 2 conv layes and Full, 2

conv layers. We see that the individual model is clearly better than the full

model. This might indicate that the full model is not able to take advantage

of interactions between the series, or at least that the added benefit is smaller

than the downside of the added complexity of the model.

Table 3 also includes four other models. The only difference between

the models is the number of convolutional layers (and pooling layers), and

whether the input consist of individual series or all six series simultaneously.

For the full specification of the models, see Figure A.6 in the Appendix. From

21

the table we see that all the individual models have higher average AUC than

the full models. Additionally, it seems that there is no reason to have more

than two convolutional layers in the networks.

Averaging the predictions from six individually trained models has a reg-

ularizing effect. To check whether the differences in performance between

the full models and the individual models are caused by this averaging, we

also, for each model, compute the AUC for the average of the 10 predictions

for each customer. The results are shown in the rightmost column of Table 3

(“AUC for average pred.”) We see that this improves the AUC for all models.

The individual models are still better than the full models, but the difference

seems to be smaller.

Table 3: AUC for different CNN architectures.

Model Mean AUC Std AUC AUC for average pred.

Full, 1 conv layer 0.8884 0.0055 0.8979

Full, 2 conv layers 0.8879 0.0041 0.8982

Full, 3 conv layers 0.8897 0.0048 0.9015

Indiv, 1 conv layer 0.9022 0.0022 0.9043

Indiv, 2 conv layers 0.9146 0.0025 0.9184

Indiv, 3 conv layers 0.9106 0.0033 0.9148

AUC mean and standard deviation for 10 experiments for each of six different CNNs.

“Full” refers to the approach with all time series as input, and “Indiv” to the approach

where we compute the average of the predictions from six individually trained models. The

rightmost column gives the AUC of the predictions averaged over the 10 trained models.

In the remainder of this section we concentrate on the Indiv model, 2 conv

22

layers, since this is the one that shows the best performance in Table 3.

4.3. Importance of different series

Our model creates predictions based on six different time series: checking

account balance (ch), amount transferred into checking account (in), credit

card balance (cc), savings account balance (sa), the sum of checking, saving

and credit card balances (sum), and number of transactions on the checking

account (trch). To investigate how much information there is in each series,

we report their individual AUC values in Table 4. As before, we report the

results averaged over 10 experiments. The checking account (ch and trch)

and the sum seem to be most informative, while the amount transferred into

the checking account (in) provides less information.

In Section 2 it was stated that missing savings accounts and credit card

accounts are regarded as accounts without any movements. This means that

the comparison between the different series in the two leftmost columns of

Table 4 might not be completely fair. Hence, we did a new experiment in

which we removed all customers missing the relevant time series from the test

set. The results are shown in columns 3 and 4 of the table (NM Mean and

NM Std), while the proportions of removed customers is shown in column

5. From the table we see that the AUC for credit card accounts (cc) and

savings accounts (sa) significantly increase, while there are small differences

for the other series. This is reasonable, as the proportion of missing data is

largest for the credit cards and savings accounts.

23

Table 4: AUC for individual series.

Series Mean AUC Std NM Mean AUC NM Std Prop Missing

ch 0.8632 0.0040 0.8646 0.0036 0.0068

in 0.7116 0.0108 0.7140 0.0107 0.0068

cc 0.7636 0.0080 0.8099 0.0101 0.2405

sa 0.7902 0.0056 0.8178 0.0039 0.1463

sum 0.8752 0.0078 0.8752 0.0078 0

trch 0.8472 0.0064 0.8480 0.0063 0.0068

All 0.9146 0.0025 0.9146 0.0025 0

In the NM columns (Not Missing) we have removed customers having missing series or

series without any activity. “Prop missing” gives the proportion of series removed from

the test set in NM. The AUC is averaged over 10 experiments. The “All” series gives the

score of the averaged predictions (Indiv model).

24

4.4. Training data

In this section we investigate how the size of the training set affects the

performance of our classifier. This can help us understand to what extent

more training data would improve our discriminator. We also evaluate the

effect of our augmentation scheme.

Table 5 shows AUC for models trained on different subsets of the training

data. The subsets were created by randomly sampling customers. For a

given proportion of the full training set we train 10 models in the same way

as previously for the full training set.

Investigating the table, the performance seems to be improved with the

size of the training data. This suggests that with more data we might be

able to obtain even better results than those presented in this paper.

The last row of the leftmost column in Table 5 shows the results of fitting

the same model to the original (not augmented) training set. We see that

using 10% to 25% of the original customers with augmented data results in

the same performance as using all customers with non-augmented data.

4.5. Length of time series

To investigate to what extent lack of information affects the performance

of our model, we have also fitted our CNN to series of different lengths, More

specifically, we used the last month (31 days), the last quarter (91 days),

and the two last quarters (182 days) of the original dataset to train the same

model as previously.

The results are shown in Table 6. As can be seen, there is a clear drop in

performance when the time series get shorter. On the downside, this makes it

harder to evaluate customers with a short relationship to the bank. However,

25

Table 5: AUC for different subsets of the training data.

Proportion Mean AUC Std AUC

1.00 0.9146 0.0026

0.90 0.9109 0.0048

0.75 0.9086 0.0054

0.50 0.9028 0.0033

0.25 0.8954 0.0082

0.10 0.8827 0.0062

Non-augmented 0.8880 0.0042

For each subset, we sample the customers from the training set, and use sliding window for

data augmentation. The leftmost column shows the proportion of customers sampled from

the training set, while the remaining columns show the average and standard deviation of

AUC for the 10 repetitions. 1.00 gives the results for the full training set (Indiv model),

while “Non-augmented” refers to using all customers, but with no data augmentation.

26

the results also suggest that it might be possible to increase the performance

of our models by applying them to time series longer than 365 days.

Table 6: AUC for different lengths of time series.

Model Mean AUC Std AUC AUC for average pred.

365 days 0.9146 0.0026 0.9184

180 days 0.8945 0.0051 0.8981

91 days 0.8744 0.0051 0.8791

31 days 0.8425 0.0043 0.8460

The “Mean AUC” is averaged over 10 repetitions. The “AUC for average pred.” gives

the AUCs for the averaged predictions of the 10 repetitions of the same model. All models

have the same architecture as the 365 days CNN.

4.6. Classical covariates

As described in Section 2.2, all time series are scaled to be in [0, 1] be-

fore fitting the CNN. This kind of scaling means that information about the

magnitude of the series is lost. To assess the potential decrease in results

connected to this removal of relevant information, we fit a random forests

classifer (RF), consisting of 800 trees, to explanatory variables created from

the original, unscaled time series. RF is often credited as a very strong clas-

sifier outperforming several alternative methods (including Support Vector

Machines and Neural networks) when applied to credit scoring (Brown and

Mues, 2012; Kruppa et al., 2013; Lessmann et al., 2015). For each of the six

time series, we computed the mean, max, minimum, standard deviation, and

the standard deviation scaled by the mean. These covariates were computed

27

both for the full series and for the last month (31 days). In addition, we

divided each of the covariates for the full series by the equivalent covariate

calculated for the last month, producing a total of 15 features for each series.

The resulting AUC is shown in the upper row of Table 7. We also fitted a

logistic regression model and a Multilayer perceptron (with one hidden layer

and 512 nodes) using the same explanatory variables. The AUC values for

these models were significantly worse (0.86 and 0.88 see Table 8) than that

for the RF, confirming the observations from previous studies. Hence, we

decided not to include these models in the further comparisons.

Table 7: AUC for different length of series.

Model Mean AUC Std AUC AUC for average pred.

RF 365 days 0.9130 - -

RF 31 days 0.8907 - -

Combined 365 days 0.9254 0.0011 0.9260

Combined 31 days 0.8941 0.0006 0.8946

RF is a random forests classifier with covariates extracted from the unscaled time series.

Combined gives the averaged prediction of the CNN and the random forests classifier. The

results for the combined classifier are averaged over 10 repetitions of the CNN. The “AUC

for average pred.” gives the AUC for the averaged predictions of the 10 repetitions of the

CNN.

Comparing the numbers in the upper rows of Table 6 and 7 we see that

for the 365 days period, the AUC for the CNN is slightly better than that for

the RF. We also used a combined model in which we averaged the predictions

from the CNN and the RF. From the third row of table 6 we see that there is

28

a small increase in performance compared to that obtained using one of the

models only. The ROC curves for the CNN, the RF and the combined model

are shown in Figure 4. Running the diagnostic test for comparing ROC

curves described in DeLong et al. (1988) verifies that there are no significant

differences between the AUCs for any pair of ROC-curves.

Table 8 gives the values of 6 evaluation metrics for each of the 5 models.

In addition to Accuray, Sensitivity, Specificity and AUC, the Brier Score

(Brier, 1950) and the H-measure (Hand, 2009, 2010) are reported. The AUC

is sometimes criticised for treating the relative severities of misclassifications

differently when different classifiers are used. The H-measure, on the other

hand, may accommodate expert knowledge regarding misclassification costs,

whenever that is available. We want to treat misclassifications of the smaller

class as more serious than those of the larger class, since otherwise very little

loss would be made by assigning everything to the larger class. Hence, we

set the cost of misclassifying a bad customer as healthy to 0.95 and the cost

of misclassifying a good customer as defaulter to 0.05.

We have also compared the three methods using data only from the last

31 days. The AUC-values are given in the last row of Table 6 and rows

two and four in Table 7, respectively, while the corresponding ROC-curves

are shown in Figure 5. As can be seen from the tables and the figure, the

performance of the RF does not degrade as much as that of the CNN when

decreasing the length of the time series to 31 days. The p-value of the test

for comparing the two ROC-curves is 0.005, meaning that the AUC for the

RF is significantly higher than that for the CNN in this case.

29

Table 8: Evaluation metrics

Model Threshold Accuracy Sensitivity Specificity AUC Brier Score H-measure

CNN 0.3 0.954 0.374 0.985 0.915 0.0381 0.564

Combined 0.3 0.947 0.527 0.970 0.925 0.0364 0.592

LR 0.3 0.910 0.490 0.935 0.864 0.0458 0.455

MLP (512) 0.3 0.899 0.590 0.918 0.875 0.0550 0.484

RF 0.3 0.920 0.602 0.940 0.913 0.0386 0.557

CNN 0.5 0.953 0.064 0.999 0.915 0.0381 0.564

Combined 0.5 0.956 0.177 0.997 0.925 0.0364 0.592

LR 0.5 0.943 0.219 0.981 0.864 0.0458 0.455

MLP (512) 0.5 0.927 0.455 0.953 0.875 0.0550 0.484

RF 0.5 0.957 0.332 0.991 0.913 0.0386 0.557

Different evaluation metrics for two different threshold values. All results are based on the time

series with length 365 days. For each model we have averaged the metrics over 10 trained models.

CNN is the best-performing CNN from Table 3, LR is a logistic regression model, MLP is a

Multilayer perceptron with one hidden layer and 512 nodes, RF is the random forest model, and

Combined is the combined model in which we averaged the predictions from the CNN and the

RF.

30

0.0 0.2 0.4 0.6 0.8 1.0

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
u
e
 p

o
si

ti
v
e
 r

a
te

CNN (area = 0.918)

RF (area = 0.913)

Combined (area = 0.926)

Figure 4: ROC curves for the CNN, the RF, and their averaged predictions model. The

time series are the full 365 day long series. The CNN comes from the averaged predictions

over the 10 experiments.

5. Discussion

The ability to discriminate bad customers from good ones is very im-

portant for banks and other lending companies. There is a large literature

on methods used to predict defaults of consumer loans. Status quo in both

the industry and the academic literature is to use models with handcrafted

explanatory variables. In contrast, we use a highly nonlinear convolutional

neural network (CNN), where the input is raw account transactional data.

More specifically, we have used daily balances of customers’ checking ac-

counts, savings accounts, and credit card accounts, in addition to daily num-

ber of transaction on the checking accounts, and amount transferred into the

31

0.0 0.2 0.4 0.6 0.8 1.0

false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
u
e
 p

o
si

ti
v
e
 r

a
te

CNN (area = 0.846)

RF (area = 0.891)

Combined (area = 0.895)

Figure 5: ROC curves for the CNN, the RF, and their averaged predictions model. The

time series used are contain only the last 31 days of data. The CNN comes from the

averaged predictions over the 10 experiments.

checking accounts to predict mortgage delinquency.

A CNN has a number of hyperparameters which need to be chosen, such

as the number of layers, type of layers, and the type of regularization. Our

best performing CNN with two convolutional and two fully connected layers

achieved an AUC of 0.915. Considering the fact that our training set only

consists of 12,696 customers, and that we do not use any other information

than the account data, the results are quite promising.

In our analysis, we found that the AUC for our CNN was increasing with

the size of the training set, suggesting that a larger dataset might result in

even higher performance. In addition, the performance increased with the

32

length of the time series, indicating that using a time series that is longer

than 365 days may give better results. Comparing the predictions from a

single CNN with ensemble predictions from 10 randomly initialized models

showed that the increase in AUC using several model was limited.

By using transaction data only, one throws away a lot of other informative

data that is typically used for credit scoring, e.g. the loan balance, socioeco-

nomic data, payment history, and credit bureau data. Further, all time series

are scaled to be in the interval [0,1] before fitting the CNN, meaning that

information about the magnitude of the time series is lost. To account for the

scaling, a random forests classifier was fitted to covariates extracted from the

unscaled series, resulting in an AUC of 0.913. By combining the predictions

of the CNN and the random forests, we achieved an AUC of 0.925.

Future research directions could include the combination of our model

with other credit scoring models that use more classical credit information;

applying our model on a larger dataset, as CNNs tend to perform better with

more data; and using more granular data in the form of labeled transactions

(e.g. groceries, gas, rent, vacation).

Acknowledgments

This work was supported by The Norwegian Research Council 237718

through the Big Insight Center for research-driven innovation. We thank

Ørnulf Borgan for comments and suggestions on the paper. We also thank

Sven Haadem for his help on creating a dataset from DNB’s mortgage port-

folio.

33

References

Abellán, J., Castellano, J. G., 2017. A comparative study on base classifiers

in ensemble methods for credit scoring. Expert Systems with Applications

73, 1 – 10.

URL http://www.sciencedirect.com/science/article/pii/

S0957417416306947

Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E., Nov 2016. The great

time series classification bake off: a review and experimental evaluation of

recent algorithmic advances. Data Mining and Knowledge Discovery.

URL http://dx.doi.org/10.1007/s10618-016-0483-9

Barboza, F., Kimura, H., Altman, E., 2017. Machine learning models and

bankruptcy prediction. Expert Systems with Applications 83, 405 – 417.

URL http://www.sciencedirect.com/science/article/pii/

S0957417417302415

Brier, G. W., 1950. Verification of forecasts expressed in terms of probability.

Monthey Weather Review 78 (1), 1–3.

Brown, I., Mues, C., 2012. An experimental comparison of classification al-

gorithms for imbalanced credit scoring data sets. Expert Systems with

Applications 39 (3), 3446–3453.

Butaru, F., Chen, Q., Clark, B., Das, S., Lo, A. W., Siddique, A., Nov 2016.

Risk and risk management in the credit card industry. Journal of Banking

& Finance 72, 218–239.

URL http://dx.doi.org/10.1016/j.jbankfin.2016.07.015

34

http://www.sciencedirect.com/science/article/pii/S0957417416306947
http://www.sciencedirect.com/science/article/pii/S0957417416306947
http://dx.doi.org/10.1007/s10618-016-0483-9
http://www.sciencedirect.com/science/article/pii/S0957417417302415
http://www.sciencedirect.com/science/article/pii/S0957417417302415
http://dx.doi.org/10.1016/j.jbankfin.2016.07.015

Chen, X., Zhou, C., Wang, X., Li, Y., 2017. The credit scoring model based

on logistic-bp-adaboost algorithm and its application in p2p credit plat-

form. In: Li, X., Xu, X. (Eds.), Proceedings of the Fourth International

Forum on Decision Sciences. Springer Singapore, Singapore, pp. 119–130.

Chi, B.-W., Hsu, C.-C., Feb 2012. A hybrid approach to integrate genetic

algorithm into dual scoring model in enhancing the performance of credit

scoring model. Expert Systems with Applications 39 (3), 2650–2661.

URL http://dx.doi.org/10.1016/j.eswa.2011.08.120

Cui, Z., Chen, W., Chen, Y., Mar. 2016. Multi-scale convolutional neural

networks for time series classification.

URL https://arxiv.org/abs/1603.06995

DeLong, E. R., DeLong, D. M., Clarke-Pearson, D. L., 1988. Comparing the

areas under two or more correlated receiver operating characteristic curves:

a nonparametric approach. Biometrics, 837–845.

Finanstilsynet, 2016. Finansielt utsyn 2016. http://www.finanstilsynet.

no/Global/Venstremeny/Rapport/2016/Finansielt_utsyn_2016.pdf,

accessed: 2017-02-06.

Garćıa, V., Marqués, A. I., Sánchez, J. S., Sep 2014. An insight into the

experimental design for credit risk and corporate bankruptcy prediction

systems. Journal of Intelligent Information Systems 44 (1), 159–189.

URL http://dx.doi.org/10.1007/s10844-014-0333-4

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press,

http://www.deeplearningbook.org.

35

http://dx.doi.org/10.1016/j.eswa.2011.08.120
https://arxiv.org/abs/1603.06995
http://www.finanstilsynet.no/Global/Venstremeny/Rapport/2016/Finansielt_utsyn_2016.pdf
http://www.finanstilsynet.no/Global/Venstremeny/Rapport/2016/Finansielt_utsyn_2016.pdf
http://dx.doi.org/10.1007/s10844-014-0333-4
http://www.deeplearningbook.org

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang,

X., Wang, G., 2017. Recent advances in convolutional neural networks v5.

URL https://arxiv.org/abs/1512.07108v5

Hammerla, N. Y., Halloran, S., Ploetz, T., Apr. 2016. Deep, convolutional,

and recurrent models for human activity recognition using wearables.

URL https://arxiv.org/abs/1604.08880

Hand, D. J., Oct 2009. Measuring classifier performance: a coherent alterna-

tive to the area under the roc curve. Machine Learning 77 (1), 103–123.

URL https://doi.org/10.1007/s10994-009-5119-5

Hand, D. J., 2010. Evaluating diagnostic tests: The area under the roc curve

and the balance of errors. Statistics in Medicine 29 (14), 1502–1510.

URL http://dx.doi.org/10.1002/sim.3859

Jones, S., Johnstone, D., Wilson, R., Jul 2015. An empirical evaluation of the

performance of binary classifiers in the prediction of credit ratings changes.

Journal of Banking & Finance 56, 72–85.

URL http://dx.doi.org/10.1016/j.jbankfin.2015.02.006

Kennedy, K., Mac Namee, B., Delany, S. J., O’Sullivan, M., Watson, N.,

2013. A window of opportunity: Assessing behavioural scoring. Expert

Systems with Applications 40 (4), 1372–1380.

Khandani, A. E., Kim, A. J., Lo, A. W., Nov 2010. Consumer credit-risk

models via machine-learning algorithms. Journal of Banking & Finance

34 (11), 2767–2787.

URL http://dx.doi.org/10.1016/j.jbankfin.2010.06.001

36

https://arxiv.org/abs/1512.07108v5
https://arxiv.org/abs/1604.08880
https://doi.org/10.1007/s10994-009-5119-5
http://dx.doi.org/10.1002/sim.3859
http://dx.doi.org/10.1016/j.jbankfin.2015.02.006
http://dx.doi.org/10.1016/j.jbankfin.2010.06.001

Kingma, D. P., Ba, J., Dec. 2014. Adam: A method for stochastic optimiza-

tion.

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification

with deep convolutional neural networks. In: Pereira, F., Burges, C. J. C.,

Bottou, L., Weinberger, K. Q. (Eds.), Advances in Neural Information

Processing Systems 25. Curran Associates, Inc., pp. 1097–1105.

URL http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf

Kruppa, J., Schwarz, A., Arminger, G., Ziegler, A., 2013. Consumer credit

risk: Individual probability estimates using machine learning. Expert Sys-

tems with Applications 40 (13), 5125–5131.

Le Guennec, A., Malinowski, S., Tavenard, R., Sep. 2016. Data Augmenta-

tion for Time Series Classification using Convolutional Neural Networks.

In: ECML/PKDD Workshop on Advanced Analytics and Learning on

Temporal Data. Riva Del Garda, Italy.

URL https://halshs.archives-ouvertes.fr/halshs-01357973

LeCun, Y., Bengio, Y., Hinton, G., May 2015. Deep learning. Nature

521 (7553), 436–444.

URL http://dx.doi.org/10.1038/nature14539

LeCun, Y., Bottou, L., Orr, G. B., Müller, K. R., 1998. Efficient backprop.

Neural Networks: Tricks of the Trade, 9–50.

URL http://dx.doi.org/10.1007/3-540-49430-8_2

37

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://halshs.archives-ouvertes.fr/halshs-01357973
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1007/3-540-49430-8_2

Lessmann, S., Baesens, B., Seow, H.-V., Thomas, L. C., Nov 2015. Bench-

marking state-of-the-art classification algorithms for credit scoring: An

update of research. European Journal of Operational Research 247 (1),

124–136.

URL http://dx.doi.org/10.1016/j.ejor.2015.05.030

Lundberg, S., Lee, S., 2016. An unexpected unity among methods for inter-

preting model predictions. CoRR abs/1611.07478.

URL http://arxiv.org/abs/1611.07478

Norges-Bank, May 2012. Årsrapport om betalingssystem 2012.

http://static.norges-bank.no/pages/94894/Betalingssystem_

2012_o.pdf?v=27052013101201&ft=.pdf, accessed: 2017-02-09.

Ordóñez, F., Roggen, D., Jan 2016. Deep convolutional and LStm recur-

rent neural networks for multimodal wearable activity recognition. Sensors

16 (1), 115.

URL http://dx.doi.org/10.3390/s16010115

Prasad, S. C., Prasad, P., Jul. 2014. Deep recurrent neural networks for time

series prediction.

URL https://arxiv.org/abs/1407.5949

Ravi Kumar, P., Ravi, V., Jul 2007. Bankruptcy prediction in banks and firms

via statistical and intelligent techniques – a review. European Journal of

Operational Research 180 (1), 1–28.

URL http://dx.doi.org/10.1016/j.ejor.2006.08.043

38

http://dx.doi.org/10.1016/j.ejor.2015.05.030
http://arxiv.org/abs/1611.07478
http://static.norges-bank.no/pages/94894/Betalingssystem_2012_o.pdf?v=27052013101201&ft=.pdf
http://static.norges-bank.no/pages/94894/Betalingssystem_2012_o.pdf?v=27052013101201&ft=.pdf
http://dx.doi.org/10.3390/s16010115
https://arxiv.org/abs/1407.5949
http://dx.doi.org/10.1016/j.ejor.2006.08.043

Ribeiro, M. T., Singh, S., Guestrin, C., 2016. ”why should I trust you?”:

Explaining the predictions of any classifier. CoRR abs/1602.04938.

URL http://arxiv.org/abs/1602.04938

Samek, W., Wiegand, T., Müller, K., 2017. Explainable artificial intelligence:

Understanding, visualizing and interpreting deep learning models. CoRR

abs/1708.08296.

URL http://arxiv.org/abs/1708.08296

Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A., 2016. Not just

a black box: Learning important features through propagating activation

differences. CoRR abs/1605.01713.

URL http://arxiv.org/abs/1605.01713

Sirignano, J., Sadhwani, A., Giesecke, K., Jul. 2016. Deep learning for mort-

gage risk.

Sousa, M. R., Gama, J., Brandão, E., Mar 2016. A new dynamic modeling

framework for credit risk assessment. Expert Systems with Applications

45, 341–351.

URL http://dx.doi.org/10.1016/j.eswa.2015.09.055

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,

2014. Dropout: A simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research 15, 1929–1958.

URL http://jmlr.org/papers/v15/srivastava14a.html

Thomas, L. C., 2000. A survey of credit and behavioural scoring: forecasting

39

http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1708.08296
http://arxiv.org/abs/1605.01713
http://dx.doi.org/10.1016/j.eswa.2015.09.055
http://jmlr.org/papers/v15/srivastava14a.html

financial risk of lending to consumers. International journal of forecasting

16 (2), 149–172.

Verbraken, T., Bravo, C., Weber, R., Baesens, B., 2014. Development and

application of consumer credit scoring models using profit-based classifi-

cation measures. European Journal of Operational Research 238 (2), 505

– 513.

URL https://doi.org/10.1016/j.ejor.2014.04.001

Xia, Y., Liu, C., Li, Y., Liu, N., 2017. A boosted decision tree approach

using bayesian hyper-parameter optimization for credit scoring. Expert

Systems with Applications 78, 225 – 241.

URL http://www.sciencedirect.com/science/article/pii/

S0957417417301008

Yang, J. B., Nguyen, M. N., San, P. P., Li, X. L., Krishnaswamy, S., 2015.

Deep convolutional neural networks on multichannel time series for human

activity recognition. In: Proceedings of the 24th International Conference

on Artificial Intelligence. IJCAI’15. AAAI Press, pp. 3995–4001.

URL http://dl.acm.org/citation.cfm?id=2832747.2832806

Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J. L., 2014. Time series classi-

fication using multi-channels deep convolutional neural networks. Lecture

Notes in Computer Science, 298–310.

URL http://dx.doi.org/10.1007/978-3-319-08010-9_33

40

https://doi.org/10.1016/j.ejor.2014.04.001
http://www.sciencedirect.com/science/article/pii/S0957417417301008
http://www.sciencedirect.com/science/article/pii/S0957417417301008
http://dl.acm.org/citation.cfm?id=2832747.2832806
http://dx.doi.org/10.1007/978-3-319-08010-9_33

Appendix A.

Figure A.6: Our three convolutional neural net architectures for single time series. We

also have a version of each model with 365 × 6 input. The blue layers are convolutional

layers and the yellow layers are fully connected layers. All activations are ReLU, with the

exception of softmax in the final layer. Dropout, with rate 0.5, is performed between the

last two layers.

41

LaTeX Source Files
Click here to download LaTeX Source Files: Source Files.zip

http://ees.elsevier.com/eswa/download.aspx?id=727037&guid=a9af951b-3c61-4722-adfa-89a194c8e32e&scheme=1

