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Abstract
The Fisher discriminant is probably the best known likelihood discriminant for continuous data.

Another benchmark discriminant is the Naive Bayes, which is based on marginals only. In this paper
we extend both discriminants by modelling dependence between pairs of variables. In the continuous
case this is done by local Gaussian versions of the Fisher discriminant. In the discrete case the Naive
Bayes is extended by taking geometric averages of pairwise joint probabilities. We also indicate how the
two approaches can be combined for mixed continuous and discrete data. The new discriminants give
significant improvements.

1 Introduction

The statistical classification problem consists in allocating observed data samples to one of several possible
classes based on information obtained from a set of observations having known class membership. Two
standard classifiers are the Fisher discriminant (Fisher, 1936) and the Naive Bayes discriminant (Hastie et al.,
2009, p. 210-211). These are easy to understand and to apply and have been much used in practice(Hastie
et al., 2009). The Fisher discriminant assumes that each class is multivariate normally distributed, while the
Naive Bayes is based on the assumption of independent variables, so that multivariate class distributions
are replaced by the product of its marginal distributions. The Fisher discriminant requires continuous data,
whereas the Naive Bayes works both for continuous and discrete data. For both methods Bayes’ formula is
typically used to obtain class probabilities.

In this paper we present novel discrimination procedures generalizing the Fisher and the Naive Bayes,
respectively. For continuous data we replace the standard Fisher classifier by a local Fisher discriminant,
that uses locally normal approximations of the class distributions. The local approximation has a pairwise
dependence structure and is constructed such that, in the limit experiment, our discriminant coincides with
the standard Fisher discriminant if the class distributions are, in fact, multinormal. For discrete data, we
generalize the Naive Bayes classifier by replacing the product of marginal distributions within each class
by a type of geometric mean of pairwise distributions, which again reduces to the Naive Bayes in case of
independence. For situations with both continuous and discrete data present, we incorporate the dependence
between the data types by first modeling the continuous variable with the local Gaussian distributions. Then
the pairs of discrete variables are modelled conditionally on the continuous variables with a logistic regression
type procedure.

1.1 Background

Let us first provide some backround for the classification1 problem. The K-class discrimination problem
consists in assigning the d-dimensional data vector X = (X1, . . . , Xd) to one of K classes. Examples ranges
from fraud detection, authorship and text analysis, spam-email detection, credit rating, bankruptcy prediction
and seismic discrimination (see e.g. Phua et al. (2010), Jullum et al. (2018), Zheng et al. (2006), Aggarwal
and Zhai (2012), Satabdi (2018), Min and Jeong (2009), Blanzieri and Bryl (2008), and Tjøstheim (1978)).
Usually (in supervised learning) a training data set is available. Each training set consists of data X from
a known class that we use to get an idea of the stochastic features within each class, and that we again

1We will use the terms discrimination and classification interchangably throughout this paper, referring to the same concept.
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describe by the class-wise probability distribution functions fk, k = 1, . . . ,K, hereafter referred to as class
distributions. These distributions may be continuous, discrete or mixed. In Sections 2 - 5 fk will be a density
function, whereas we look at the discrete and mixed cases in Sections 6 - 8. We may also have available an
(unconditional) prior probability πk = P (class(X) = k) for each class, or at least such a probability can be
estimated from the training data.

Let D be a decision variable that takes the values 1, . . . ,K. Let us also write f = (f1, . . . , fK), and
π = (π1, . . . , πK). On the basis of a new sample X and the available training data, one must determine
the value of D in an optimal way. Optimality is usually obtained by minimizing the so-called Bayes risk.
Assuming that fk and πk = P (D = k) are known for all k, we obtain the posterior probability of having
D = k using Bayes’ Theorem:

Pf (D = k|X = x) = πkfk(x)∑K
j=1 πjfj(x)

. (1)

Now assign a loss function L(k, j) which gives the loss of assigning x to k, when in fact D = j. The Bayes
risk is defined as the expected loss with respect to the posterior probabilties:

Rf (k, x, π) =
∑
j

L(k, j)Pf (D = j|X = x). (2)

The classification rule DB, which is Bayes with respect to Rf , then follows by minimizing Rf , or in other
words, DB is given by

DB(x, π) = arg min
k=1,...,K

Rf (k, x, π). (3)

In the particular case of a 0-1 loss (L(k, j) = 1(k 6= j) where 1(·) is the indicator function), it is easy to
compute the Bayes rule, since the decision rule takes the simple form

DB(x, π) = arg max
k=1,...,K

Pf (D = k|X = x) = arg max
k=1,...,K

πkfk(x). (4)

This forms the «intuitive» solution to the classification problem, and we shall rely on this decision rule
throughout the paper. Note, however, that the methodology we develop and the comparisons we perform,
are equally valid with decision rules originating from other loss functions. In the practical situation when
f (and π) are not known, these needs to be estimated from data in order to reach a decision. When π is
unknown it may typically be estimated by the relative class-wise frequencies observed in the training data:
π̂k = nk/n, where n is the total number of observations, and nk is the number of training data having class
k. The estimation of fk, k = 1, . . . ,K, may typically be estimated in a number of different ways, and it is
this choice of estimation method that essentially distinguishes different classification methods from each
other. The remaining part of the paper shall therefore, to a large extent, concern methods for estimating
fk, k = 1, . . . ,K, and the comparison of these, in the discrimination context of (4). In many situations there
are only two classes, K = 2. Although all presented methodology works for general K, we will for simplicity
concentrate on the K = 2 case in the examples considered in the present paper.

1.2 Estimating discriminants

If the fks are continuous, one may assume that they belong to a particular parametric family of densities.
The estimation problem then consists in estimating the parameters of that parametric density. The classic
Fisher discriminant originates from the work by Fisher (1936), who assumes that the d-variate data from
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each class k are normally distributed, written N (µk,Σk), where the µk and Σk are class-wise mean vectors
and covariance matrices, respectively; i.e.,

fk(x) = 1
(2π)p/2|Σk|1/2 exp(−1

2(x− µk)TΣ−1
k (x− µk)),

where | · | denotes the determinant and T the transposed. If Σk = Σ for all k, the Bayes rule in (4) takes the
following form (Johnson and Wichern, 2007, Chapter 11.3)

D̂LDA(x) = arg max
k=1,...,K

xT Σ̂−1µ̂k −
1
2 µ̂

T
k Σ̂−1µ̂k + log π̂k,

where the µ̂k are the class-wise empirical mean vectors and Σ̂ is the common empirical covariance matrix,
respectively, that we calculate using training data. This particular classification rule is called linear discrim-
inant analysis (LDA) because the estimated decision boundaries between classes are linear in x and thus
forms hyperplanes in the d-dimensional Euclidean space. The general case where we allow the covariance
matrices Σk to be different within each class, leads to the classification rule

D̂QDA(x) = arg max
k=1,...,K

−1
2x

T Σ̂−1
k x+ xT Σ̂−1

k µ̂k −
1
2 µ̂

T
k Σ̂−1

k µ̂k −
1
2 log |Σ̂k|+ log π̂k, (5)

which is termed quadratic discriminant analysis (QDA) due to the quadratic term in (5), causing a second
order (quadratic) decision boundary.

One advantage of the Fisher discriminant is that fk is easy to estimate also for quite a large d, since for
each k the estimation reduces to marginal estimates of means µj,k, j = 1, . . . , d and pairwise estimates of
covariances Σjl,k, j, l = 1, . . . , d. This corresponds to pairwise dependencies between components. A general
d-dimensional density does not have this property, such that dependence between any two variables may not
be so easily extracted from the joint distribution. Despite, or perhaps due to, their simplcity, QDA and LDA
have a proven track record in many situations where the class distributions are clearly non-normal (Hastie
et al., 2009).

It is, however, crucially important to note here that the QDA and LDA discriminant do not see any difference
between populations having equal mean vectors and covariance matrices, even though the populations may
be radically different in terms of nonlinear dependence. In that case, we cannot perform classification based
on multivariate normal approximations. Instead, we may consider another reference discriminant, the Naive
Bayes. This method, on the other hand, resorts to an approximation that simply ignores any dependence
between the variables Xj and Xl, taking the form

Pf(x)(D = k|X = x) =
d∏
j=1

Pfj(xj)(D = k|Xj = xj). (6)

This approximation may work surprisingly well even in situations where property (6) is not satisfied. The
marginal distributions in (6) may be estimated parametrically (for instance with a Gaussian distribution)
as well as non-parametrically (with e.g. a kernel density estimator), in both cases avoiding the curse of
dimensionality.

We will in this paper construct generalizations of the QDA and Naive Bayes that take general pairwise
dependencies between pairs (Xj , Xl), into account, not just correlations (linear dependence), but also having
the important property that they collapse to simpler forms if that indeed is optimal.

One alternative to choosing between the approximations described above is to pursue a fully nonparametric
approach. Then fk can be estimated for example using the kernel density estimator

f̂kernel, k(x) = 1
n

n∑
i=1

KBk
(X(k)(i)− x),
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where {X(k)(i), i = 1, . . . , n} are observations in the training set of class k, and where KBk
(·) = B−1

k K(B−1
k ·),

with K being a kernel function, and Bk is a nonsingular bandwidth parameter (matrix) for class k. When
nk → ∞, then f̂k → fk under weak regularity conditions, but a considerable disadvantage is the curse of
dimensionality. For d moderate or large, bigger than 3 or 4 say, the kernel estimator does not work well, see e.g.
Silverman (1986, Chapter 4.5). This limits the potential usefulness of the kernel estimator in discrimination
problems, where d may be quite big. In these situations the problem may be alleviated to some extent by a
judicious choice of bandwidth. See in particular the work by Hall et al. (2004) and Li and Racine (2007).
Other nonparametric approaches are nearest neighbour classifiers, see e.g. Samworth (2012) and classification
using data depth (Li et al., 2012), but the basic problem of the curse of dimensionality remains unless we
accept the radical simplification provided by the Naive Bayes with nonparametric margins.

The litterature provides various other approaches to density estimation, such as the use of mixtures of a
parametric and nonparametric approach that may reduce the concequences of the curse of dimensionality, see
e.g. Hjort and Glad (1995). To a lesser degree this has also been the case in discrimination, see Chaudhuri
et al. (2009), who basically choose a parametric approach, but allows a nonparametric perturbation similar to
that of Hjort and Glad (1995). Another such method is the local likelihood estimator proposed by Hjort and
Jones (1996) and by Loader (1996), who estimate fk(x) by fitting a whole family of parametric distributions,
such that the parameter vector θ = θ(x) is allowed to vary locally with x. We will pursue this idea in the first
part of this paper by choosing the multivariate normal as the local approximant. This makes it possible to
replace the pairwise correlations used by the Fisher discriminant with locally pairwise dependence functions
directly in (5). An alternative, non-equivalent option, which we shall also visit, is to perform classification by
inserting the class distributions obtained with the local (Gaussian) likelihood approach into (4). We will
pursue both approaches. The local Gaussian approach has been recently used with success in a number of
different contexts, see Berentsen and Tjøstheim (2014), Berentsen et al. (2014b), Lacal and Tjøstheim (2017),
Lacal and Tjøstheim (2018), Otneim and Tjøstheim (2017), Otneim and Tjøstheim (2018) and Tjøstheim and
Hufthammer (2013). R-packages for computing local Gaussian quantities exist, as described by Berentsen
et al. (2014a) and Otneim (2018). We will in particular use the local Gaussian density estimation technique
as presented by Otneim and Tjøstheim (2017), who show that the curse of dimensionality can be avoided, at
least to a certain degree, by restricting the local correlations to pairwise dependence.

The local Gaussian discriminant is limited to the continuous case, but discrimination problems often involve
discrete variables, or even mixtures of continuous and discrete variables. We extend the idea of describing
dependence by means of pairwise relationships to discrete variables in the second part of the paper, whereas
mixture of continuous and discrete variables is sought described by a link function and a logistic regression
or a GAM type procedure. The discrete case is handled by a successive conditioning argument, in a sense
simular to the pair-copula construction described in Aas et al. (2009). We will come back to this in Sections
6 - 8.

The rest of the paper is organized as follows: In Section 2 some aspects of local Gaussian density estimation
are introduced. Asymptotics of the Bayes risk and bandwidth choice are presented, in particular in the
context of local Gaussian discrimination, in Sections 3 and 4. A number of examples in the continuous case are
given in Section 5. Section 6 and 7 deal with the purely discrete case and the mixed discrete-continuous case,
respectively, with corresponding examples in Section 8. Finally, in Section ??, we present some conclusions
and a brief discussion.

2 A local Gaussian Fisher discriminant

Considering the case with a continuous class distribution, let us now derive a local Fisher discriminant. We
will start by introducing the local Gaussian approximation for a class distribution of a single class k. The idea
of the local Gaussian approximation is to approximate fk(x) in a neighborhood Nx around x by a Gaussian
density

ψ
(
v, µk(x),Σk(x)

)
= (2π)−d/2|Σk(x)|−1/2 exp

{
(v − µk(x))TΣ−1

k (x)(v − µk(x))
}
, (7)
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where v is the running variable within the neighbourhood Nx of x. The size of Nx is determined by a
bandwidth parameter (matrix). In the bivariate case (d = 2) with x = (x1, x2) and with parameters
θk(x) = (µk1(x), µk2(x), σ2

k1(x), σ2
k2(x), ρk(x)), we write (7) as

ψ(v, µk1(x), µk2(x), σ2
k1(x), σ2

k2(x), ρk(x)) = 1
2πσk1(x)σk2(x)

√
1− ρ2

k(x)

× exp
[
− 1

2(1− ρ2
k(x))

(
(v1 − µk1(x))2

σ2
k1(x) − 2ρk(x) (v1 − µk1(x))(v2 − µk2(x))

σk1(x)σk2(x) + (v2 − µk2(x))2

σ2
k2(x)

)]
.

Moving to another point y, we use a possibly different Gaussian approximation ψ(v, µk(y),Σk(y)), v ∈ Ny.
The family of Gaussian distributions is especially attractive in practical use because of its exceptionally simple
mathematical properties, which truly stands out in the theory of multivariate analysis. Our intention in this
work is to exploit these properties locally. Note that the multivariate normal N (µk,Σk) is a special case of the
family of locally Gaussian distributions (7) with µk(x) ≡ µk and Σk(x) ≡ Σk. Tjøstheim and Hufthammer
(2013) discuss non-trivial questions of existence and uniqueness. As the local parameter functions µk(x) and
Σk(x) takes the place of the fixed parameters µk and Σk for each class distribution k in the Gaussian case, it
is natural to extend the QDA of (5) by simply replacing µk and Σk by µk(x) and Σk(x) for k = 1, . . . ,K.
This gives the local Fisher discriminant

D̂Local Fisher(x) = arg max
k=1,...,K

−1
2x

T Σ̂−1
k (x)x+ xT Σ̂−1

k (x)µ̂k(x)− 1
2 µ̂k(x)T Σ̂−1

k (x)µ̂k(x)

− 1
2 log |Σ̂k(x)|+ log π̂k. (8)

To practically apply this procedure, we need estimates of the involved parameter functions for all class
distributions k = 1, . . . ,K. Following Hjort and Jones (1996) we estimate the parameters µk(x) and Σk(x)
given data X(1), . . . , X(n) with class label k, by maximizing the local log likelihood

L(X(k)(1), . . . , X(k)(n), θk(x)) = n−1
n∑
i=1

KBk
(X(k)(i)−x) logψ(X(k)(i), θk(x))−

∫
KBk

(v−x)ψ(v, θk(x))dv,

(9)

where KBk
is a kernel function depending on a bandwidth paramater (matrix) Bk. We refer to Tjøstheim

and Hufthammer (2013) and Otneim and Tjøstheim (2017) for details on parameter estimation.

From the description of the local Gaussian likelihood above, the two discriminants in (8) and (12) below
appear to be highly affected by the curse of dimensionality. Otneim and Tjøstheim (2017) suggest a particular
simplification in order to relieve this effect, which we will adopt throughout the paper. The solution is to
apply the following simplification

µj,k(x) = µj,k(xj) and Σjl,k(x) = Σjl,k(xj , xl), (10)

leading to a pairwise local dependence structure, which can in some way be likened to the additivity assumption
in additive regression. Examples can be found where this approximation is not at all valid, but the experience
so far indicates that it covers a fairly wide set of circumstances. With this simplification it is possible to do a
pairwise local dependence analysis in a multivariate non-Gaussian and nonlinear context, such as the local
Fisher discriminant (8), and such that, as nk →∞, it reduces to the familiar pairwise correlation case if the
true class distributions are indeed Gaussian. We illustrate this point graphically in Figure 1.

In the left panel of Figure 1 we have plotted observations from two bivariate Gaussian populations, signified
by “•” and “+”, that have different mean vectors as well as different covariance matrices. In this case the
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LDA, being derived from the assumption of equal covariance matrices, is not optimal, as we appreciate from
the plot where we have drawn the linear decision boundary as a solid line. The QDA, on the other hand,
is in fact optimal because the parametric assumption of binormal populations having unequal covariance
matrices is correct. The quadratic decision boundary is indicated by a dashed line. Furthermore, in this
particular case, we observe that the local Fisher discriminant (8) essentially reduces to the the global QDA in
(5), and we achieve precisely this by choosing a large bandwidth in the estimation of the local parameters
in (10) using the local likelihood function in (9). The resulting decision boundary is displayed in the figure
as a dotted line that for the most part coincides with the QDA boundary. It is important to note that the
bandwidth selection in this example is completely data driven by means of a cross-validation procedure that
we describe in Section 4.

In the second panel of Figure 1 we have a different situation. The two populations are clearly not normally
distributed, but their covariance matrices are equal (indeed: they are diagonal). This means that the QDA
in practice collapses to the LDA, producing a near straight line. In this constructed example, though, we
see immediately from the plot that a linear decision boundary is sub-optimal. In this case, our bandwidth
selection algorithm, that seeks to minimize classification error in a certain way that will become clear in
Section 4, produces a small smoothing parameter, allowing the local Fisher discriminant (8) to become very
local, non-linear and non-quadratic. In both these constructed illustrations the LGDE-based discriminator in
(12) is essentially identical to the local Fisher discriminant. This is not always the case, though.

As a by-product of the local likelihood setup and estimation procedure in (9), we approximate fk(x) by a
family {ψ(v, µk(x),Σk(x))} of multivariate Gaussians, with estimates of the parameter functions µ̂k(x) and
Σ̂k(x):

f̂LGDE, k(x) = ψ(x, µ̂k(x), Σ̂k(x)). (11)

These locally Gaussian density estimates (LGDE) (Otneim and Tjøstheim, 2017) of the class distributions
fk(x) gives rise to a second option for utilizing the local Gaussian likelihood method in the discrimination
setting. This option is to use fk(x), k = 1, . . . ,K directly to compute posterior probabilities and perform
classification via (1) and (4), respectively. This gives the following discriminant:

D̂LGDE(x) = arg max
k=1,...,K

πkf̂LGDE, k(x). (12)

Following the standard recipe of Otneim and Tjøstheim (2017), with the pairwise simplification described
above, the estimate f̂LGDE involves a further simplification resulting from transforming each variable to
approximate standard normality and then fixing µj,k(x) ≡ 0 and σj,k(x) ≡ 1, j = 1, . . . , d. The procedure
is especially attractive if the data contain extreme outliers. As it is not quaranteed that

∫
f̂k(x)dx = 1 for

a fixed nk and bandwidth (matrix) Bk, the recipe also involves normalization of the fk by a simple Monte
Carlo procedure in the end. We do not normalize the locally Gaussian density estimates in this paper. Our
experience is that the factor by which the density estimate f̂LGDE departs from unit integral mostly depends
on the number of variables, and will thus not significatly affect the ratio f̂LGDE,k/f̂LGDE,j for two classes
k and j. Furthermore, as noted in Section 4, we do not pursue precise density estimates as such in this
paper, but rather tune our bandwidths to optimize discrimination performance. This can, in principle and in
practice, be done regardless of whether the class-wise probability density estimates exactly integrate to one.

Asymptotic theory has been developed for the estimate f̂k(x) = ψ(x, µ̂k(x), Σ̂k(x)) as nk → ∞ and the
bandwidth (matrix) Bk → 0. Otneim and Tjøstheim (2017, Theorems 3 and 4) demonstrate asymptotic
normality and consistency under certain regularity conditions. In particular, f̂k(x) = ψ(x, µ̂k(x), Σ̂k(x))→
fk(x) implies that

∫
f̂k(x)dx→ 1.
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Figure 1: The two-class discrimination problem in two different cases.

3 Some asymptotics of Bayes risk

The Bayes risk, as we have already seen, depends on density functions which may be estimated parametrically
or nonparametrically. In the former case this typically gives an asymptotic standard error of order n−1/2,
where n is the size of the training set. In the latter case, using kernel density estimation, assume the
bandwidth matrix Bk is diagonal, Bk = diag{bj,k} with bj,k = bk for j = 1, . . . , d. A kernel estimate of fk has
asymptotic standard error of order (nbdk)−1/2, which is large if d is large. Due to the reduction to a pairwise
structure, the locally Gaussian parameters discussed above, and thus the corresponding density estimate, has
error of order (nb2

k)−1/2 irrespective of the dimension d. The full asymptotic distribution is given in Theorem
4 by Otneim and Tjøstheim (2017).

In discrimination, the asymptotics of the density estimates do not hold the main interest, but rather the
asymptotics of the related Bayes risk. The purpose of the present section is to show that the local Gaussian
discriminant has an asymptotic Bayes risk independent of d under weak regularity conditions. To do this we
will base ourselves on Marron (1983), which shows that a broad class of nonparametric density estimates (not
restricted to kernel density estimates) achieve a mean square convergence rate of n−r for some 0 < r < 1.

To indicate how these results can be applied to locally Gaussian estimation, assume first that the class densities
f1, . . . , fK are known. Recall from (3) that the Bayes rule takes the formDB = arg mink∈(1,...,K) Rf (k, x, π) for
each x and π. However, in practice f is unknown, and has to be estimated. Estimating f by f̂ = (f̂1, . . . , f̂K)
leads to an estimate

D̂n = arg min
k∈(1,...,K)

R
f̂
(k, x, π)

of the Bayes rule, and we are interested in the asymptotic behaviour of D̂n relative to DB as n increases,
both in terms of consistency as well as its rate of convergence. To this end we need some assumptions on the
loss function L and the smoothness of f . The loss function L must satisfy

max
k

L(k, k) ≤ min
k 6=j

L(k, j). (13)

To define the mode of convergence, let C be a compact set C ⊂ Rd, and let SK be the simplex defined by∑
i πi = 1. Marron (1983) studies the mode of convergence of∫

SK

∫
C

(
Rf (D̂n, x, π)−Rf (DB , x, π)

)
dxdπ,
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where we in fact do not need to take absolute value of the integrand since by definition, for every x ∈ Rd, k ∈
(1, . . . ,K),

Rf (k, x, π) ≥ Rf (DB , x, π) .

Let further ∇α = ∂|α|/(∂xα1
1 · · · ∂x

αd

d ), ||x|| = (x2
1 + · · · + x2

d)1/2 and |α| =
∑d
j=1 αj . Then the following

boundedness and smoothness assumptions are imposed on f . Let Mk be a constant Mk > 1, let m be a
non-negative integer and β ∈ (0, 1], and let q = m+ β. We denote by Fk the class of probability densities fk
on Rd such that for k = 1, . . . ,K,

(i) fk ≤Mk on Rp
(ii) fk ≥M−1

k on C.
(iii) for all x, y in Rd, and all |α| = m, we have

|∇αfk(x)−∇αfk(y)| ≤Mk||x− y||β .

As is well known, the smoothness of fk determines the rate of convergence of f̂n,k. More specifically, let
fk ∈ Fk, then, according to Marron (1983, Theorem 3), there is a constant c > 0 and a density estimator
f̂n,k so that when r = 2q/(2q + d),

lim
n→∞

sup
fk∈Fk

Pf

[∫
C

(
f̂n,k(x)− fk(x)

)2
dx > cn−r

]
= 0. (14)

Moreover, let F denote the K-fold Cartesian product of the Fk, and Tn the set of training samples, each of
size n. From Marron (1983, Theorem 1), then there is a constant c > 0 and a classification rule D̂n(x, π, Tn)
so that

lim
n→∞

sup
f∈F

Pf

[∫
Sk

∫
C

[
Rf

(
D̂n, x, π

)
−Rf (DB , x, π)

]
dxdπ > cn−r

]
= 0. (15)

This describes the speed at which D̂n approaches the Bayes rule DB . The rate turns out to be the same as
for the density estimation rate for the class of densities in Fk. In Theorem 2 of Marron (1983) it is shown
that this rate is optimal in the sense that no better rate can be obtained for any classification rule D̂n based
on density estimates f̂k of densities in Fk.

It is easy to find density estimates that satisfy (14). If X is d-dimensional, and assuming existence of a
bounded second derivative of fk, the traditional kernel estimate has a variance of order (nbdk)−1 and a bias of
order b2

k. Balancing the order of variance and bias squared; i.e., putting (nbdk)−1 = b4
k leads to r = 4/(4 + d).

Assuming existence of a bounded q-th order derivative of fk and using higher order kernels; as in e.g. Jones
and Signorini (1997) leads to a bias of order hq, whereas the order of the variance is unchanged. Again,
equating the order of the variance and the bias squared leads to r = 2q/(2q + d). Increasing q it may seem
like one may in the limit obtain the parametric rate of n−1 for the mean square error, but this is illusory
as extremely large sample sizes would be required for the higher order asymptotics to kick in. In fact, as
demonstrated by Jones and Signorini, the practical usefulness of higher order kernels is debatable, and a
realistic rate in practice is n−4/(4+d), which is a slow rate for d greater than 4, say.

The key of Marron’s paper is that the derivation of (15) only uses the general convergence property in (14),
the definition of Rf , and the general assumptions on L and f stated earlier in this section. This means
that it is not limited to kernel estimation, but can be applied to any density estimate that satisfies these
requirements and has a rate as determined by (14). In turn this means that it can be applied to the locally
Gaussian density estimator (LGDE, described in the preceding section) satisfying the regularity conditions of
Theorem 4 of Otneim and Tjøstheim (2017) and the additional mild conditions (13) and (i) - (iii) in this
section. Note that the pairwise LGDE is defined irrespective of whether there actually is such a structure. In
general it can serve as a computational approximation in the same way as an additive computational model
can serve such a purpose in nonlinear regression.
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Under the regularity assumptions stated in Theorem 4 by Otneim and Tjøstheim (2017) it follows that the
variance of the LGDE is of order (nb2)−1. From the log likelihood expression in (9) it is seen that by taking
derivatives and using the weak law of large numbers, a local likelihood estimate of θ; would have to satisfy

0 = ∂Ln(θ̂, x)
∂θj

P→
∫
Kb(y − x)uj(y, θb,K)

{
f(y)− ψ(y, θb,K(y))

}
dy

where uj(·, θ) = ∂/∂θj logψ(·, θ). By Taylor expanding this integral we see that the difference between
between f(y) and ψ(y, θb) is of order b2 as b→ 0. This means that ψ(θb) approximates f at this rate, and it
is in fact the reason for including the last term in the log likelihood in (9). Contemplating that we obtain the
estimates of θ̂ by setting the log likelihood equal to zero, it is not difficult to see that the bias of the LGDE
is of order b2. Combining this with the expression for the order of the variance of the LGDE and equating
bias squared and variance, this leads to b = n−1/6 and r = −2/3, and this would have lead to a rate of the
mean square risk of n−2/3 which is much better than the risk rate for the kernel estimator as d increases.
However, condition (iv) of Theorem 4 in Otneim and Tjøstheim (2017) requires n1/2b2 → 0 which means
that b = n−1/6 is not a valid choice of bandwidth. The bandwidth b must be of smaller order than n−1/4,
and this means that the best rate r that can be obtained with the present proof of Theorem 4 in Otneim
and Tjøstheim (2017) is r = n−1/2+ε, where ε > 0 can be taken to be arbitrarily small. This leads to the
same rate for the Bayes risk because the proof of Theorem 1 in Marron (1983) do not depend on the form
of the estimator as soon as the mild conditions for that theorem is fulfilled. It is tempting to conjecture
that Theorem 4 of Otneim and Tjøstheim (2017) can be proved without the bound on b used in condition
(iv) of that theorem, but such a conjecture remains to be verified. We still have that the rate n−1/2+ε is
independent of d which is a huge advantage compared to the corresponding rate for the kernel estimator.

4 Choice of bandwidth

The preceding section concerns asymptotic results as the size of the training sets grow to infinity. We proceed
now to establish rules for selecting bandwidths in finite-sample situations, which is clearly a problem of
greater practical interest.

Nonparametric and semiparametric density estimators must as a general rule be tuned in one way or the
other, usually by fixing a set of hyperparameters, and the development of optimal strategies to do just that
has been a topic of great interest in nonparametric analysis over the last couple of decades. The kernel
density estimator, in particular, is associated with many bandwidth selection algorithms, and results on
optimal choice of bandwidth have been known for some time, see e.g. Hart and Vieu (1990) for a fairly
general cross-validation case. The locally Gaussian density estimator is much more recent, and has seen but
a few results on bandwidth selection.

Berentsen and Tjøstheim (2014) suggest cross-validation as a viable strategy, that Berentsen et al. (2014b),
Otneim and Tjøstheim (2017) and Otneim and Tjøstheim (2018) apply with reasonable results. It clearly
works best on data that has been transformed towards marginal standard normality, which is a strategy that
was mentioned in Section 2. The method is time consuming, however, and the plug-in estimator bn = cn−1/6

has been used as well, for which the value of c may be determined empirically. No optimality theory of
bandwidth selection exists for local likelihood density estimation.

The purpose of most bandwidth routines is to obtain good estimates of a density function f . We must
here ask the following basic question, however: Is it true that an optimal bandwidth algorithm developed
for density estimation is still optimal in a discrimination context? In the discrimination problem one is
more concerned with the local properties of fk where these densities overlap rather than the overall quality
of the estimate of fk. There are in fact several indications that a density-optimal bandwidth may not be
discrimination-optimal.

This issue has been examined in some special cases by Ghosh and Chaudhuri (2004). They examine the
missclassification probability as a function of the bandwidth in the case of two multivariate Gaussian
populations of dimensions 1 - 6 , and they found that the density-optimal bandwidth performed much worse
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than a bandwidth optimized with respect to the discrimination error in the case of equal a priori probabilities
π1 = π2 = 0.5. The latter bandwidth was much larger, and in fact the classification error was largely
insensitive to the choice of the bandwidth when it exceeded a certain threshold, whereas the density optimal
bandwidth was far below this threshold. For unequal prior probabilities, π1 = 0.4, π2 = 0.6 they reported
less clear results.

We are interested in obtaining the best possible discriminator, rather than the best possible density estimators
for the different classes. We therefore rely on a cross validation scheme which optimizes the bandwidth
parameter (matrix) in terms of discrimination performance (Ghosh and Hall, 2008). Below we present such
an optimization algorithm for the case with two classes only.

The area under the receiver operating characteristic (ROC) curve, or simply AUC, is a widely used ranking-
based metric for measuring the quality of a probability based discrimination procedure (Fawcett, 2006). The
AUC is constructed for two-class classification, but generalisations to K > 2 classes exist (Fawcett, 2006,
Section 10), and may replace the AUC in the description below when K > 2. A classifier that has an AUC
value equal to 0.5 in a balanced classification problem is equivalent to pure guesswork, while if AUC = 1
the classifier, all true 1’s have higher probabilitiets than all true 0’s, enabling perfect classification for some
threshold values. We have chosen to optimize the bandwidth parameter in terms of this metric in our cross
validation scheme. As a reasonable trade-off between stability and computational expense, we perform cross
validation with a single split into 5 separate sets, i.e. 5-fold cross validation (Kohavi, 1995). To reduce the
search space for the cross validation procedure we limit the bandwidth matrix Bn to diagonal ones with all
diagonal entries on the form bn = cn−1/6, as mentioned above. The precise metric we optimize over is the
average of the AUCs computed for each of the five folds separately To summarise, we tune the c parameter in
bn for the locally Gaussian discriminants according to the following cross validation procedure:

1. Divide the training set into 5 folds at random.

2. For each proportionality constants c on a specified grid:

(a) For each fold j = 1, . . . , 5:

i. For each class k = 1, . . . ,K:

A. Extract the covariates corresponding to class k from all folds except fold j, and fit a local
Gaussian density estimators with bandwidth matrix Bn = diag(cn−1/6).

B. Use the fitted density to compute the out-of-fold estimated posterior probabilities Pf (D =
k|X = x) for all covariate combinations x in fold j.

ii. Compute the AUC in fold j using all the out-of-fold estimated Pf (D = k|X = x)’s and
corresponding true classes, and denote it by AUCj(Bn).

(b) Compute the averaged AUC over all folds: AUC(Bn) = (1/5)
∑5
j=1 AUCj(Bn)

3. Choose the bandwidth matrix Bn with the largest AUC(Bn).

In our examples in the following sections we also tune the non-parametric kernel estimators in the same
way. Note further that, if there is a high degree of class imbalance in the training set, one may consider
stratification when splitting the data into the 5 folds.

5 Examples

5.1 Simulations

Let us demonstrate some properties of the local Fisher discriminant (8) from a two-class simulation perspective
by generating data in increasing dimension d from three different multivariate classification problems that
pose increasingly difficult conditions for the traditional discriminants. These problems are:
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Figure 2: Data from the bivariate versions of the three simulated classification problems.

• Problem 1: Two multivariate normal distributions, both having all correlations equal to zero and all
standard deviations equal to one (so their covariance matrices are equal), but the first population has
mean vector equal to (0, . . . , 0)T , while the second population has mean vector equal to (1, . . . , 1)T .

• Problem 2: Two multivariate normal distributions having means and standard deviations equal to
zero and one, respectively (so their marginal distributions are equal), but the first population has all
correlations equal to 0.7 and the second population has all correlations equal to 0.2.

• Problem 3: The first population consists of observations on the stochastic vector X having t(10)-
distributed marginals and a Clayton copula (Nelsen, 2007) with parameter θ = 2. The second population
consists of observations on −X.

We have plotted realizations with n = 500 of the bivariate versions of these problems in Figure 2.

In all simulated examples we let π1 = π2 = 0.5. We measure classification performance in two standard ways.
First, we use the AUC, as briefly introduced in Section 4. In addition to the AUC we will also measure
the Brier score of our predictions (Brier, 1950). The Brier score is essentially the mean squared error of a
0− 1-loss classifier, defined for a test data set of size N in the two-class problem with class labels D = 0, 1 as

Brier score = 1
N

N∑
i=1

(
P
f̂
(D = 1|X = x)−D

)2
.

As such, smaller Brier scores translate to better classification.

In Figure 3 we see results for the first example, where we try to classify previously unseen test data into one
of two multinormal populations that differ only in their means. In particular, we generate training data of
size n = 100 and n = 500 (that is, on average 50 and 250 in each class) and try five separate discrimination
methods: the parametric LDA and QDA, the multivariate kernel density estimator, the Naive Bayes with
marginal kernel density estimates, as well as the new local Fisher discriminant (The D̂LGDE of eq. (12) gives
very similar results to the local Fisher discriminant in these examples). For the latter three discriminants we
choose one bandwidth for each realization based on a cross-validation routine that seeks to maximize the
AUC as described in the preceding section. We repeat the experiment 100 times for each combination of
sample size and dimension. The plots report the average AUC and Brier scores for the various discriminants
as a function of the number of variables, as well as the standard deviation over the 100 repetitions which we
plot as error bars. In each experiment, we evaluate the discrimination using a test data set of size N = 500.

In terms of AUC, all methods perform similarly in this case, but in terms of the Brier score, the correctly
specified LDA and QDA are clearly better than the two non-parametric methods, and we also see that the
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Figure 3: Simulation results for the first example: Two multinormal distributions with different means but
equal covariance matrices. Error measured as a function of dimension.
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Figure 4: Simulation results for the second example: Two multinormal distributions with different covariance
matrices. Error measured as a function of dimension.
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Figure 5: Simulation results for the third example: Two multinormal distributions with different covariance
matrices. Error measured as a function of dimension.

local Fisher discriminant performs on par with the QDA, which comes as no surprise because the QDA-rate
is attainable for the local Fisher discriminant by choosing large bandwidths.

We see results from the second example in Figure 4, and we see clearly that the various discrimination
methods are more separated in this case. The two populations, while both being Gaussian, differ only in their
covariance matrices which means that the LDA as well as the Naive Bayes can simply not see any difference
between them, and this emerges clearly in the plots (a classifier that assigns the posterior probability of 0.5 to
all test data in a problem with π1 = π2 = 0.5 has a Brier score of 0.25). The kernel density estimator is able
to discriminate in this case, but seems to struggle with the curse of dimensionality, especially from the Brier
perspective. The QDA represents a correct parametric specification, and thus also the optimal disciminator in
this case, but we also see that the local Fisher discriminant has no problems at all to match its performance.
This is again due to our cross-validated choice of bandwidths, that seeks to maximize the AUC.

Finally, we look at the third example in which the two populations have both equal marginal distributions
as well as equal covariance matrices. Since there is no discriminatory information at all in the marginals,
nor in the second moments, we see in Figure 5 that also the QDA collapses. We are left with the purely
nonparametric kernel estimator – that works, but clearly feels the curse of dimensionality – and the local
Fisher discriminant that now must allow its bandwidths to shrink in order to reveal non-Gaussian structures.
It does that very well, as we see in the plots, and the pairwise estimation structure for the local covariance
matrices is seemingly able to detect clear differences between the two populations regardless of the number of
variables.

5.2 Fraud detection example

Due to the enormous amounts involved, financial crimes such as money laundering is considered a serious
threat to societies and economies across the world (Schott, 2006). It is therefore crucial that banks and
other financial institutions report suspicious transactions and behavior to the authorities, such that thorough
investigations and monitoring can be put into effect – ultimately leading to stopping the criminal activity and
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Figure 6: Summary plots for the three continuous variable training data for the money laundering example.
Grey (crosses) marks suspicious transactions, while black (dots) marks legitimate ones.

LGDE LDA QDA Naive Bayes Kernel Local Fisher
AUC 0.970 0.917 0.960 0.960 0.960 0.968
Brier 0.058 0.103 0.074 0.063 0.071 0.064

Table 1: Results using the three continuous variables in the money laundering example.

making the source legally liable. In a money laundering setting with a large Norwegian bank, Jullum et al.
(2018) develop and train a machine learning model for filtering out suspicious transactions from the legitimate
ones. Working with a simplified subset of the their data, both in terms of the transactions we use, and the
variables we use for discrimination, we illustrate the use of our local Fisher (and D̂LGDE) discriminant and
compare it to the classical discriminants from the above simulation experiments.

We have used a total of 785 transactions to train the model, of which roughly 28% are marked as suspicious.
To check how well our discriminants perform, we use a test set of 226 transactions, and rely on he AUC and
Brier scores as in the simulations experiments.2 To mimic a realistic scenario, all test transactions occur
after all the transactions in the training set. To simplify this example and illustration of the data, we have
restricted ourselves to three continuous variables only. In Section 8.3 we will add more discrete variables
to this examples. Due to data restrictions, we can unfortunatly not reveal what the variables we allow the
discriminant to use actually are. The data are plotted in Figure 6. As seen from the plot, the combination of
the two first variables, seems to distinguish the two classes fairly well. The third variable may also improve
slightly upon their contribution.

The AUC and Brier score obtained by the various methods are presented in Table 1. As we can see in terms
of the AUC, all methods are able to distinguish between the two classes fairly well. The best model in terms
of both the AUC and Brier score is the LGDE model. Note however, that with the exception of the LDA
model, the differences are not very large between any of the models.

2The subset of the data used in this illustration contains a small sample of regular customer transactions and transactions
reported as suspicious. Transactions which are investigated, but ultimately not reported are not included in our data. This
makes the discrimination task much easier than in practice. The true proportion of suspicious transactions is also much smaller.
See Jullum et al. (2018) for details.
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6 Discrete variables: Extending Naive Bayes

We now move from continuous class distributions to discrete class distribution, which is highly relevant in
discrimination settings. Discrete variable is a broad term that may refer to interpretable numeric variables
which can take only some specific values, to unordered categorical variables, or to ordered categorical variables.
In this context we shall use the term as a replacement for unordered categorical variables.

As for the discrimination cases with continuous class distributions, the methods we consider are essentially
based on estimating the class distributions fk (which now are probability mass functions and not densities,
and therefore will be referred to as pk) for each class and applying Bayes formula (1), and carry out the
discrimination according to (3). Thus, the rest of this section concerns methods for estimation of such an pk
for a single class k. As we shall only be concerned with the general k-th class distribution, we will throughout
this section simplify notation by omitting the k subscript referring to the class.

Consider a sequence of discrete vector variables X(i), i = 1, . . . , n (from a common class distribution). Each
vector variable has d components X = (X1, . . . , Xd). Each of these components, Xr, can take kr different
values {xr1, . . . , xrkr

}. Since the component Xr can take kr different values, the vector X can take on∏d
r=1 kr values. The question is then, how we can estimate

p(x1j1 , . . . , xdjd
) = Pp(X1 = x1j1 , . . . , Xd = xdjd

), (16)

where j1 = 1, . . . k1, . . . , jd = 1, . . . kd. There is a sort of curse of dimensionality for discrete variables as well,
but it works in a different way than for the continuous case. In the general case there are Πd

r=1kr different
cells to consider. In the special case of binary variables, then kr = 2 and the number of cells is 2d. For d large,
this will be a very large number. One can still estimate p(x1j1 , . . . , xdjd

) by the straight forward frequency
estimator

p̂Frequency(x1j1 , . . . , xdjd
) = 1

n

n∑
i=1

1(X1(i) = x1j1 , . . . , Xd(i) = xdjd
) = n1j1,....djd

/n, (17)

where n is the total number of observations and n1j1,...,djd
is the number of observations in the cell defined

by Xr = xrjr , r = 1, . . . , d. Unlike the continuous case there is no bandwidth involved, and p̂(x1ji , . . . , xdjd
)

converges to p(x1j1 , . . . , xdjd
) with the standard convergence rate of n−1/2. However, the problem in practice

is that many of the cells may be empty or contain very few observations if d is reasonably large, making it
difficult in practice to estimate .

The influential work of Li and Racine (2007; 2008) tackle this problem by a discrete-value smoothing algorithm
based on earlier work by Aitchison and Aitken (1976). The suggested smoothing for component r is

l(Xr, xr, λr) =
{

1− λr if Xr = xr;
λr/(kr − 1) if Xr 6= xr.

with λr ∈ [0, (kr − 1)/kr]. For λr = 0, one is back to the indicator function. For λr = (kr − 1)/kr,
l(Xr, xr, λr) = 1/kr; i.e., all differences are in a sense smoothed out. Li and Racine then use the product
kernel

L(X,x, λ) =
d∏
r=1

l(Xr, xr, λr) =
d∏
r=1

(
λr

kr − 1

)1(Xr 6=xr)
(1− λr)1(Xr=xr)

.

The smoothed probability estimate is then given by

p̂NP(x) = 1
n

n∑
i=1

L(X(i), x, λ) (18)

Li and Racine find the optimal smoothing parameters λ = (λ1, . . . , λd) by a cross-validation algorithm. Note
that this is a «smoothing» of discrete variables that results in changed probabilities for the values, not a
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change in the values themselves, of these same discrete variables. The cross-validation is done in a clever
way to eliminate non-relevant variables in a conditional situation (such as the classification problem). See in
particular Hall et al. (2004). The algorithm is implemented in the R-package np (Hayfield and Racine, 2008).

6.1 Pairwise Naive Bayes

Contrasting the frequency approach in (17), an obvious and much more radical solution to the problem is
to use the Naive Bayes approach where dependence between components is ignored and p(x1j1 , . . . , xdjd

) is
estmated by

p̂Naive Bayes(x1j1 , . . . , xdjd
) = Πd

r=1p̂Frequency(xrjr
) = Πd

r=1nrjr
/n. (19)

Except for certain very rare cases, this apporach automatically avoids the problem of empty cells. As this
approach has the obvious drawback that all dependence between the variables are completely ignored, it
is natural to ask whether one can extend the method in such a way that dependence is accounted for.
Motivated in parts by the pairwise approximations of Otneim and Tjøstheim (2017; 2018) we will try to
achive this by deriving an estimator for (16) using solely marginals prjr

= P (Xr = xrjr
) with jr = 1, . . . , kr

and bivariate probabilities prjr,sjs
= P (Xr = xrjr

, Xs = xsjs
) with jr = 1, . . . , kr and js = 1, . . . , ks. Note

that
∑kr

jr=1 prjr = 1 and
∑kr

jr=1
∑ks

js=1 prjr,sjs
= 1. Our pairwise Naive Bayes approach uses a construction

which in some sense is similar to the pair-copula construction, see e.g. Aas et al. (2009). More precisely,
when a pair of variables is conditioned on a set of variables in a successive conditional representation of
a joint distribution, then the conditioning variables are ignored. To simplify notation write pl···d instead
of p(xljl

, . . . , xdjd
) and pm|l···d instead of p(xmjm

|xljl
, . . . , xdjd

) = P (Xm = xmjm
|Xl = xljl

, . . . , Xd = xdjd
).

Consider
p1···d = p1|2···dp2···d = p1|2···dp2|3··· ,dp3···d.

Continuing in this way, and ignoring the conditioning, results in the Naive Bayes formula p1···d = p1p2 · · · pd.
We now try to do the same reasoning, but on pairwise probabilities. Writing plm instead of p(xljl

, xmjm) and
plm|u···d instead of p(xljl

, xmjm
|xuju

, . . . , xdjd
) = P (Xl = xljl

, Xm = xmjm
|Xu = xuju

, . . . , Xd = xdjd
), and

assuming that the dimension d is an even number:

p1···d = p12|3···dp3···d = p12|3···dp34|5···d · · · pd−1,d (20)

Omitting conditioning we approximate this expression by

pPairwise,even = p12p34 · · · pd−1,d,

with the similar expression pPairwise,odd = p12p34pd−2,d−1pd in the case where d is odd. This approximation
can be done in many ways, however, in general each giving a different result. (The decomposition can of course
be done in many ways in the Naive Bayes case as well, but here they all give the same result p1p2 · · · pd).

In the case of four variables the decomposition (20) can be done in 6 different ways

p1234 =



p12|34p34 ≈ p12p34

p13|24p24 ≈ p13p24

p14|23p23 ≈ p14p13

p23|14p14 ≈ p23p14

p24|13p13 ≈ p24p13

p34|12p12 ≈ p34p12.

(21)

Since the various pijpkl products generally give different answers, we suggest an estimate obtained by taking
the geometric mean,
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p̂1234 = (p̂12 · p̂34 · p̂13 · p̂24 · p̂14 · p̂13 · p̂23 · p̂14 · p̂24 · p̂13 · p̂34 · p̂12)1/6
, (22)

where p̂lm is used as a shorthand notation for p̂Frequency(xljl
, xmjm

). The factors in (22) are identical in pairs,
and taking this into account, (22) reduces to

p̂1234 = (p̂12 · p̂34 · p̂13 · p̂24 · p̂14 · p̂23)1/3
, (23)

which we easily see reduces to the Naive Bayes formula in case of independence between all variables.

Let us now turn to the general derivation when d is even. Corresponding to the expression (20), in the
first position, there are d(d − 1)/2 options. In the second position, we have used two variables, so there
are (d− 2)(d− 3)/2 pairs left to choose from, and so on. This means that the number of decompositions
consisting only of pairs of variables, is

R = d(d− 1)
2 · (d− 2)(d− 3)

2 · · · · · 2 · 1
2 = d!

2d/2 ,

because there are exactly d/2 factors in each such decomposition.

Denote each decomposition by g1, . . . , gR. In the general version of (21) - (23), there are R · (d/2) factors in
total, but there are only d(d− 1)/2 pairs and thus unique factors after the approximtion (after we drop the
conditioning). The number of times each factor occurs, then, is equal to

S = No. of lines like those in eq. (21)×No. of factors in each
No. of unique factors =

d!
2d/2 · d2
d(d−1)

2

= d(d− 2)!
2d/2 .

We approximate p1···p by taking the geometric mean of all the approximations g1, . . . , gR:

 R∏
j=1

gj

1/R

=

d!/2d/2∏
j=1

gj

2d/2/d!

.

This, in turn, simplifies because the individual pairwise probabilities comprising g1, . . . , gR are repeated S
times each in the product above, so that we get the following estimator

p̂′Pairwise Naive Bayes, even(x1j1 , . . . , xdjd
) =

 R∏
j=1

gj

1/R

=

 ∏
l<j≤d

p̂Sjl

1/R

=

 ∏
l<j≤d

p̂
d(d−2)!

2d/2
jl

 2d/2
d!

=

 ∏
l<j≤d

p̂jl

 1
d−1

. (24)

This is not the geometric mean of the d(d − 1)/2 pairwise probabilities, but their product raised to the
(d − 1)−1st power, see (23) for the special case with d = 4. It is seen that this reduces to the product of
marginal probabilities under independence; i.e., Naive Bayes, because each variable will be represented in
exactly d− 1 pairs each. Moreover, in case d = 2, it reduces to p12.

We now turn to the case when d is odd. This is very similar, but we have to include the marginal probabilities
into the formula. It is not difficult to show that in this case one ends up with
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p̂′Pairwise Naive Bayes, odd(x1j1 , . . . , xdjd
) =

 R∏
j=1

gj

1/R

=

d!/2(d−1)/2∏
j=1

gij

2(d−1)/2/d!

=

 ∏
j<l≤d

p̂
(d−1)!

2(d−1)/2
jl

d∏
j=1

p̂
(d−1)!

2(d−1)/2
j

2(d−1)/2/d!

=

 ∏
j<l≤d

p̂jl

d∏
j=1

p̂j

 1
d

.

(25)

The first product in the expression above is the same as in the even case, but with the exponent 1/d instead of
1/(d−1). The second product is in fact the geometric mean of the marginal probabilities. Under independence,
the first product contain each marginal probability d − 1 times (as before), and then each of them enter
once more in the second product. The exponent then cancels, and we are left with just the product of the
marginal probabilities, the Naive Bayes formula.

It is important to realize that, unlike the Naive Bayes, the pairwise approximations in (24) and (25) need not
be proper probability distributions, i.e. they may not sum to 1. To arrive at proper probability estimators,
one must normalize:

p̂Pairwise Naive Bayes, even(x1j1 , . . . , xdjd
) =

p̂′Pairwise Naive Bayes, even(x1j1 , . . . , xdjd
)∑k1

l1=1 + · · ·+
∑kd

ld=1 p̂
′
Pairwise Naive Bayes, even(x1l1 , . . . , xdld)

,

p̂Pairwise Naive Bayes, odd(x1j1 , . . . , xdjd
) =

p̂′Pairwise Naive Bayes, odd(x1j1 , . . . , xdjd
)∑k1

l1=1 + · · ·+
∑kd

ld=1 p̂
′
Pairwise Naive Bayes, odd(x1l1 , . . . , xdld)

,

(26)

but as in the continuous case we have used the non-normalized quantities in discrimination ratios.

This procedure can clearly be generalized to consider products of
(
d
3
)
factors of trivariate probabilities for

dimensions d = 3d′ for some integer d′ (with some adjustments for d = 3d′ + j, j = 1, 2) and then taking the(
d−1

2
)
-root of this and normalize. Again this reduces to the right thing for d = 3 or in the independent case.

This can be generalized to higher order interactions.

It is not difficult to show that the pairwise Naive Bayes estimators in (26) achieves the usual root-n asymptotic
normality property when compared to respectively pPairwise, odd and pPairwise, odd. Due to the notational
complexity of their construction, their asymptotic variance is also quite complicated and notationally
inconvenient to derive. We will therefore only sketch the derivation of the estimators’ asymptotic normality.
Since the estimators are both continuously differentiable functions (products and d-roots) of the various p̂j
and p̂jl, it suffices to show asymptotic normality for each of these, and applying the delta method.

Since both p̂j and p̂jl are sums of independent variables, it follows from the ordinary central limit theorem
for iid variables that

√
n(p̂j − pj) and

√
n(p̂jl − pjl) converge in distribution to zero-mean normals with

certain variances. Thus, zero-mean asymptotic normality of
√
n(p̂Pairwise Naive Bayes, even − pPairwise,even) and√

n(p̂Pairwise Naive Bayes, odd − pPairwise, odd) follows by the delta method. Note that the comparison quantities
pPairwise, odd and pPairwise, odd. In the general case, where the dependence between the variables takes a more
complicated structure than the pairwise, these estimators will be biased.

One potential problem in this context is the possibility of empty pairwise cells. This phenomenon is likely to
appear more often as the number of variables increases, and poses a particular problem in the discrimination
setting because it may happen that the two posterior class probability estimates both equal zero because of
this, regardless of the values of the other pairwise probability estimates. In order to avoid this we suggest to
simply «add ε obervations» to the empty variable pairs in the training data where ε ∈ (0, 1). At present we
have used an ad hoc solution in choosing ε = 1/2, resulting in replacing pairwise empirical frequencies of 0
with 1

2/n.
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7 The mixed continuous-discrete case

So far we have considered the situations where all variables that ought to be used for discrimination are
either continuous or discrete. In the present section we discuss the situation where we have both variable
types present at once.

The simplest solution to handle mixed data types is to treat the continuous and discrete variables separately.
Within each class of the classification problem one could then choose ones favourite procedure for modelling
the continuous variables, and vice versa for the discrete ones – for instance, respectively, via our pairwise
Fisher and pairwise Naive Bayes approaches. Assuming independence between the continuous and discrete
set of variables allows multiplying estimated distributions together giving an estimate, which can be used
for classification as described earlier. However, in many situations, this independence assumption could be
considered to be too drastic.

Our take on this is to take dependence between continuous and discrete variables into consideration by first
modelling the continuous variables with the LGDE approach in Section 2, and then conditioned on the
continuous variables set up a logistic, log linear or even generalized additive model (GAM), cf. Hastie and
Tibshirani (1990). To clarify notation, let us use Xc and xc for the dc-dimensional continuous data, and
similarly Xd and xd for the dd-dimensional discrete data. Assuming dd ≥ 2, if φ(u) is a link function; e.g.
φ(u) = log(u/(1− u)), then for an observed continuous dc-dimensional xc with u = prjr,sjs one can model
φ(prjr,sjs

) linearly as

φ(pirr,sjs
) = βrjr,sjs

0 +
dc∑
j=1

βrjr,sjs

j xcj (27)

or additively as

φ(prjr,sjs
) = hrjr,sjs

0 +
dc∑
j=1

hrjr,sjs

j (xcj). (28)

The unknown β parameters can be estimated by maximum likelihood using a GLM software package, and in
the additive case the hi-s can be estimated by a GAM software package [HO: need proper referencing
here. I also want to cite all other R-packages that we used in a separate section before the
reference list. Agree? If so: Håkon will fix]. Note that if the dimension of xc is large, which is likely in
e.g. fraud applications, then one may considered (ridge or lasso type of) regularized logistic regression (Hastie
et al., 2009, Ch. 5). We obtain estimates of marginal probabilities prjr

(x) by using prjr
(x) =

∑ks

js=1 prjr,sjs
(x).

If there is only a single discrete variable (dd = 1), then φ(prjr
) is modelled directly in the same manner

as φ(prjr,sjs
). In the training phase this should be done separately for the 2 (or K) training sets. In case

there is no dependence on continuous variables the estimate of the intercept β0 or h0 will be close to a
φ-transformation of p̂rjr,sjs = nrjr,sjs/n.

Once we have estimated the xc-dependent probabilities p(xdrjr
|xc) and p(xdrjr,sjs

|xc), we compute the corre-
sponding (unnormalised) probability p̂′Pairwise Naive Bayes, k(xd1j1

, . . . , xddjd
|xc) using the procedure of Section

6.1. The pairwise estimator of the class distributions for mixed data is finally completed by multiplying with
the estimate of the continuous density, i.e.:

f̂Pairwise, mixed, k = p̂′Pairwise Naive Bayes, k(xd1j1
, . . . , xddjd

|xc)f̂LGDE,k(xc). (29)

By obtaining estimates of the a priori probabilities πk, we may proceed to perform the classification task
through a straightforward application of the Bayes rule as in equation (4).
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8 Examples in the discrete and mixed case

8.1 Simulations in the discrete case

One way to explore the finite sample properties of the pairwise discrete probability estimator in a classification
setting is to set up a simulation experiment in the same way as we did in the continuous case in Section 5.1,
where we gradually increase the number of variables. We shall consider two different types of problems, which
have fundamental similarities to Problem 3 for the continuous case:

• Problem 1: We define define two continuous populations both being marginally standard normal,
but having two different dependence structures defined by the Clayton copula (Nelsen, 2007) with
two different parameter values: θ = 0.1 (weak dependence between the variables) and θ = 2 (strong
dependence between the variables). Then we discretize these observation by assuming that we only
observe the sign of them: −1 or 1.

• Problem 2: We complicate the discrimination task between the populations in Problem 1 in two ways:
1) We reduce the dependence between the variables in the second population by setting θ = 0.9 (while
keeping θ = 0.1 in the first population.) 2) We discretize the continuous variables into three categories
instead of two, −1, 0 and 1 by placing the boundaries between the categories in such a way that all
marginal distributions in both populations are uniform.

Since the marginals for the two populations are equal in both examples, there is no point in trying to
discriminate between the populations by looking only at marginal probabilities and using the Naive Bayes.
We must, one way or the other, extract discriminatory information from the dependence between variables.
We shall compare the following three discriminators:

1. Estimate p1...,d using empirical frequencies as in (17), proceed via Bayes formula (1), and carry out the
discrimination according to eq. (3).

2. Calculate conditional class probabilities directly using the smoothing algorithm in (18), implemented in
the np-package.

3. Estimate p1...,d using our pairwise probability approximation in (24) and (25), proceed via Bayes formula
(1), and carry out the discrimination according to (3).

We evaluate the discriminators using the AUC and Brier scores as we did in Section 5.1.

Consult Figure 7 for the results of Problem 1. We have allowed the dimension of the problem to range
from 2-12 because the calculations needed in the discrete case is much lighter than the continuous case,
computationally speaking. We see clearly that the curse of dimensionality ruins the joint empirical frequencies
from dimension 5 or 6, depending a little bit on the sample size. The NP-estimator as well as the pairwise
probability estimates, on the other hand, perform much better, the latter of which having a slight advantage
in this case.

We present the results of Problem 2 in Figure 8, where we see the total collapse of the empirical frequencies,
as well as evidence suggesting that the two alternatives are useful discriminants in all dimensions, again with
an advantage given to the pairwise procedure.

8.2 Simulations in the mixed variable case

To accompany the simulations for the situation with purely discrete variables, let us consider a simulation
experiment with mixed variables, where we again explore the performance while gradually increasing the
dimension of the variables in the two class distributions. We do this by modifying Problem 1 in the preceding
subsection as follows:

• Mixed Problem: We generate continuous variables in the same way as in Problem 1 in Section 5.1.
To create mixed variables, we discretize every other variable: Variables 2, 4, . . . are converted to the
categories −1 or 1 corresponding to their sign.
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Figure 7: Simulation results for discrete example, problem 2: Two discretisized Clayton populations with
having weak and strong dependence, respectively.
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Figure 8: Simulation results for discrete example, problem 2: Two three-category discretized Clayton
populations with having weak and not-as-strong dependence, respectively.
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Figure 9: Simulation results for the mixed example: Two Clayton populations where every other variable is
discretized.

We can no longer use empirical frequencies directly when there are continuous variables present. We could, of
course, construct a naive estimate of the posterior probabilities in the mixed case by multiplying the Naive
Bayes, or joint kernel estimates, with empirical frequencies, but given our findings in earlier examples, we
have little hope in producing good classification from such a procedure, so we choose not to implement it
here. We are rather left with two options:

1. The Li and Racine (2008) method for computing conditional probabilities directly.
2. Our pairwise procedure for combining locally Gaussian density estimates with the pairwise frequency

approach as in (29), using the logistic regression (27) or the generalized additive model (28).

The results in the mixed case are presented in Figure 9. We have used the logistic regression for n = 100
in order to ensure numerical stability, but switch to the GAM when n = 500. The two methods perform
comparably in terms of both error measures, but our new method is again slightly better. We must note here
though that the Li and Racine (2008) method for estimating conditional probabilities is not tuned specifically
towards discrimination.

8.3 Fraud detection example

In this section we build further on the money laundering example in Section 5.2, by including seven discrete
variables in addition to the three continuous ones. The number of training observations in each of the
categories are shown in Table 2. Category 1 of discrete variable 1 seems to be a decent indicator of a
suspicious transaction. Apart from that, there seems to be little information in the variables when looking at
them one by one, but there may of course be crucial patterns appearing when combining them both with each
other and with the continuous variables from Section 5.2. We will check the performance of the discriminants
used in the above simulation experiments on the test data, both when using only the discrete variables, and
when combining the two data types. We rely on the AUC and Brier score here as well.
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Disc var 1 # Suspicious # Legitimate
Category 1 146 30
Category 2 1 28
Category 3 25 335
Category 4 8 8
Category 5 9 59
Category 6 14 46
Category 7 23 53

Disc var 4 # Suspicious # Legitimate
Category 1 64 179
Category 2 154 367
Category 3 0 6
Category 4 5 3
Category 5 3 4

Disc var 2 # Suspicious # Legitimate
Category 1 203 556
Category 2 23 3

Disc var 5 # Suspicious # Legitimate
Category 1 5 19
Category 2 221 540

Disc var 3 # Suspicious # Legitimate
Category 1 29 70
Category 2 197 489

Disc var 6 # Suspicious # Legitimate
Category 1 7 10
Category 2 12 4
Category 3 202 535
Category 4 5 10

Disc var 7 # Suspicious # Legitimate
Category 1 13 67
Category 2 213 492

Table 2: Share of training observations in the different categories for the seven discrete variables in the money
laundering example.

Joint empirical frequencies NP Pairwise probabilities
AUC 0.876 0.866 0.882
Brier 0.102 0.097 0.097

Table 3: Results using the seven discrete variables in the money laundering example.

8.3.1 Discrete variables only

For illustrational purposes, we first allow the discriminators to use the seven discrete variables only. The
performance results from the various discriminators on the test set are in Table 3. As seen from the table,
our pairwise probability based approach is the best model in terms of AUC, tying the first place with the NP
approach for the Brier score.

8.3.2 Mixed variables

Now we allow discriminators to use both the three continuous variables and the seven discrete variables. The
performance results for the three discriminators accessible in this setting are shown in Table 4. As seen
from the table, the NP approach is the best in terms of AUC. In terms of the Brier score, the NP model
shares the first place with the pairwise probability based approach using GLM to model dependence between
the discrete and continuous variables. One possible reason that the GAM based version of the pairwise
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NP Pairwise probabilities (GLM) Pairwise probabilities (GAM)
AUC 0.987 0.982 0.938
Brier 0.044 0.044 0.079

Table 4: Results using two continuous variables and four discrete variables in the money laundering example.

probability approach is not performing as well here is that it might be overfitting the dependence between
the discrete and continuous variables.

9 Summary remarks

We have demonstrated how the two standard discriminants, the Fisher and the Naive Bayes, can be extended
by a (pairwise) local Gaussian Fisher discriminant and by a geometric mean of pairwise probabilities,
respectively. For the mixed case, we merge the two approaches and handle dependence between the two
variable types with a logistic regression type approach. The performance of the new discriminants have been
compared to a nonparametric discriminant based on the kernel density estimator in the continuous case, and
NP-filtered probability estimator considered by Li and Racine (2008) in the discrete and mixed distribution
case. Our experiments show significant improvements compared to the two classic discriminants, and also
good performance results compared to the nonparametric alternatives.

There is a substatial potential for further research and modifications. For instance, we have ignored the
normalization issue in computing ratios. Further, in the discrete case, we have only worked with unordered
categorical variables, while extensions to ordered categorical variables or numerically-valued discrete data
would clearly also be of interest. The method for replacing zeros in the estimated discrete pairwise probabilities
also warrant a more systematic investigation. One possibly is a variant of the NP-filtering of Li and Racine
(2008) applied to the initial pairwise probabilities. Bagging and boosting (Hastie et al., 2009) being general
methods for potential improvements of discriminants, may also represent a possible direction for improvement.

Finally, the purpose and motivation for the paper has not been to invent the ultimately best discriminaor
in every situation, but merely to naturally extend two classical discriminants in a coherent way. This
is also the reason for comparing our methods to the most natural statistically founded alternatives – as
opposed to comparing them to top notch algoritmic methods in the machine learning society, which often
require specification of long lists of tuning parameters. It would, however, be interesting to see whether our
approaches, being built on completely different grounds, can utilise the data differently than those methods,
and therefore bring something new to the table. If this is indeed the case, combining different flavoured
discriminants, for instance by methods as in Ranjan and Gneiting (2010), seems like a promising approach.

10 Software

• References to the R-packages that we have used.
• Note on code. The easiest way out might be to zip the simulation_experiments folder together with

the .Rmd-file and ship it along with the paper. Not outstandingly user-friendly though as it stands
today.
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