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Abstract

A statistical model for spatial whale distribution in the Northeastern Atlantic is presented.
The model, a Neyman-Scott cluster process, is fitted separately for 12 strata, based on data
from the Norwegian shipborn survey in 1989.

The spatial distribution differs considerably between areas, both with respect to cluster
size, intensity of clusters and density of whales within clusters. It seems obvious that
information about the clustering is relevant when planning new surveys, and when analyzing
survey data.
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1 Introduction

The spatial distribution of minke whales is of interest for various reasons. The degree of clustering
is of independent biological interest, both with respect to behaviour and feeding. The variability
in the line transect surveys will depend on the degree of clustering, and the interpretation of
survey data will be facilitated if a spatial point process model has been fitted.

We will use transect data from the Norwegian shipborn survey in 1989[6] to fit a Neyman-
Scott cluster process, separately for each stratum. The estimation is done by fitting the the-
oretical K-function[l] to its empirical counterpart by numerical optimization. The K-function
summarizes the interpoint distances in the point process.

2 Statistical model for whale distribution

The point process model for spatial whale distribution in the Northeastern Atlantic is a Neyman-
Scott cluster model. When defining such a model, we need to specify a statistical model that
covers both the cluster units and the individual whales belonging to each cluster. Separate
models are fitted to each of the survey blocks used in @ien[6]. The model, and simulation, is
based on:

Cluster units. The clusters form a stationary Poisson Process with intensity A per unit area.
This means that the number of clusters in a region A, with area v(A) is Poisson distributed
with parameter (and expected value) m = X - v(A). The clusters’ positions inside the
region, represented by the positions of cluster centers, are randomly distributed over the
total region according to a uniform probability distribution.



Individual whales belonging to a cluster. The individual whales of a given cluster is a
Poisson Process, but with intensity decreasing as the distance from the cluster center
increases. The Poisson intensity of whales in a cluster is

[ exp (—x;f;gy ) (1)

where z is the distance from the center in x-direction and y the distance in y-direction. The
intensity model (1) specifies that the number of points in a cluster is Poisson distributed
with parameter

M = p2np? (2)

The points are independently scattered around the cluster center, according to the spherical
bivariate normal distribution with variance in both x- and y-direction p2.

The parameter p might be interpreted as the radius of the cluster, and the parameter u is
the whale intensity in the center. If p is small relative to the size of the area, the method of
simulation indicated above works well. If, however, p is large, edge effects come into play.
Poisson Cluster Processes are described in Diggle[1] and Ripley[3]. The process consists of
parent events (cluster centers), and to each parent there are a number of offspring (individual
whales) with relative positions independently and identically distributed according to a prob-
ability distribution (bivariate normal). The intensity of parent events is A, and the number of
offspring for each parent is a Poisson variable with parameter M, given in (2).
To summarize the interpoint distances in a Poisson Cluster Process, one introduces the so-called
K-function, defined by

YK (t) = expected number of further points within distance ¢
from an arbitrary point in the process

where 7 is the overall intensity of points,
v =AM = Au2wp? (3)

In the present model, “points” are the individual whales, and yK(t) thus is defined as the
expected number of further whales within an interpoint distance not exceeding ¢ from a randomly
chosen whale. From the theory in Diggle[1] we find that in the present model,

K(t) =7t + 1 (1 - eXp(—Z?)) (4)

and so the p-parameter disappears.

3 Estimation

To estimate the model parameters we will use the K-function, and we therefore need an empirical
point estimate for K (t) based on observed data. The estimator K (¢) is described in Diggle[1] and
Ripley[3], and we only include a short summary. The function yK(t) is the expected number of
points (whales) within a distance ¢ from a randomly chosen point (whale). For a general region
A with area v(A), the expected number of points is yv(A). The expected number of ordered
pairs of points, with the first point being inside A thus become

Np(t) = yw(4) - 7K (1) = 70(A)K (1) (5)

The method for estimating K () is to estimate Np(t), and then to combine (5) with the common
estimator for overall intensity ¥ = %A)’ to get an estimator for the K-function:




where n is the total number of points observed inside the region A. Let Pi,..., Pr be the
process points inside the region A, and let u;; be the distance between F; and P;. Following
Ripley[3], we estimate Np as a weighted sum of ordered pairs, with weights being the inverse
of the probability that a point at distance wu;; from the point P; will be observed (i.e. is inside
the region A). When the process is stationary and isotropic, as is the case in our model, this
probability is the proportion of the circumference with radius u;; and center at P; that lies inside
the observed region A.

Our observed points are from line transects through relatively large areas. It seems realistic
to define the observed region (region A in the text above) to be a small strip of width b around
the transect line. The total observed area in a block (stratum) is

v(A) ~ hTb
where h = intended vessel speed during transect, 7' = transect duration inside the actual
block and b the effective search width on the transect. In 1989 the intended vessel speed was
h = 10 knots, and the effective search width has been estimated to approximately 0.18 nautical
miles[4]. When estimating the model parameters, we therefore use these values in all formulas.

In several of the blocks the data consists of observations from more than one continous
transect. We have chosen to regard these as independent observation series from the same model.
They are therefore linked together in one continous transect, covering the actual block. The only
relevant parameters are block identification and relative time of observation. From these we can
compute a theoretical position of each observation, and perform the estimation. For one specific
block, let the relative points of time for whale observations be 0 < < < ... <7, < T.
Relative forward positions in the observed strip will then be 0 < hry < hmy < ... < hr, < AT,
and these can also be regarded as the observed absolute positions along the transect strip. The
reason for this is that the effective search width is very small compared to the forward distances
between observations. The K-function and its estimator K (¢) thus become

K(t) = K(hr) = 7r(h7')2 + % <1 — eXp(—%))
R R 2 P (6)
K() = K(hr) = hn2T S Im = | Lu(uig)

i=1 j#i

where I;(u) = 1 if u < t, and zero else. To stabilize the variance, Ripley[3] suggests to use

L(t) =4/ ﬂwﬁ when estimation is done by least squares. For a given survey block, the estimates
of A and p are those values which minimize the squared error:

> (v - L)

1< At

However, the above functions do not include the p-parameter. Since the expected number of
observed points along the transect is E(n) = Au2mp? - hTb, all the parameters are estimated by
minimizing
o~ 2 9 2
Qat) = 3 (L&) = L)) +W (u2rp*hTb - n) (7)
t<At

Here W is a constant, weighting the L-fitting and the fitting of the expected total to the observed
total, n. If W is chosen big, the result is approximately equivalent to minimizing the sum
under the constraints that Au27p?hTbh = n. During the estimation we have chosen this kind
of weighting, by setting W = 100. The function (7), and consequently the estimates, depend
on the window size At. Our main interest is in the rather local clustering of whales, and so
we will concentrate on observations made close in time (and distance). We have found that
a At-value of approximately 10 nautical miles (that means a maximum time difference of 60
minutes) is close to optimal, in the sense that this gives relatively good fit for the majority of
the survey blocks. We want to use the same At when estimating the model in all blocks, and
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Figure 1: Empirical L-function (dots) and fitted L-function (smooth curve), from
the blocks VSS (West of Spitsbergen, south) and KO (Kola).

therefore all estimates presented are those minimizing the function (7) when At = 10 nautical
miles. The data points included in the sum (6), are those present in the actual observation
series. The estimation results (blockwise parameter estimates) are presented in table 1. The
parameter estimates differ a lot between blocks. Figure 2 shows two regions of 10000 square
nautical miles area, simulated according to the two estimated models from the blocks VSS (West
of Spitsbergen, south) and KO (Kola).

4 Discussion

The model parameters (u, p, A) were estimated by numerical minimization of (7), separately for
each of the 12 blocks. The parameter estimates are presented in table 1, and from this table we
observe that the parameter estimates differ a lot. Figure 1 shows that the L-functions are well
fitted to the empirical estimates, and it also illustrates the dilemma when deciding the actual
window size At. In the upper tail of the left figure there is a substantial increase in the empirical
values, which is not reflected in the fitted function. This sudden increase can be interpreted as
an inclusion of points from different clusters in the sum defining the empirical L-function, and
is therefore of minor interest when investigating the individual clusters. The different sets of
parameter estimates give rise to varying spatial whale distributions. The model estimated for
block VSS (West of Spitsbergen, south) is an example of a model with many small clusters of
high whale intensity, while the KO-model (Kola block) is an example of a model with relatively
few and large clusters in terms of radius, and of high whale intensity. Block SV (Svalbard
area, southwest of the Spitsbergen blocks) has parameter estimates very different from the other
blocks. The fitted model for this block has very few clusters of enormous radius but with very
small whale density.



Block m p A

VSN 3.131 1230 8.896-10~3
VSS 5951 1.244 6.539-1073
SV 0.292 133.979 5.074-107°
BJ 1.630 2.161  2.569-1073
BA 9.765  5.815  1.181-107%
GA 2351 2617  9.951-104
KO 6.446  5.720  6.601-10~*
FI 1.363  1.886  5.327-1073
LO 1.642  2.156  4.425.1073
NO 2.024 2.861  6.966-10"*
SN 0.932  2.667 2.479-1073
NS 0.762 16.684 1.049-10~*

| Median value | 1.833  2.642 1.737-107° |

Table 1: Blockwise Parameter estimates based on observations from the Norwegian
survey in 1989, see Qien[6] for block identification.

When the models are to be interpreted, one must have in mind that the estimated whale
distribution is a theoretical model for regions of unlimited area. The actual blocks then must
be regarded as a smaller region, randomly placed in the infinite area of the theoretical model.
However, the result is clearly that the whale distribution in the Northeastern Atlantic can be
modelled as a Neyman-Scott process, with substantial clustering. Information on degree of
clustering within the various survey blocks will be of help when designing future surveys. It
is important to optimize the design so as to obtain abundance estimates of minimal variance,
given total costs. Since variability depends on the degree of clustering, such information is
helpful. From data gathered in a new survey, the Neyman-Scott model should be estimated for
the individual survey blocks. This fitted models will be useful when the survey process is to be
simulated, in order to estimate hazard probability paramters and effective search width, see[5].
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Figure 2: Two regions of 10000 sqnml simulated according to the estimated model
from block VSS (West of Spitsbergen, south) and KO (Kola), respec-
tively.



