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Abstract

The problem of estimating a surface of revolution from a noisy and sparse range image is
considered. It is assumed that the axis of revolution is vertical, the surface is viewed from above,
and the surface consists of a fixed number of horizontal segments. A method for estimating the
surface based on an image model formulated in a Bayesian framework is described. Experiments
on simulated and real data are presented. The real images were acquired by a sensor producing
both range and intensity measurements. Inclusion of intensity data in the model improved

estimation accuracy.

1 Introduction

Recovery of surfaces from range images has been an active research area for several years.
In this paper, we consider very simple surfaces, namely surfaces of revolution consisting
of a fixed number of horizontal segments. Such surfaces can often be described by a small
number of parameters, and therefore high estimation accuracy can be expected even in
cases when the image is noisy and sparse. The present author became interested in this
estimation problem through a research project on classification of empty bottles.

We attempt to answer the following questions.

1. Given an estimator, how is estimation accuracy related to resolution, noise, and the
true values of the parameters?

2. How should range and intensity images be combined in order to obtain satisfactory
estimation accuracy?

Efrat and Gotsman (1994) presented analytic bounds on the accuracy that can be achieved
on estimates of disk parameters from noise-free digital images. One of the first papers on
the use of range and intensity data was Duda et al. (1979). A more recent paper on this
issue is Zhang and Wallace (1993).

In Section 2, we describe our basic model assumptions and explain briefly how the
surfaces can be recovered. In Section 3, we present experimental results on simulated and
real data. Concluding remarks are in Section 4.



2 Methodology

In this section, we describe a method for recovering a surface of revolution. The method
is based on a statistical image model formulated in a Bayesian framework. It is assumed
that the axis of revolution is vertical, and we consider surfaces that can be represented by
0 = (r,c,x) where r = (r1,79,...,7,), ;s are nonnegative numbers such that r; < ro <
... < Ty, cis the location of the axis, x = (1, %2, ..., Tn_1), ; is the height at the points
where the distance to the axis is between r; and 7,1, and n is a fixed number. We want
to estimate # from image data.

Let Ry be the disk in the plane with radius r; and centre ¢. For j =1,2,...,n — 1,
let R; be the set points in the plane where the distance to c is between r; and 7,4, and
R, is the set of points where the distance is greater than r,. Let ¢;,t,,..., %, be points
in the plane not necessarily uniformly spaced. We let y; denote the observed record
at t; and y the corresponding vector, interpreted as a realization of a random vector,
Y = (Y1,Ys,...,Y,). It is assumed that the Y;’s are conditionally independent given 6,
and the Y;’s are identically distributed within each R;. Hence, the conditional density of
the observed records given the surface is

flo) =11 II fi(wil6).
j=0t;€R;
In addition, we assume that f;(y;|0) = f;(vilz;) for j =1,2,....,n =1, fo(v:|0) = f;(v:),
and fn(yzw) = fn(yz)

Prior knowledge is often present on the parameters. For instance we might know that
x; is greater than ;. Thus a Bayesian approach is appropriate. We assume that the prior
density 7 can be written as

7(0) = m(r) me(c) my().

Let 6 be the maximum a posteriori estimate of 8. 6 is our choice of inference about 6.
We explain briefly how 0 can be computed. Let Z(r,c) be the vector z that maximizes
f(y|r, ¢, x) m(x) for a given choice of (r,c). It is often easy to find Z(r, ¢). For instance, if
[ is univariate Gaussian with expectation z;, and 7, is uniform, Z, is simply the average
of the Y;’s from R;. It follows that

0 = (r*, ¢, i(r*, ¢"))
where (7*, ¢*) maximizes the function L defined by

L(r,c) = f(y|(r,c,z(r, c))) m- (1) me(c) e (Z(r, €)).

In this paper, the domain of L is taken to be a continuum. Because the set of pixels is
discrete it follows that L is piecewise constant. Hence (7*,¢*) is not unique. However,
if the set of pixels is large, the diameter of the set of possible (r*,¢*) is small. One of
the maximum points of L is selected. In order to minimize L we apply the technique of
simulated annealing. We employed the routine called “amebsa” in Press et al. (1992).

An alternative estimator is the conditional expectation of # given y. That approach
may be pursued in the future.



c=1 oc=10
=3 0.08 0.53
=7 0.03 0.29

Table 1: Standard deviation of various radius estimates.

3 Experiments

3.1 Simulated data

Simulations were conducted in order to get an understanding of the estimation problem.
We considered recovery of cylinders. A cylinder is a surface of revolution of the simplest
kind. We tested the method on two cylinders. The height of each cylinder is 10, and the
radii are 3 and 7, respectively. The height of the background is 0. Images of the cylinders
were generated by sampling the scene at a 15 x 15-array of points and adding independent
noise. The noise was Gaussian with zero expectation and standard deviation . We
generated images with o equal to 1 and 10.

We estimated the radius, the height of the cylinder, and the height of the background.
As prior information we used that the height of the cylinder is greater than the height of
the background, the radius is between 0.5 and 8.5, and the axis passes through a square
with side length 2. The prior distribution was uniform. The standard deviation of the
various radius estimators are shown in Table 1.

As expected, the estimation accuracy decreases as the noise level increases. Note also
that we obtain higher accuracy for » = 7 than for » = 3. The same is true for the estimate
of the height.

3.2 Real data

The performance of the method described in Section 2 was investigated on a set of empty
plastic bottles without caps. The shape of the bottles is indicated in Fig. 1. When seen
from above, a bottle consists of 4 segments: bottom, peak, collar, and shoulder. Two types
of bottles were used in this study: Coke and Pepsi, and the data set consisted of 100
samples of each type.

Images of the bottles were acquired by a laser range finder. The resolution of the height
measurements is 2mm. The analysis was restricted to circular regions in the image of
radius 35mm containing a single bottle. The distance from a pixel to its closest neighbour
is between 0.68mm and 0.71mm. However, because the pixels are not uniformly spaced,
each region does not contain more than 1200 pixels.

Because the height is not measured properly on the shoulder, the slanting part of the
surface, we were only interested in the upper part of the bottle consisting of peak and
collar. Thus our goal was to estimate r; = the distance from the axis to the peak, z; =
the height of the peak, r, = the distance from the axis to the edge between the peak and



Figure 1: Vertical cross section through a bottle.

the collar, o = the height of the collar, and r3 = the distance from the axis to the outer
boundary of the collar.

We used the prior distribution 7 given by 7(0) = m,(r1, re, r3) m(x1, 22) 7.(c) where
7, is uniform on the set of (ry,re,r3) such that 7 < r; <13, 1 < ry —r; < 7.5, and
3 < r3—ry <11, m, is uniform on the set of (z1,z3) such that z; — zo > 10, and 7, is
uniform on a square with side length 10. Throughout this section the length unit is mm.

In addition to height, the intensity of the reflected light was recorded. Most of the
information concerning shape is contained in the height image. However, additional infor-
mation is available since discontinuities in the surface cause discontinuities in the intensity
image. Moreover, the quality of the height measurements deteriorates with decreasing in-
tensity. The latter fact was incorporated in the image model. For simplicity, we assumed
that the intensity distribution was the same for all segments, that is

fj (yheight’ yintensity) — hj (yh,ez'ght‘ymtensity) g(yintensity)

for pixels in R;,7 = 0,1,2,3. Note that it is not necessary to know g. The observed
height was modelled as Y"¢9"" = X + W, where W is a Gaussian random variable with
zero expectation and variance dependent on Y€nsi#y  For pixels in Ry and Rz, X is a
random variable uniformly distributed on [0, 60] and [0, 300], respectively, while X = z;
for pixels in R;,7 =1, 2.

The conditional variance of height given intensity was estimated by employing the
Nadaraya- Watson estimator, see Nadaraya (1964) or Watson (1964). The estimate is
based on measurements from surfaces where the height is known. The relationship is
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Figure 2: Relationship between intensity and height variance.

shown in Fig. 2. Note that the standard deviation is approximately 1mm for high intensity
values and 50mm for low intensity values.

Figures 3- 4 show scatterplots of the data from a single bottle and indicate the values
of the corresponding estimates. We see that the estimated surface fits the range data well.

We also attempted to estimate the surface parameters without utilizing the intensity
data. Then we assumed that the height variance was constant. However, the results were
poor.

The estimation results are summarized in Table 2. The standard deviation of the
estimate of ry is relatively large. This is likely due to the fact that the intensity is low
near the discontinuity between the peak and the collar, and hence the error of the height
measurements near this discontinuity are large compared to the difference between z;
and z,. Note also that r3 was more accurately estimated than r;, and that the results for
Pepsi were better than the results for Coke.

4 Concluding comments

In this paper, we have described a method for recovering a simple surface of revolution
using a Bayesian approach. The method was tested on simulated images of cylinders and
real range and intensity images of bottles. The performance depends on resolution and
noise level.

Concerning the estimation of the cylinders, the absolute error seems to decrease as
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Figure 3: Data from a single bottle. Distance to the estimated axis is plotted vs measured
height. The lines indicate estimates of the parameters.
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Figure 4: Data from a single bottle. Distance to the estimated axis is plotted vs measured
intensity. The vertical lines indicate estimates of the radii.



rl r2 rd zxl 22
Coke | 9.9 126 20.5 336 321
0.37 1.00 0.32 5.1 4.0
Pepsi | 9.7 127 184 345 327
0.34 0.78 029 39 3.6

Table 2: Summary of the estimation results. Mean and standard deviation are shown for
each parameter. The unit is mm.

the radius increases. This might also be true for more general surfaces of revolution.
The method does also work on real data provided that noise modelling is done properly.
Modelling the height variance as a function of intensity is a fruitful approach. Further
research is necessary in order to understand the impact of resolution, noise, and use of
prior knowledge on the performance of the method.
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