GEOMETRIC CONVERGENCE OF THE
METROPOLIS-HASTINGS SIMULATION ALGORITHM
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ABSTRACT Necessary and sufficient conditions for geometric con-
vergence in the relative supremum norm of the Metropolis—Hastings
simulation algorithm with a general generating function are estab-

lished. An explicit expression for the convergence rate is given.

1. Introduction. This paper discusses the convergence rate for
the Metropolis-Hastings simulation algorithm proposed in Hastings
(1970). The Metropolis—Hastings simulation algorithm is used for
sampling from a distribution f(z). There is currently a lot of interest
in MCMC both theoretically and in a large number of applications,
see Geyer (1992). The challenge in Metropolis-Hastings is to find a
good generating function. The explicit formula for the convergence
rate given in this paper may be used to compare different generating
functions.

Meyn & Tweedie (1993) prove that the Doeblin condition is

equivalent to uniform ergodic, i.e. uniform convergence in total
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variation norm. The total variation norm is always bounded by the
relative supremum norm. Hence, the requirement in the theorem in
this paper implies that the Doeblin condition is obtained in finite
number of steps. The relative supremum norms is used in this paper
since it gives a simple expression for the convergence rate. Convergence
in other norms may be derived from the convergence in the relative

supremum norm.

2. The Metropolis—Hastings simulation algorithm. Let 2 C R"
be a Borel measurable state space and f(z) a probability density which
is positive in ). The densities p°(x) and ¢(z | y), z, y € Q are positive in

Q or a subset of €2. All the densities are assumed absolutely continuous.

METROPOLIS-HASTINGS ALGORITHM To generate a sample from

the probability density f(z):

1. Generate an initial state 2° € Q from the density p°(z).
2. Fori=1,...,n:
(a) Generate an alternative state y from the density g(y | z%).

(b) Calculate a(y, 2*) = min {1, %} :

(©) Set 2+ — y  with probability a(y, z*)

z' with probability 1 — a(y, z°).

In this paper it is assumed that ¢(y | ) > 0 implies, ¢(z | y) > 0 for

all z,y € Q since states proposed by ¢(y | ) > 0 will not be accepted
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if g(z | y) = 0. The following definitions are needed:

Qy) ={z € q(z | y) > 0},

h(z,y) = min{ f(z) q(y | =), fF(v) a(z | )},

_hay) S I @
Qe =00 {q( Wy | @) f(y}

)
Ri(z) = ]},-((;)) ~1 and R, :ilég{‘% . 1‘}

where p’(z) is the density after j iterations. Notice that Q(y) may
have lower dimension than 2. Integration over €)(y) or a subset of

Q(y) is with respect to the Lebesgue measure in this dimension.

3. An expression for the probability density. The following
lemma is crucial for the later theorem since it formulates the probabil-

ity density for p™!(z) as a function of p’(z) in a compact formula.

LEMMA The probability density of the Metropolis-Hastings

simulation algorithm satisfies

and
R (y) = Ri(y) (1 - [ et dx) - [ R

where fﬂ(y) Q(x,y)dz < 1.
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PROOF The definition of the Metropolis-Hastings algorithm gives

P y) = /Q( )pi(ﬂﬁ) q(y | z) aly, z) dx

i /Q(y) P az]y)(1-alzy)d

=r )+ [ (P natn
—P'®ale | y)ala, y)) d

oo [, (4-0) e

where it is used that a(z,y) = h(z,v)/(f(y)q(x | v)) and that h(z,y)
is symmetric. The rest of the lemma follows trivially from the above
calculation. O

Assume that 2 = R and that the change in each iteration is limited.
Then the lemma states that the high frequency error in p°(z)/f(z) is

reduced quickly and the low frequency error is reduced more slowly.

4. Convergence for positive generating function. If the gener-
ating function is positive, it is possible to move between any two states
in one jump. This makes the convergence faster and the result less
technical. Mengersen & Tweedie (1994) prove a similar proposition

with the stronger assumption ¢(z | y) = ¢(z).

PROPOSITION Assume that ¢(z | y) > af(z) is satisfied for all
z,y € Q where the constant a € [0,1]. Then the relative error of the

Metropolis—Hastings simulation algorithm satisfies R < (1 — a)R3,.
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PROOF The assumption in the proposition implies Q(z,y) > af(x).

The lemma gives

Rt (y) < Rév‘,—/ﬂRﬁuQ(aﬁ,y) da:-l—/QRi(m) Q(z,y)dx
<R, — a/ﬂ( L — R%x))f(ac) dx

= Ri/(1 - a).

The above calculation is also valid for R(z) = —R'(z). Then
IR (y)| < Ri,(1 — a). Since both f(-) and ¢(- | y) are densities,
a € [0,1]. O

5. Vanishing generating function. When the generating function

0 = 7 and 2° = y, are neces-

vanishes, several jumps {27};_o s where z
sary in order to jump between any states x,y € Q. Let D;(z7) be the

domain of #7 which is passed in the jumps from z to y using the defini-

tion: Define S = {57}

s—1

z0 _ j+1
o as a set of sequences Sy = {D;(z/™)}:2,,

z,Yye
where 2° =y, 27 € D;(2!) for all 7% € D1 (2972), Dy(z') = {2°}
and D;(z7*) C Q(z7*1) for j =0,...,s — 1. Let S; be the set which

consists of element j in all the sequences in S;”O.

THEOREM Let the state space {2 be an open subset of R" and
assume that inf.eq [o,) f(z)dz > 0 and that sup,cq [q, f(z)dz
is finite. Assume the set of sequences Sj = {Dj(:rj“)};;(l), for all

x,y € () satisfies
(1) q(xj|a:j+1) > ajf(xj) and q(a:j+1|a:j) > ajf(xj“)
for 27 € D;j(z7*'),7=0,...,5—1, and

bj = inf / f(#)da?! >0 forj=1,..,5s—1.
Dj(xi*1)

D; ($j+1)ESj
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If s =1, set ¢ = ag, and if s > 1, set ¢ = aq H;;}(ajbj). Then
Ri}* < (1 —¢)RY; where ¢ € (0,1]. If such a set ST does not exist,

then there exsists € > 0 such that Rg\/[ > ¢ for all j.

PROOF First the following lower bounds on Q(-,-) are needed.
Equation (1) implies that Q(2?,29%!) > a; f(27) for 27 € D;(27™).
Then the integral is bounded:

(2) 1> / Q(z?, 27M) da? > aj/ f(2?)da? > a;b;
D;(ait1) D;(ait1)

for j =1,...,s — 1. This also shows that ¢ = q H;;i(ajbj) € (0,1].

The proposition implies that R/(z) < Ry,. The lemma gives

R (291) < Ry — / (Bas — B (@9)) Qa7 o,
Q(zi+1)

Notice that the integration is with respect to Q(z?*!) which may have

a lower dimension than 2. This gives

RHS(y) S RM _/ .. / (RM _ R0($0)>
(z®) Q(a1)

x Q(z°, ") da®Q(z', 2*) dx’ - - - Q(z*7", 2¥) da !

< Ry — //D) /Mz)cg(x Q' 22) do' x -
X QY 2%) dat (R — Rz ))dxo

SRM—GO/Q/D (s)"'/D(Q)Q(:EI,xZ)de><---

X Qa7 2%) dat (RM - Ro(aco)> f(z°) da®

< R — c/ (Bas = B(a®)) J(a) da® = Ras(1 ).
0

In the calculation we have used the lower bound on Q(-,-), changed
the order of integration using the fact that .S spans 2. Before the order

is shifted it is integrated over all possible sequences {x’ };j) fixing
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only 2° = y, afterwards it is only integrated over the sets D;(2?*!)
with both z* = y and z° fixed. Then (2) is used. Notice that the
integration domain D;(27*!) depends on both z* = y and 2°. Similarly
Rits(z) = —R™*3(y) is bounded, which proves the first part of the
theorem.

Choose a € (0,1) and s > 0. Define S3* such that each D;(27"") is as
large as possible satisfying g(z’ | 27%') > af(27), A%* = span(S}*) C
Q. and A, = sup, ,{span(S*)}. If A%* does not have positive measure
in R", y is replaced by another state in ).

Assume first A, # Q. Then there will be no jumps between A, and
Q\ A,, which implies RY, > ¢ > 0.

Assume then A, = (2. Then for a given J > 0, there exist a and s
such that the probability of a chain with z° € Q \ Ap® entering A7 is
less than . Let

) = (1+¢) f(z) forzeQ\ Ay,
(1 - Be) f(x) otherwise,
where 8 is determined such that [, p’(z)dz = 1. Then p/(z) >
(1+¢€ (1 =29)f(x) for x € Q\ Ap° and j < s which implies

Ry >e>0. O

EXAMPLE Let 2 = R, let f be a normal distribution with
expectation y, and let ¢(z | y) = 0 for |z — y| > ¢ for a constant c. If
. (1+¢€)f(x) forz <y,
p(z) =
(1—¢€)f(x) forz >y,
then R%, = e for all i. The algorithm converges in L, Ly, and T.V.

norm. In this example the assumption inf, fQ(y) f(z) dz > 01is violated
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for |y| sufficiently large.

ExAMPLE Let Q = (0,1), f(z) =1, ¢(z | y) = 2z, and

. (1+e)f(x) forz<1/2,
p(z) =
(1—¢€)f(x) forz>1/2.

Then R, = ¢ for all 5. The algorithm converges in L;, and 7.V. norm

but not in Ly. In this example ( 1) is violated.

EXAMPLE Let z = (71, 7,) € R?,
Q= {(a:l,xg) eER? z;>land0< a2, < :vl_Q}.

and f(z) = 3 for all x € Q. Further let

/

1/223 if x1 =y,
Q((xlaxQ) | (ylqu)) = 3 1/2(:5% - 1) if T2 = Yo,

0 otherwise,

\

and

. 1+4+e€)f(x) ifz>2
p(z) =
(1 — Be)f(x) otherwise,
where 3 is chosen such that [, p°(z)dz = 1. A chain starting with
sufficiently large values of z; has arbitrarily small probability of
entering the region with z; < 2. Hence R%, = ¢ for all j > 0. In this

example sup,, fg(y) f(z) dz is not finite.
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ExAMPLE Let Q = (0,1), f(z) =1 and

)
0 for |z —y| > B,
1/28 for z—y|<pfand f<y<1-—0,
q(z [ y) =<
1/(y + B) for |z —y| < B and y < G,
| 1/(A—y+p) forlz—yl<Bandy>1-p,

where 0 < § < 1/2. Setting D;(2/™) = (j&2 +2 — 7, /52 + 2 +7)

. s—1 .
where v = (6—(1/s))/2,s > 1/, gives R};* < (1 ~ 35 (% — 2—;5> ) RY,.

EXAMPLE Let © = (zq,...,2,) € R*, Q = (0,1)", and

)
v ifx; <fBfori=1,...,n,

f(ﬂﬁ):<u ifx; >1—pfori=1,...,n,

\ (1—(v+u)p™)/(1—26") otherwise,
where 3 < 1/2 and v > p > 1. Further
1/n if z; = y; for at least n — 1 valuesof i = 1,...,n,

q(z |y) =
0 otherwise.

For pu large this example is similar to a Strauss process with strong
attraction. The movement of a chain between domains with high
density is only possible by passing through domains with low density.
Let x,y be in opposite corners and s = n. The theorem gives the
following slow convergence for n large. Ry® < (1— 2-) R, This
may be the exact convergence of the first n steps. When the number
of iterations increases, RY, decreases faster. This is illustrated by
assuming that y = v and p'(z) = (1+€(j — k)/n) f(x), where j
is the number of z; < # and k is the number of z; > 1 — 3. The

lemma implies that p't!(z) = (1 - %6(1 - %)) f(x)which gives



10 LARS HOLDEN

Ry < (1- L) R},. The critical difference between these two cases

is that in the first case p’(z) — f(z) is only positive for z in a small

corner while in the second there is a gradual change.
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