Wet snow-cover mapping by C- and L-band polarimetric SAR
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Abstract

The main focus of this paper is discrimination between
snow and bare ground for snow cover mapping using air-
borne EMISAR multipolarization SAR data. A series of
three experiments investigating (i) the effect of the local
incidence angle; (ii) the optimal subset of polarimetric fea-
tures for best accuracy; and (iii) the optimal classifier was
performed.

The backscatter values vary with local incidence an-
gle. When this was corrected the backscatter values were
less dependent on the incidence angle. Nevertheless, the
classification accuracy was not significantly better using
angle-corrected data in comparison to non-corrected data.

A number of studies have proposed and compared differ-
ent features derived from multipolarization measurements.
The aim of the second experiment was to find an optimal
subset of such features. The highest classification accu-
racies were obtained for a one-dimensional feature vector
consisting of C-band span, VH, or HV polarization.

Several supervised and unsupervised classification
methods were studied. It turned out that, for this data
set, clustering gave as good results as the supervised clas-
sifiers and the more complicated unsupervised classifiers
studied.

INTRODUCTION

The European Multi-sensor Airborne Campaign (EMAC
’94/95) program for 1995 included snow and ice experi-
ments in northern Europe. The aim was to test new sen-
sors for improved quality of snow and ice measurements.
The snow and ice test sites are found in northern Finland,
in the gulf of Bothnia (Finland), and in northern Norway.
The data analyzed in the experiments described in this
paper are from the test site in northern Norway, which is
located at Kongsfjellet near the Okstindan glacier (66° N,
14° E).

This paper describes a series of three experiments inves-
tigating the effect of the local incidence angle, the optimal
subset of polarimetric features, and the optimal classifica-
tion algorithm for snow-cover mapping.

The backscattering signal for snow and bare ground

varies with the local incidence angle. We will illustrate
that this is the case for the data studied here. Then, we
will correct the backscattering signal to reduce this varia-
tion and perform experiments to find out how this influ-
ences the classification accuracy.

Many features for use in classification may be derived
from the polarimetric SAR data. To find an optimal subset
of such features an automatic feature selection method will
be used. This is done to indicate the optimal near-future
SAR satellite sensor for snow-cover mapping.

In the last experiment, we will study two supervised
and three unsupervised classifiers. For operational ap-
plications, unsupervised classifiers are the most useful.
Therefore, it is interesting to compare the behavior of such
classifiers to that of the supervised ones.

THE DATA SET

The available data set consists of airborne EMISAR C-
and L-band polarimetric SAR data. Three data sets, from
March, May, and July 1995, were acquired. In the exper-
iments described in this paper only the July data set has
been investigated.

A comprehensive field work was carried out simulta-
neously with the SAR acquisitions. Nine snow parame-
ters were measured: Density, liquid water content, water
equivalent, snowpack structure, temperature, snow depth,
snow grain size, snow surface roughness, and snow cover-
age. For the July campaign, the area was covered by aerial
infrared photography in order to determine the exact snow
cover and the vegetation type in bare-ground areas. An
orthophoto was derived from the aerial photos.

The SAR data were geocoded by NORUT IT. The im-
ages were first geometrically corrected, then transformed
to UTM coordinates. In this process a digital elevation
model was used. This model was also used for finding
the local incidence angle of each pixel. Before classifying
these data, they were mean filtered using a 3 x 3 window.
The original SAR data had a resolution of 1.5 m x 1.83 m.
During the geocoding process they were resampled to pixel
size 5 m X 5 m.

The orthophoto had a resolution of 1 m x 1 m. To get



the same resolution as the SAR data it was resampled to
pixel size 5 m X 5 m, using nearest neighbor resampling.

METHODS AND RESULTS

Ground truth Three main classes were present in the
July data set: wet snow, bare ground (e.g. moun-
tain birch), and sparse vegetation (e.g. bed rock, moss,
heather). Ground truth was obtained from the orthophoto
by thresholding in order to divide the data set into snow
and not-snow pixels. The result of this was modified man-
ually because the thresholding did not give a perfect result
in areas with shadow. The not-snow pixels were further
separated into bare ground and sparse vegetation using a
digital map of the area. The digital map was also used to
identify and remove lakes from the data set.

The effect of local incidence angle The backscattering
signal for snow and bare ground varies with the local in-
cidence angle. This is expected to influence the classifica-
tion performance. Various models for correcting the angle
dependency have been reported, the most common correc-
tion is to apply a correction factor involving the cosine of
the incidence angle (e.g. see [5]).

In the uppermost part of Figure 1 this dependency is
illustrated for snow, bare ground, and sparse vegetation in
the very rough terrain of the test site. The mean backscat-
ter value for all pixels corresponding to a certain incidence
angle is plotted for each of the three classes. We observe
that the backscatter value is higher for larger angles. Only
C-band HV-polarization results are shown in the illustra-
tions. Similar result were obtained also for the other C-
band polarizations.

For reducing the backscatter values dependency of an-
gle Shi and Dozier [5] multiply the backscatter values by
cos®(a). Here a is some positive constant and « is the
local incidence angle, or more precisely the angle between
the local surface normal and the image plane normal.

In the two middle illustrations of Figure 1, we see the
results of correcting the backscatter values for a = 1,2.
We observe that the corrections lead to a small angle de-
pendency for angles below 60-80 degrees. For the extreme
angles, on the other hand, the result is not satisfactory.
To avoid this undesirable effect we corrected the backscat-
ter signal by multiplying by cos®(a) for angles below 60
degrees and with cos®(60) for angles above 60 degrees. In
the lower part of Figure 1, we see the result of performing
this correction with a = 2. We observe that we now avoid
the effect with bad results for extreme angles, and that
the backscatter values vary less with angle than they did
without angle correction.

Let us next study how the angle correction of the
backscatter signal influences the classification accuracy.
The classification method used is K-means clustering [1].
We clustered the data into five clusters and let two of the
clusters be snow and the three others be snow free. Initial

No angle correction

backscatter value
30 2
| |
- \
=
S
b
l (
{
\ >
\
’

local incidence angle

Correction with cos(a)

backscatter value

T T T T
20 40 60 80

local incidence angle

Correction with cos?(a)

backscatter value
25
I
1
{
/
J

local incidence angle

Correction with cos?(3)

backscatter value
2t
I

local incidence angle

Figure 1: Plots of the 02,5-backscatter C-band HV value
compared to local incidence angle for snow (lower curve),
bare ground (middle curve) and vegetation (upper curve).
a is the incidence angle. [ is equal to a when a < 60°
and 60° otherwise.



Polarization HH| HV| VH| VV
No correction | 84.4 | 85.0 | 85.3 | 84.0
cos! () 85.1 | 85.2 | 85.5 | 84.8
cos?(a) 85.2 | 85.4 | 85.1 | 84.4
cos*(B3) 85.5 | 85.7 | 85.4 | 84.6

Table 1: Classification accuracies when clustering the C-
band data into five clusters to separate smow from snow
free. o is the incidence angle. (8 is equal to a when o < 60°
and 60° otherwise.

seed values near the mean of the snow class were used for
the two snow clusters. For the three snow free clusters val-
ues near and between the means of the two other classes
were used. Let a be the incidence angle. Let 3 be equal
to a when a < 60° and 60° otherwise. For each C-band
polarization we performed four clusterings, one for the un-
corrected data, one for data corrected with cos(a), one
with cos?(a), and one with cos?(3). In Table 1 the classi-
fication accuracy for each case is given. We observe that
the classification accuracies are only slightly influenced by
the angle correction. We would perhaps have expected
improved classification accuracy after angle correction, es-
pecially for the correction factor cos?(3). A reason for ob-
taining only small improvements might be that the snow
and snow free classes already are quite well separated (see
Figure 1).

Optimal subset of polarization features In the event
of a polarimetric satellite SAR, this second experiment
studies the classification performance for subsets of single
polarization and dual polarization features compared to
full polarimetric data. A number of studies have proposed
and compared different features derived from multipolar-
ization measurements. It is expected that polarization fea-
tures which involve the ratio between two polarizations or
frequencies are more robust with respect to the incidence
angle effect than features based on a single polarization
[3, 5].

The set of features considered consists of 20 features
found in the literature. The set contains for both C-
and L-band the four polarizations (HH, HV, VH, VV),
the span (HHEEHVAEVHEVV) [4] the depolarization fac-
tors (HV/VV, VH/HH) [7], and the copolarization ratio
(HH/VV) [4]. In addition we included for each polariza-
tion the feature: L-band polarization divided by C-band
polarization [4]. The depolarization ratio is expected to
discriminate between areas with multiple scatterers (e.g.
rock) and smoother surfaces (e.g. snow). The copolariza-
tion ratio HH/V'V is expected to be smaller for wet snow
than for rough surfaces [5].

To choose an optimal subset from these 20 features
an automatic feature selection method was used. This
method was based on an iterative inclusion of the best
features [6]. For computing error rates the leave-one-out

Snow separated from bare ground

Feature

C-band span 87.2%

C-band VV 84.1%

C-band HH 83.9%

all other features | 79.0% or worse

Snow separated from vegetation

Features

C-band HV 95.1%

C-band VH 95.0%

L-band HV 94.2%

L-band VH 94.2%

C-band span 91.0%

all other features | 88.8% or worse

Table 2: Classification accuracies obtained in the two au-
tomatic feature selection experiments.

method and a Gaussian maximum likelihood classifier was
used.

We performed two experiments with the automatic fea-
ture selection method. First we chose a set of features
for separating snow from bare ground. Then we chose a
set of features for separating snow from vegetation. Both
these experiments indicated that a set containing several
features is only slightly better than a set consisting of only
one feature. The classification accuracies obtained in the
two experiments are summarized in table 2.

To find a set of features which separates snow from both
bare ground and vegetation we investigated further the fol-
lowing features: C-band HV and VH, C-band span, and
L-band HV and VH. These features were chosen because
C-band span was clearly best in the snow/bare ground
experiment, and because the four others were the only
features with better results in the snow/vegetation exper-
iment (see table 2). To find the best of these five features,
we clustered the data using K-means clustering as above.
The classification accuracies are given in table 3. As ex-
pected, the results for C-band HV and VH are almost the
same because these two polarizations contain more or less
the same information. Similarly for L-band HV and VH.
To find out whether a set consisting of more than one fea-
ture leads to better results than a set consisting of only
one feature, we found the classification accuracy for sub-
sets consisting of two or three of C-band HV, C-band span,
and L-band HV. As we see from table 3 the results are not
improved when several features were used. Concerning the
result for one-dimensional feature vectors, the best results
were obtained for C-band HV, VH and span. Near fu-
ture sensors will normally not be fully polarimetric. Since
span involves all the four polarizations we conclude that
C-band VH or HV polarization is the optimal feature to
use for snow discrimination on data sets similar to the one
in the present study.



Features

C-band HV 85.6%
C-band VH 85.5%
C-band span 85.7%
L-band HV 76.8%
L-band VH 76.7%
C-band HV + L-band HV 83.9%
C-band HV + C-band span 85.6%
L-band HV + C-band span 83.7%
C-band HV + L-band HV + C-band span | 84.9%

Table 3: Classification accuracies obtained when clustering
the data into five clusters to separate snow from snow free.
The data set clustered is equal to the test set described in
the paragraph concerning the optimal classifiers.

In Shi and Dozier [5] the depolarization and copolar-
ization factors gave good results. However, their reported
average performance compared to intensity measurements
seems to involve classes of different sizes, and by consid-
ering the number of pixels in each class in computing the
average performance, the difference between using only C-
band VV compared to multipolarization measurements is
not very large. For our data set, we obtain the following
accuracies for these features: C-band HH/VV 51.3%, C-
band HV/VV 67.7%, and C-band VH/HH 63.2%. This in-
dicates that some discriminatory power present in the ab-
solute value of the calibrated polarization measurements is
lost by computing normalized features involving two mea-
surements.

Optimal classifier In this last experiment, we will clas-
sify the data set using both supervised and unsupervised
classifiers. The data set was separated into a training set
and a test set. The classification accuracies given are for
this test set. The feature used in the following experiments
is C-band span, which was one of the three best features
found in the experiment above.

Two supervised classifiers were applied. These are
a noncontextual and a contextual Gaussian maximum
likelihood classifier. The contextual classifier used is
the Haslett classifier (see [2]). For these two classifica-
tion methods we obtained the following accuracies: non-
contextual classification 85.4% and contextual classifica-
tion 85.7%. The non-contextual classification result for a
part of the data set is found in Figure 2.

Besides K-means clustering, which gave an accuracy of
85.7%, two other unsupervised classifiers were used. These
are combinations of clustering and one of the two super-
vised classifiers mentioned above. Here, clustering is first
done to be able to perform automatic training. Then the
result is used to train the two (non-contextual and contex-
tual) Gaussian maximum likelihood classifiers. For these
two classification methods we obtained the following ac-
curacies: clustering combined with non-contextual classi-

fication 85.6% and clustering combined with contextual
classification 85.9%.

We observe that the classification accuracies obtained
above are very similar. Since unsupervised classifiers are
most useful for operational applications, such a classifier
will be prefered. Clustering is as good as any of the other
unsupervised classification techniques. We therefore con-
clude that this is the best for the data set studied here.

The clustering scheme described above is not totally
unsupervised because the seeds are chosen with respect to
the mean values of the three classes. On the other hand, it
should be possible to automatically choose reasonable val-
ues for the seeds because the approximate mean backscat-
ter values of the classes present in the scene are known in
advance. By using these values combined with histogram
information it should be possible to choose seeds points
not to far from those we chose manually here. Neverthe-
less, it should be further investigated how dependent the
clustering results are on the initial seed points.

CONCLUSION

In the first experiment of this paper, the effect of the
local incidence angle on the backscattering signal was in-
vestigated. We observed that the backscatter values varied
with local incidence angle and corrected them so that this
variation became less. This correction did not significantly
improve the classification accuracy.

In the next experiment an optimal subset of features de-
rived from multipolarization measurements was selected.
We concluded that a subset consisting of one of the C-
band copolarizations (HV or VH) or span was the optimal
one.

Several supervised and unsupervised classification
methods were studied. It turned out that, for this data
set, clustering gave as good results as the supervised clas-
sifiers and the more complicated unsupervised classifiers
studied. It should be further investigated how dependent
the clustering result is of the initial seed points, which were
manually picked out in the present study.
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