FINITE ELEMENT DISCRETIZATIONS OF ELLIPTIC PROBLEMS
IN THE PRESENCE OF ARBITRARILY SMALL ELLIPTICITY;
AN ERROR ANALYSIS
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Abstract. The purpose of this paper is to analyse the error of the finite element method applied
to the pressure equation arising in reservoir simulation. We study self-adjoint second order elliptic
equations with discontinuous coefficients and of arbitrarily small (but uniformly positive) ellipticity.
Under proper conditions on the permeability functions and the source term, we prove error estimates
that are independent of the lower bound ¢ of the materiel coefficients. These results are based on
an extensive regularity analysis of the interface problems of concern. More precisely, we show that
the solution of our model problem is piecewise smooth, and that the associated Sobolev norms are
bounded independently of §. Finally, the error analysis is illustrated by numerical experiments.
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1. Introduction. Consider the following prototypical elliptic boundary value
problem

V-(KVu)=f inQCIR?
(1.1) u=0 on 09,
where K is a given uniformly positive and bounded function defined on Q. Let uy

denote an approximation of u computed by the finite element method. Given proper
conditions on the finite element space V},, it is well-known that

(1.2) v —unllgi@ <V1ite

SupwESZ K ('7;) .
——x= 7 inf u—
i fze K( ) q:th” Qh”Hl(Q):

where ¢ is a constant only depending on the solution domain €2 (the constant appearing
in Poincaré’s inequality), see for instance [4]. Hence, up, will be a good approximation
of u provided that K has small variation and that the finite element space Vj is
sufficiently large.

In this paper we will consider elliptic problems of the form (1.1) arising in reservoir
simulation. For these type of models, K typically has large jump discontinuities and
varies from! 1079 — 102. Hence, in such cases inequality (1.2) indicates that some
sort of problem may arise for the efficient, and accurate, numerical solution of (1.1).
Consequently, it might be necessary to apply adaptive methods, cf. e.g. [14] and
references therein, in order to obtain acceptable results. Typically, mesh refinements
are needed close to the discontinuities of K and in regions where K is close to zero.

However, under proper conditions on K and on the source term f we will prove
an error bound of the form

_ <einf llu—
[|w Uh||H1(Q)_Cq:I€1Vh||U an ||l (@)

where ¢ is a constant not depending on the lower bound é of K. More precisely,
such results are obtainable if the source term f vanishes in the low-permeable zones
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of the reservoir, i.e. in the regions where K is close to zero. We will also assume
that the domain Q can be partitioned into subdomains such that the variation of K is
relatively small in each subdomain. At the boundaries of these subdomains we assume
that K has jump discontinuities. Moreover, given proper smoothness assumptions on
K and the solution domain 2, we prove that the solution of a problem of this form is
piecewise smooth and that the following error estimate holds

lu = unlla @) < ch

Here, h represents the mesh parameter associated with the finite element space Vj,
and c is again a constant independent of the lower bound § of K. Thus, in such cases
it seems like no grid refinements, due to small ellipticity and jumps in the coefficients,
are needed.

Elliptic boundary value problems of the form (1.1) arise in a series of applications.
Their mathematical properties have been thoroughly studied by several authors: Dau-
tray and Lions [10], Gilbarg and Trudinger [16], Hackbusch [19] and Marti [23], to
name a few. References and reviews of numerical methods for such problems, includ-
ing error analyses, can be found in e.g. Bramble [1], Chan and Mathew [7], Ciarlet
[8] and Hackbusch [18]. We would also like to refer to Dryja [12] and Dryja, Sarkis
and Widlund [13] for their analysis of multilevel methods for elliptic problems with
discontinuous coefficients.

The remainder of this paper is organized as follows: In the next section we describe
our model problem and the necessary assumptions on the physical parameters. Section
3 contains the notation used throughout this paper and the discretization of our model
problem. Sections 4-6 contain the theoretical results, and in Section 7 we present our
numerical experiments.

2. The model problem. Let P represent the unknown fluid pressure related to
steady state or incompressible flow in a heterogeneous reservoir, g the gravitational
constant, p the density of the fluid and D the depth of the reservoir measured in the
direction of gravity. Then the pressure equation arising in reservoir simulation can
be written in the form

2.1) V-[A (VP — pgVD)] + % -0 inQCR?

see for instance Ewing [15] or Peaceman [25]. In (2.1) A is the mobility tensor repre-
senting the viscosity of the fluid and the permeability of the reservoir. Source terms,
such as injection and production wells located inside 2, are incorporated in the model
(2.1) by the function g.

Throughout the paper we will assume that the domain  is a union of two disjoint
subdomains 1, Qs and a common boundary 9€s. Here, 0 < § < 1 is a small constant
and Qs represents a low-permeable zone in the reservoir. That is, Q = Q; U Q5 and
we assume that the mobility tensor As has the form

_ [ A(z) forze
(2.2) As(z) = { (SA;E:I:) fgr i € Qs,

where A is a O(1) mobility tensor defined on Q. Clearly, by (2.2) As is a mobility
tensor of order O(1) and O(d) in Q4 and Qj, respectively. A solution domain of this
type is shown in Figure 2.1.

In this paper we will assume that g and p are constant over the domain 2. Then,
by putting f = ¢/p and p = P — pgD we can rephrase our model problem (2.1) in
the following form

(2.3) V- (AsVp)+ f=0 inQCIRR?
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Fi1g. 2.1. An example of a solution domain §2 consisting of two subdomains 1,025 and a
common boundary 0Qs. We assume that the mobility tensor As is of order O(1) and O(4) in
and S5, respectively.

with a homogeneous Dirichlet boundary condition
(2.4) p=0 on 0.

Next, consider the source term f = ¢/p and recall that g represents either injection
or production wells located inside (2. Injecting water into low permeable regions, i.e.
zones containing hard rocks, requires a very high pressure. Hence, it is not desirable
to position injection wells at such locations. Furthermore, fluids tend to flow around
low permeable zones, and thus production wells should not be drilled in these regions.
Therefore, from a physical point of view, we find it reasonable to assume that ¢ =0
in the area of low permeability. That is, we will assume that

(2.5) flas =0

throughout this paper.

Now, the purpose of this paper can roughly be formulated as follows; Let p, be
an approximation of the weak solution p of (2.2)-(2.5) computed by the finite element
method. Then we want to prove error estimates for p—pp, measured in proper Sobolev
norms, that are independent of the lower bound ¢ of the mobility As. More precisely,
there exists a constant ¢, independent of § and the mesh parameter h, such that

2.6 — <c inf —

(2.6) lp = prllae) < c _inf lp — aqn llz (@),
and

(2.7) lp — pulla (@) < ch.

As we will see below, such estimates are obtainable because f is assumed to satisfy
(2.5).

Normally, problems of the form (2.2)-(2.4) involving discontinuous materiel coeffi-
cients are referred to as interface problems. Interface problems of this kind have been
analysed by several authors, cf. [11, 19, 20, 22, 26, 27]. However, to our knowledge
error estimates independent of the lower bound § of the mobility A5 have not been
established earlier.

Remarks.
1. For the sake of simplicity we will only consider homogeneous Dirichlet bound-
ary conditions, see (2.4). However, it should be noted that our results are
also valid if more general boundary conditions are applied.
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2. The analysis presented in this paper can be extended to the case of a finite
number of subdomains Qs, with order O(d;) mobility. In this case, condition
(2.5) must be replaced by the assumption that f is equal to zero in each of
these subdomains.

3. It is straight forward to prove similar results in the case of three space di-
mensions.

4. In [24] we analysed the convergence properties of p as § — 0 for problems of
the form (2.2)-(2.5), cf. also [5]. Moreover, in [6] we studied a preconditioner
for the efficient numerical solution of problems of this kind.

3. Weak formulation and discretization. To get a well-posed variational
problem of (2.3)-(2.4) we assume that f € L?() and that the mobility tensor A(z) =
(Ai,j(z)) is a symmetric uniformly positive definite matrix satisfying

(3.1) Aij € L®(Q) forij=1,2,

TA
(3:2) 0<mS%SM for all z € R?\ {0} and = € Q.
Here, m and M are finite constants independent of §, and |z| denotes the Euclidean
norm of z € R?.
Next, H'(f2) denotes the classical Sobolev space of square-integrable functions
with square-integrable distributional derivatives, and H; () is defined by

Hy(Q) = {¢ € H'(2); T(y) =0},

where T : H'(Q) — H'/2(9Q) denotes the trace operator. Then the weak formulation
of (2.3)-(2.4) can be defined in the usual way; Find p € Hg () such that

(3.3) /Q V- (AsVp)dz = [ fydo for all ¥ € HE(Q),

1951

where the integral over Q; on the right hand side of (3.3) is a consequence of assump-
tion (2.5). If the boundary of € is sufficiently smooth, then it follows from (2.2),
(3.1), (3.2) and the Lax-Milgram theorem that the problem (3.3) is well-posed for
every § > 0, cf. e.g. Dautray and Lions [10].

Next, we make the following assumptions for the subdomains ©; and Qg; Q =
QUQs, 21NQs =0, 00N Qs = 0. That is, the closure Qs of Qs is contained in Q
and 002 C 08y, 05 C O and O U 05 = 004, see Figure 2.1. We will also assume
that €1 and Qs have sufficiently smooth boundaries.

The Ritz-Galerkin discretization of the problem (3.3) is defined in the usual way.
Let {Ni,...,N,} be a set of linearly independent functions satisfying N; € HJ () for
i=1,...,q, and define

Vi, =span {Ny,...,Ny}.

Here, h represents the global mesh parameter associated with the finite element space
Vi. Clearly, V;, is a subspace of H](f2) and we can define the finite dimensional
approximation of (3.3) as follows; Find py € V}, such that

(3.4) / V- (AsVpy) de = fdz for all ¢ € V.
Q 2
In order to prove an error estimate of the form (2.6) we must introduce two

assumptions on the finite element space V},. To this end, consider the spaces

Vas.n = {wnlas; wn € Va},
(3.5) Vo, = {wnlo,; wn € Vi},
4



and let To, : H'(9) — H'/?(0Q;) denote the trace operator. The assumptions are
now stated in terms of the following set

Ga,n = {Ta,(®)|aas; ¥ € Va,u},

which is well defined since 9§25 C 94, cf. Figure 2.1.
A1l. For every wy, € Gq,,, we assume that the following problem has a unique solu-
tion: Find up € Vo, p such that up = wy, on 8Q5 and

(3.6) Vi) - (AVuy) do =0 for all o € Vi, » N Hy (Qs).

Qs
We will also assume that there exists a constant ¢;, not depending on ¢ or h,
such that the solution wuy, of this problem satisfies

lun s < erllwnllairz(a0,)-

A2. If p € Vi, N H (25) then the function

| ¢ onQs
d}_{O oan

belongs to Vj.

To motivate assumption A1 we consider a similar feature in the continuous case.

Let u be the solution of the following problem: Find u € H'(;) such that u = w €
H'/2(895) on 995 and

Vi - (AVu) dz =0 for all ¢ € Hy ().

Qs

Then it is well-known that u satisfies an inequality of the form

lullmi@s) < Cllwlimeaa,),

where C € IR, is a constant independent of §, see e.g. Hackbusch [19]. Motivated
by this property, which is valid in the continuous case, we will assume that A1 holds
throughout this paper. In fact, assumption A1 can be verified for various types of
finite element spaces, see Bramble, Pasciak and Schatz [2] and [3].

Next, condition A2 makes it possible to extend discrete test functions defined on
Qs, and that vanish on 0Qs, to the entire domain Q. Typically, this assumption is
satisfied if the interface 0€2s coincides with grid-lines of the mesh associated with the
finite element space V},.

4. An error estimate for general finite element approximations. In this
section we want to prove an error estimate of the form (2.6). The main idea of our
error analysis is to show that the best approximation 75, measured in a proper norm,
of p and the finite element approximation py of p belong to a particular subspace of
the finite element space V},. More precisely, we will show that 7, and py are so-called
discrete A-harmonic functions in Q5. Then we use assumption A1 to prove that the
error p—pp, on (15 is bounded by the error p—py on 7 and by the best approximation
error p — 7. Since As(z) = A(z) for all z € Qy, cf. (2.2), it turns out that the error
p — pp on Q; can be estimated independently of 4.

For ¢ € (0,1] we define the inner-product [-,-]s on H}(Q) by

[p,¥]s = /Q V- (AsVe) dz

(4.1) = V- (AVg)dz+8 | V- (AVep) dz for p,¢ € Hy(Q),
Ql QS
5



see (2.2). The associated energy norm is

(4.2) ¥lls = VI, ¢ls  for ¢ € Hy().

It is well-known that the solution pj, of (3.4) is the best approximation in V}, of p
measured in the energy norm, i.e.

4.3 - — inf ||p—
(4.3) lp — prlls q:relvhllp qnlls,

see for instance [4]. Clearly, if ¢ is close to zero then the last term in (4.1) becomes
very small. That is, the energy norm is very weak for small values of . Thus, a
small error measured in the energy norm does not necessarily imply that py is a good
approximation of p. This observation is our main motivation for measuring the error
in a norm not depending on d, namely in the Sobolev norm ||-|| g1 (g)-

Throughout the paper [-,-]; and || - [|; denote the inner-product and norm defined
in (4.1) and (4.2) by putting § = 1. For easy reference, we now state some trivial
properties of the || - [|1, || - |5 and [|-|| g1 (@) norms. Since we assume that 0 < J < 1

it is easy to verify that

(4.4) [¥lls < [l for all ¢ € Hy (%),

see (4.1). Clearly, this inequality and equation (4.3) leads to the upper bound

(4.5) lp=prlls < inf |lp—qnll
qn€EVh

for the error. Furthermore, by Poincaré’s inequality and inequality (3.2) it follows
that the ||- || g1 (q)- and the || - [|;-norm are equivalent independent of §. That is, there
exist constants ¢y and c3, not depending on 4, such that
(4.6) e2ll 9 oy < Wl < esll9lla o) for all ¥ € Hg(R).

As explained above, the starting point of our error analysis is to prove that py
and the best approximation 7, with respect to the || - ||;-norm, of p belongs to a

particular subspace of the finite element space V},. To this end, consider the following
subspaces of Hg(f2) and V,

Ss = {¢ € Hy(Q); supp(y) C Q5 and ¢|o, € Hy(Qs)},
S; = S5 with respect to the [-,];-inner-product,
Ss.n = {¢ € Viu; supp(¢) C Qs and ¢lo, € Hy(Qs)},
(4.7 Sip = S(ih with respect to the [-, -]i-inner-product.

That is, the functions in Sy and Sy 5, are so-called A-harmonic and discrete A-harmonic
functions in Qj, respectively. In particular, if g5, € Sy, then by the definition (4.7)
of Sl,h and S(S,h

Vi - (AVqgy) de =0 for all ¢ € S,
Qs
and it follows from assumption A2 that
V- (AVg,) de =0 forall ¢ € Vo, nN H&(Qg)
Qs

That is, gn|o, solves a problem of the form (3.6) with wy, = Tq,(qn)|sq;- Hence, by
assumption A1 we conclude that

lan |z (5) < ellgnllarrzan,) for all gn € Sijp.
6



LEMMA 4.1. If assumptions A1l and A2 hold then there exists a constant cq,
independent of § and h, such that

(4.8) llgn i) < ellanllairzons)  for all gn € Sin,
where Sy, is the function space defined in (4.7).

Next, we prove that the solutions p and pp, of (3.3) and (3.4) are A-harmonic and
discrete A-harmonic functions in 5, respectively.

LEMMA 4.2. Letp and py, be the solutions of (3.3) and (3.4), respectively. Assume
that f satisfies (2.5) and that assumptions A1 and A2 hold, then
a) pe Sy and pr, € Sy p.
b) The [-,-]1-projection 1, of p in V}, belongs to Si,p, i.e. T € Si,p.

Proof. Part a) Let ¢ € S5 be arbitrary, then supp(¢)) C Q5 and (3.3), (2.2) and
assumption (2.5) imply that

0| V¢-(AVp)dz=0.

Qs

Hence, [¢,p]1 = 0 for all ¢ € S5 and we conclude that p € S;. By a similar argument
it is easy to verify that p;, € S p.
Part b) By the definition of 7,

[Th, ¥ = [p,¢]1  for all ¢ € V.
Since p € Sy, cf. part a), and S5 C S5 it follows that
[h, )1 = [p,¥]1 =0 for all ¢ € S5 p,

and we conclude that 7, € Sy . O
With this information at hand, we are ready to prove our first error estimate.

THEOREM 4.3. Suppose f satisfies (2.5) and that assumptions A1 and A2 hold.
Then the finite element approximation py of p satisfies

4.9 — < ¢ inf —
(4.9) llp ph”Hl(Q)_cq:Ieth”p an ||z ()

where ¢ is a constant independent of § and h. Here p and py, are the solutions of (3.3)
and (3.4), respectively.

Proof. First we prove that the error p — pp on s can be bounded by the best
approximation error p — 73, measured in the || - ||;-norm, and by the error p — pp, on
Q. Let 74, denote the [+, -]i-projection of p in Vj, i.e.

4.10 - = inf ||p—qpll;.
(4.10) lp — 7l threlvhllp anll

Recall Lemma 4.2, that 74,pp € Si,, and hence 7, — pp € Si,,. Consequently, it
follows from Lemma 4.1 that

(4.11) lpn = 70 llm2(05) < crllpn — 7all51/2(004)-

The triangle inequality and inequalities (3.2) and (4.11) imply that

1/2
( Vp —pn) - (AV(p = pn)) da:)
Qs



1/2 1/2
< ([ Vo-m-aVp-myds) "+ ([ o -m) (V- ) do)
95 QS
<llp =7l + VMl pr — |l 51(05)
<llp = 7lls + s VM| pn — 70 || /2 (505)
<llp =7l + caVM|p = prllmrrzsas) + caVMIp — mhllm1r2(00,) -

Now, recall that 0Qs C 0y, cf. Figure 2.1. Thus, from the trace theorem, the
observation that ; C 2 and inequalities (4.6) and (4.10) we find that

(mvw—mymvw—m»mym

<llp=7ulli + aaVM||To, |l |p = Thlla1(0,) + 1 VM| T, || 1P — pollar9))
<llp =l + aVM||Ta, |l |lp — a1 @) + o VM| To, || [|p — prllar @)
(412) < (1+vVMci/ez||Ta,ll) quel{/h llp — anlls + cr VM| T, |2 — prll a1 (04),

where ||Tq,|| denotes the operator norm of the trace operator T, : H'(Q;) —
HY2(00,).

Next, we want to prove that the Sobolev norm of p — p, on Q; is bounded
independently of . From assumption (3.2), the definition (4.1)-(4.2) of the || - [|s-
norm and inequality (4.5) it follows that

m [ V(p—pr)-V(p—pn) dr < V(p—pn)- (AV(p —pn)) dz
Ql Q1
(413)  <llp—pull; < inf |lp—anll3-
qh€Vh

Clearly, by this inequality and Poincaré’s inequality there exists a constant cg, inde-
pendent of ¢ and h, such that

4.14 — < inf — .
(4.14) |2 — pu a1 (0.) < ca nf llp — qnllx

Combining (4.12) and (4.14) we obtain the following inequality

(4.15) V(p—pn)- (AV(p—pn) dz < cs5 inf |lp—all3,
Qs qn€Vh

where ¢5 is a constant not depending on h or 4. Finally, from (4.13) and (4.15) we
find that

(4.16) lp=pullt £ V1+cs inf ||p—aqnlls,
ahEVH

and the theorem follows from (4.6). O

5. Regularity. From (2.2), (3.1), (3.2), (3.3) and the Lax-Milgram theorem it
follows that the solution p of (3.3) belongs to the Sobolev space H} (2) for all § € (0, 1].
It is well-known that this property of p is not sufficient in order to prove an error
estimate of the form (2.7). We need more information about the regularity of p, cf.
e.g. Hackbusch [19]. Recall that As has a jump discontinuity at the interface 9, cf.
(2.2). Hence, even if the mobility tensor A = (\; ;) satisfies

(5.1) Xij €CY(Q) fori,j=1,2,

p will in general not belong to H2(Q2). However, we will show that if the boundaries of
the subdomains ©; and Q5 are sufficiently smooth and (5.1) holds, then the solution
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p of (3.3) is piecewise smooth, i.e. plo, € H*(Qs) and plo, € H%(Q1). Moreover,
we prove that the associated Sobolev norms ||p|[|f2(q;) and ||p||f2(q,) are bounded
independently of §.

As mentioned above, interface problems similar to problems of the form (2.2)-
(2.4) have been studied by several authors. In fact, it is well-known that if (5.1) holds
and the boundaries of {2; and 25 are smooth, then the solution p of a problem of this
form is piecewise smooth, cf. Hackbusch [19, Ch.10] and Ladyzhenskaya [22, Ch.V].
However, to our knowledge it is not known that the associated Sobolev norms are
bounded independently of §, provided that condition (2.5) is satisfied. This latter
observation is our main motivation for presenting the following analysis.

The main idea of the regularity proof in this section is to construct a sequence of
piecewise smooth functions that converge, in proper norms, to the solution p of (3.3).
This sequence is constructed by solving appropriate elliptic boundary value problems
on ; and ;.

In the rest of this paper we assume that (5.1) is satisfied and that the following
assumption holds.

A3. For every g € H'/?(9;) we assume that the weak solution u of the following

problem
V- (AVu) =—f in Qy,
u=0 on 01,
(5.2) (AVu) -n; = —g on 99Qs

belongs to H2(£2;), i.e. u € H?(Q;) and that an inequality of the form

(5.3) lullz2(@,) < co(ll fll2y) + 19 llarz00s) + 1w llar(0)))

holds. Here, cg is a constant independent of 4. We will also assume that
the A-harmonic extension @ of T, (u)|an,; to Qs belongs to H?(Qs). More
precisely, we assume that the weak solution % of the problem

U = To, (u)|sq, € H**(0890s) on 89,
(5.4) V- (AVZ) =0 in Qj,

satisfies 4 € H%({)s), and that there exists a constant ¢; independent of §
and h, such that

(5.5) l@ll2(0s) < eI Ty (u) |mer2a0,) + 1@l a1 (0s))-

If the boundaries of Q5 and 2 are sufficiently smooth then A3 holds, cf. e.g. Hack-
busch [19, Ch.9]. Moreover, it is well-known that the weak solution % of (5.4) satisfies
an inequality of the form

(5.6) 1l @s) < es(llTay (W) llm2(a0,)) < csllTosll llulla @y,

where the last inequality is a consequence of the trace theorem. Combining inequali-
ties (5.5) and (5.6) we find that

1@z @s) < er(1Toy (W) [ rar2 90,) + csllTaulln [[ullm(ay))
< er(ITaullz 1w a2 + csllTan lh [Julla @)
(57) S 09||u||H2(91),

where ¢y does not depend on § or h. Here, ||Tq,||1 and ||Tq,||2 denotes the operator
norms of the trace operators T, : H'(Qy) — HY2(8Q4) and Tq, : H*(Q1) —
H3/2(89), respectively. These operator norms are independent of § and h, and in

9



the rest of this paper we will simply write ||Tq, || whenever we need to refer to the
[|Tq, ||1- or the ||Tq,||2-norm.

In order to define a sequence of piecewise smooth approximations of the solution
p of (3.3) we must rewrite problems (5.2) and (5.4) on a form more suitable for our
analysis. To this end, let P : H}(Q) — S5 denote the projection operator on to Ss
with respect to the [+, -];-inner-product, where we recall that [-,-]; is the inner-product
defined in (4.1) by putting 6 = 1. Next, consider the bilinear form b(-,-) defined on
HL(Q) x HE(Q) as follows

(5.8) b, ¢) = ; Vi - (AVy) dz + ; VP(®) - (AVP(y)) dz.

1 )
Now it turns out that problems (5.2) and (5.4) can be solved by solving a problem of
the form; Find v € H(Q2) such that

(5.9) b(,v) = [ fodx— / gy ds for all ¢ € H(Q).
N 892

LEMMA 5.1. If v solves (5.9) then u = v|q, and U = v|q, are the weak solutions
of (5.2) and (5.4), respectively. Furthermore, if u and U are the weak solutions of
(5.2) and (5.4), then

u in Q,
v=1< ~ .
u in Qg,

solves (5.9).
Proof. Assume that v solves (5.9). Let ¢ € S5 be arbitrary, then P(¢) = 1 and
supp(¢)) C Q5. From the definition (5.8) of b(-,-) and (5.9) we find that

0= [ VP@)-(AVP(v)) dz =[¢,P(v)]s = [¢, P(v) — v]s + [¢,v]s

Qs

(5.10) =0+ [¢,v1 = /Q Vi - (AVv) dz for all ¢ € Ss.

Hence, from (5.10) it follows that v € Sy and therefore P(v) = 0. Thus, (5.9) implies
that

Vi - (AVv) dz = fYdz — / gy ds for all ¢ € H3(Q).

Q1 1954 Qs

Since every 12 €W = {p € H'(Q1); ¢ = 0 on 90N} can be extended to a function
1 € HE () such that ¢ = 1) on ; we conclude that

V{l)\- (AVv) dx = fv,/[; dr — / g«Z ds for all {p\ ew.

toh o 805

Thus, u = v|g, is the weak solution of (5.2). Next, since every 1 € H}(Qs) has a
canonical extension ¢ € S5 C Hg (), defined by putting ¢ = ¢ in Q5 and ¥ = 0 in
Q1, it follows from (5.10) that v satisfies an equation of the form

Vi - (AVv) dz =0 for all i € Hy(Qs).
Qs
That is, & = v|q, is the weak solution of (5.4).
Now, let u and @ be the weak solutions of (5.2) and (5.4), respectively. Then it

follows immediately that the function v defined by

_ u in Ql;

v= u in Q(;
10



belongs to S, and that P(v) = 0. Therefore, since u satisfies an equation of the form

V{p\-(AVu) dr = f’t/p\ dm—/ g{p\ ds for all {b\ € {p € HY(Q1); ¢ =0 on 990},
o o 89,
it follows that v must solve (5.9). O

The next result is a corollary of assumption A3, Lemma 5.1 and its proof. The
proof of Lemma 5.2 is straight forward and therefore omitted.

LEMMA 5.2. For every g € H'/?(0Q;) the solution v of (5.9) satisfies
a) v € S1, vlg, € H*(Q1) and v|g, € H*(Qs).
b)

(5.11) YV - (AVv) dz =0 for all ¢ € L*(Qy).

Qs

Now we are ready to construct a sequence of piecewise smooth approximations
of the solution p of (3.3). First, let a(-,-) be the bilinear form associated with the
problem (3.3), i.e.

a(, ) = /Q V- (AVe) do+6 [ Vi - (AVo) da.

Qs

Inspired by Koshelev [21], the sequence {p(™}>2 , of approximations of p is defined
recursively as follows: find p(™ € Hg(Q) such that

(5.12) b(, p™) — b(yh,p" V) + a(@p,p" V) = [ fodr for all Y € HY (D).

1951

Here, p(©) is the solution of the following problem: find p(®) € H} () such that

(5.13) b, p @) = [ fydz for all Y € HL(R).
Q1

Notice that if p{™ has a limit § in HJ(Q), then it follows immediately from (5.12)
that g solves (3.3), i.e. by the uniqueness of the solution g = p.

Let us verify that the functions {p(™}22, are A-harmonic in Qs and piecewise
smooth in Q7 and s.

LEMMA 5.3. Let {p(M}2, be the sequence of functions defined in (5.12) and
(5.18). If assumption A3 holds then

(5.14) p'™ € Sy, p™|q, € H?(Q1) and p™|q, € H*(Qs) forn=0,1,2,....

Furthermore, p'™ satisfies an equation of the form
(5.15) b, p™) = [ fibdx+ / gntp ds  for all ¢ € H} (D),
Q Qs

where go = 0,
gn = 0Ta,(AVP™ ) .ny forn=1,2,3,....

and® n; represents the outer unit normal vector to Q.
Proof. From the definition (5.13) of p{®© and Lemma 5.2 it follows that (5.14)
and (5.15) hold for n = 0 and go = 0. Next, assume that (5.14) and (5.15) hold for

2Here, Ta, : H(Qs) — H1/2(895) denotes the trace operator, and for every w = (w1, wz) €
H}(Q) x H}(2) we define Tq, (w) by Ta, (w) = (Ta, (w1), Ta, (w2))

11



0,1,2,...,n—1. By the definition (5.12) of p() and the assumption that p(»~—1) € S,
we find that

b('lﬁ,p(")) = /Q fods — a(zﬁ,p("*l)) + b(¢,p("71))

= fode— [ VAV D)dz -6 [ V- (AVPY) da
Qq Q4

Qs

+ [ V¢-(AVP)dz+ [ VP®) - (AVP@™Y)) da
Q

Qs

= [ fhode—5[ Vo -(AVPY)dr forall p € HL(N).
Ql 95

Hence, since p("~1) satisfies (5.15) it follows from Green’s theorem and Lemma 5.2
that

bw,p™) = [ fode—6[ To,(AVP" ) nsds+5 [ ¢V (AVp"Y)dz

Ql 895 QJ

= f dz +/ Y 0Tq, (AVp(”_l)) -my ds  for all ¢ € H&(Q),
o Qs

where Tq, (-) always represents the trace from Q5 (i.e. no assumption of equality of
the traces from Q; and €5 is assumed). Here the last equality is a consequence of the
assumption that 9Q; = QU 0Qs and that nsg = —ny on 09y, cf. Figure 2.1. Now,
p(»= Vg, € H*(Q5) and therefore

(5.16) gn = 0To, (AVp(™ ) . n;

belongs to H'/?(8Q;s), provided that the boundary s of Qs is sufficiently smooth.
Hence, p{™ satisfies an equation of the form (5.15), and from Lemma 5.2 we conclude
that p(™|q, € H?() and that p(™|q, € H?*(Qs). Now, the lemma follows by
induction. O

Next, we must prove that the sequence {p(™}2, defined in (5.12) and (5.13)
converge to p in Hg (). To this end, let us have a closer look at the function space S;
defined in (4.7). Recall that the functions in S; are so-called A-harmonic functions
in Qg, i.e. if ¢ € S; then

Vi - (AVq) de =0 for all ¢ € Ss.
Qs

Thus, it follows that ¢ = g|q, solves a problem of the form: Find ¢ € H'(Qs) such
that ¢ = Ta, (¢)|sq; on 09s and

(5.17) Vip - (AVG) de =0 for all ¢ € H(Qs).
Qs

Hence, we find that there exists a constant c¢;g, independent of §, such that
g1l a1 2s) < croll Ta,(q) ||H1/2(895)7
cf. e.g. Hackbusch [19]. By a trace inequality we conclude that
lgllar s < cuillgllar,) forall ¥ € S,

where ¢11 does not depend on § or h.
LEMMA 5.4. There exists a constant c11, independent of 6 and h, such that

(5.18) ”q”Hl(Qs) < Cll”q”Hl(Ql) for all oy € S;.
12



Here, S1 is the function space defined in (4.7).

With this information at hand, we are ready to prove that p{™ converge to p in
H(Q).

LEMMA 5.5. Let p be the solution of the problem (3.3) and assume that f satisfies
(2.5). Then there exists a positive constant dg such that for every § € (0,d00) the
sequence {p™}22_, defined in (5.12) and (5.13) converge to p in H} ().

Proof. From (5.12) we find that

b@,p™) = [ fodz—a(y,p" V) + b, p"Y)  for all € HY(Q),

Q1

and

b, p™ )= [ fipdz —a(eh,p" ) + b, p" D) for all ¢ € Hy(Q).

Qq
That is, the function d™ = p(® — p(n=1) gatisfies an equation of the form
b(ip,d™) = b, d™ V) — a(yp,d™ V) for all ¢ € HE(Q),

where d(»~1) = p(n=1 — p(»=2) Gince p(™ € 8 for all n € Ny, cf. Lemma 5.3, it
follows that d»~ 1, d™ € S; and that P(d™ V) = P(d™) = 0. Consequently, we
find that

VY- (AVd™W) dr = | Yy (AVA"D)de~ | VY- (AVA"TY) de
Q1 Q1 Qs
-6 [ V- (AVd"™Y) de
Qs
=—0 [ V- (AVd" V) dz, forall € H}(Q).
Qs

By putting ¢ = d™ € H}(Q) and applying (3.2) and Schwarz’s inequality it follows

that

1/2 1/2

m [ |Vd™|? de < M§ (/ |Vdm=b) 2 dm) (/ |Vd(™|? dm) .
Q1 Qs Qs

Next, recall that d®~=1),d™ ¢ S;. Hence, Lemma 5.4 and Poincaré’s inequality imply

that
1/2 1/2
/ |Vd™ 2 de < dcra (/ |Vdm—b 2 dx) (/ |Vd™|? dm) :
Q1 1951 1951

where c12 is independent of §. That is

1/2 1/2
( / |Vp(™ — vp(n—D)2 d;z:) < des ( / |Vp(n—D) — wp(n=2)2 d:c) .
Q1 Ql

Thus, if § < 1/c12 = & then the sequence {p(™|o, }2, defines a contraction in the
|| - ||, -norm, defined as follows

1/2
1Yo, = (/Q |Vo|? dx) for ¢ € {p € H(1); ¢ = 0 on 90Q}.

Therefore there exists a function ¢ € {p € H*(Q;); ¢ = 0 on Q} such that p(™|q,
converge to ¢ in the || - ||q,-norm. Clearly, Poincaré’s inequality implies that p(™|q,
also converge to ¢ in the Sobolev norm ||-||g1(q,)-

13



Next, let ¢ denote the A-harmonic extension of Tq,(q)|aq, to Qs, i.e. ¢ is the
solution of the following problem: Find § € H' () such that ¢ = T, (¢)|sn; on Qs
and

Vi) - (AV@) de =0 for all € HL(Qs).
Qs

Then, the function

_ g(z) for z €y,
q(z) = { G(z) for z € Qs,

belongs to S1, and from Lemma 5.3 and Lemma 5.4 we find that
|p™ — Gl < cun||p™ — qllz @y = el p™ — q|lz(@y)-

Hence, since p{™|q, converge to g in H'(Q;) we conclude that p(™ converge to g in
Hy ().
Finally, by taking limits in (5.12) it follows that

a.a) = [ fods forall p € H(®),

and since the solution p of the problem (3.3) is unique we conclude that g = p. O

In [24] we analysed several mathematical properties of problems of the form (3.3).
In particular, we proved that the Sobolev norm ||p||g1(q) of p is bounded indepen-
dently of 4, i.e.

(5.19) |2l (o) < C (independent of §).

Thus, Lemma 5.5 implies that there exists a constant c¢;3, independent of § € (0, do),
such that

(5.20) 9™ |10y < e13 for all n € Ny,

This inequality and Lemma 5.1-Lemma 5.5 lead to the main result of this section.
PROPOSITION 5.6. Assume that f satisfies (2.5) and that assumption A3 holds.
Then there exists a constant o € R4 such that for every § € (0,00) the solution p of
(3.3) satisfies
a) plo, € H*(M) and ||plla2(oy) <,
b) plo, € H*(Qs) and ||p|m2(a,) < c
Here, c is a constant independent of 6 € (0,0q).
Proof. Recall Lemma 5.3, that p{™ € S; and

by, p™) = / fode+6 | o To,(AVP™ ) -n; ds
(971 Qs

for all ¢ € H}(Q), cf. equation (5.15). From Lemma 5.1 and assumption A3 we find
that

(| p(™ |22,y < co(ll fllz2(.) + 0l T, (AVp" V) ny |l Fr/2 a025) + | p(™ |21 (21))-

Since the boundary Qs of Qs is smooth and A is assumed to satisfy (3.2) and (5.1)
it follows that

||P(") |22y < ce(ll fllL2(y) + dcra(||Te, (P(nfl))”m/?(am) + ||P(") |z (2,))-
14



Next, the boundedness of the trace operator Tq;, and inequality (5.20) implies that
there exists a constant ¢;5, independent of 4, such that
12" 20y < co(ll £ llz2c@y) + dersl|p™ P [l m2(as) + c13)
< eo(l fllz2@n) + derseollP™ ™ a2, + cr3),

where the last inequality follows from Lemma 5.3, Lemma 5.1 and inequality (5.7).
That is

12 |20y < e16(ll £ llz2c@) + 010"V llm2(0) + 1),
where ¢16 = ¢g max{cyscg, €13, 1}. By induction it follows that

n—1

10" Nm201) < (1F 2@ + Dess Y (c166)" + (c168)™ 19 || 20
i=0

for all n € IN. Hence, if 0 < § < dg < 1/c16 then
(5.21) | p™ lz2(0,) < c7 foralln € IN,

where ¢17 does not depend on § € (0,do).
Next, inequality (5.21) implies that {(p(™|q, )zz }52, defines a uniformly bounded
sequence of functions in L?(9;). Thus, there exists a subsequence {(p(™s )|Ql)m};’i0

and a function ¢ € L(Q;) such that (p(")|q, )4, converge weakly to g in L>(£), i.e.
(5-22) Jlim (), ¢)12(0) = (4, 9)r2(0,) for all € L(),

cf. e.g. Griffel [17]. In particular,

(5.23) Jim (), @) r20,) = (@ 9)r2(0y)  for all 9 € G5 ().

Now, since p(")|q, € H?()) for all j € IN and p(™)|q, converge strongly to p|o, in
H(Q;), cf. Lemma 5.5, it follows that
lim (p{%), @) r2(0y) = — im (), 02)12(01) = —(Pa Pa)12(y)  for all ¢ € C§° ().
j—oo j—oo
(5.24)
Hence, from (5.23) and (5.24) we conclude that

(@, 0)r2(01) = —(Pes Pz)r2(,) for all p € Cg°(Q),

and it follows that (p|q,)zz = ¢ € L?(Q21). Furthermore, putting ¢ = (pla,)zz €
L?(Q4) in (5.22) and applying (5.21) and Schwarz’s inequality yield

|O7wz7pzz)L2(Ql)| = ]lggo |(p§;7;j)7pzz)L2(Ql)| < sup ||p¥ab:j) ”LZ(Ql)”pzz ||L2(Ql) < 17l Pra ||L2(Q1)7
J

where we recall that c¢;7 is independent of §. Thus,

(5.25) | Pzz || L2(1) < c17-

In a similar manner it can be verified that (p|o,)yy, (Plo1)ey € L?(Q1), and that the
associated L2-norms are bounded independently of §. Hence, we conclude that part
a) of the proposition must hold.

From Lemma 5.3, Lemma 5.1, assumption A3 and inequalities (5.7) and (5.21)
we find that

[|p™ | mr2(0y) < col|p™ lz2(0,) < cocrz for all n € IN.
15



The rest of the proof of part b) is analogous to the proof of part a) and therefore
omitted, cf. equations (5.21)-(5.25). O

By Proposition 5.6 there exists a constant dy such that if 0 < § < Jp then the
solution p of (3.3) is piecewise smooth. Furthermore, the associated Sobolev norms
are bounded independently of §. What happens if § > 69?7 As mentioned in the
introduction of this section, it is well-known that the solution p of an interface problem
of the form (2.2)-(2.4) is smooth in Q; and g, provided that A satisfies (5.1) and
that the boundaries of 2; and Qs are smooth. Moreover, if § > §o > 0 then the jump
in the coefficients, along 9, is finite and the ||p||z2(q,) and ||p||#2(qs) norms are
likely to be well-behaved. In the present paper we are interested in very small values
of §,i.e. 0 < d < 1. More precisely, assume that the interface problem (2.2)-(2.5) is
solved by the finite element method. Then we want to prove that the error, measured
in proper Sobolev norms, does not blow up as ¢ tends to zero. From this point of
view, the size of the constant &g is of no importance. However, if we could estimate
the size of the other constants involved in the proofs of the error estimates presented
in this paper, then the size of §; would be of major interest.

6. A quantitative error estimate. In the previous section we proved that
the solution p of a problem of the form (3.3) is piecewise smooth, provided that the
boundaries of the subdomains {2; and (25 are smooth. It turns out that, given proper
conditions on the finite element space Vj, this property of p and Theorem 4.3 are
sufficient in order to prove an error estimate of the form (2.7).

In this section we will assume that the finite element space V}, consists of piecewise
linear functions defined in terms of a mesh 7} on . Clearly, quantitative error
estimates similar to (2.7) can be proved for other types of finite element spaces as
well. However, in this paper we will concentrate on the piecewise linear case.

As mentioned above, for general finite element spaces V}, an error estimate of the
form (2.7) does not hold, we need two specific assumptions on V},.

A4. We assume that there exist two constants ¢;g and ¢;9, independent of ¢ and h,
such that for all v € H?(Qs) and for all w € H2(Q) N {y € HY(M); ¢ =
0 on 90} the following inequalities hold

inf B -
whér‘l,%h lv = wn || g1 25) < csllvllaz@s)hs

inf B - |
whéIlenl,h lu — wn ||l () < crollullmz,)h

Here, Vo, »n and Vg, , are the finite element spaces defined in (3.5).
A5. For every constant ¢ € IR the function ¢(z) = ¢ for all z € Q5 belongs to Vo, ,p-
As mentioned in Section 3, here h represents the global mesh size for the grid T}.
Conditions A4 and A5 are typically satisfied if the grid T}, is constructed such that
the interface 895 coincides with grid-lines of T}, cf. e.g. Brenner and Scott [4] or
Hackbusch [19]. Recall that we assume that 0€s is smooth. Hence, 09 is likely to
be curve-linear and must be represented by so-called isoparametric elements.
Now, from Theorem 4.3 we find that

2 2 2
lp — prllEr) <c q,fréfvh lp — anllE(a)

— 2 2 2
(6.1) = inf (llo—anllin o) + I~ asllinco,) -

where ¢ is a constant independent of § and h. Then, by applying Proposition 5.6 and
assumptions A1-A5 we obtain the following theorem.

THEOREM 6.1. Let p and py be the solutions of (3.3) and (3.4), respectively.
Suppose [ satisfies (2.5) and that assumptions A1-A5 hold. Then there exists a
positive constant &g such that for every § € (0,80) the following error estimate holds

(6.2) lp = prllEr (@) < ch,
16



where ¢ is a constant independent of § and h.

Results of this flavour are discussed by various authors, cf. e.g. Hackbusch [19,
Ch. 10], but for completeness we will present a proof in an appendix. Normally, error
estimates of this form are derived by applying an interpolation argument. However,
in this paper we prove Theorem 6.1 by utilizing Lemma 4.2, see appendix A.1.

7. Numerical experiments. Now we turn our attention to three simple nu-
merical experiments illustrating the theoretical results presented above. Recall as-
sumption (2.5), that the source term f is equal to zero in the low permeable zone 5.
The main purpose of the two first examples, presented in cases I and II below, is to
show how the convergence properties of the finite element approximations py of p are
influenced by this property of f. In the third experiment, Case III, we will consider
a problem with smooth coefficients of large variation.

Since A has a jump discontinuity at the boundary 9Qs of Qs, cf. equation (2.2)
and Figure 2.1, it is difficult to find the analytical solution of problems of the form
(2.3)-(2.5). Hence, for the sake of simplicity, we will only consider one-dimensional
model problems in this section. These model problems have been discretized using
standard piecewise linear finite elements. All computations have been carried out in
Matlab on a HP 9000/735 workstation.

7.1. Case 1. Let p = p(z) for z € [0, 3] be the weak solution of the following
two-point boundary value problem?

(k(z)p'(z)) = f(z) for0<z <3,
(7.1) p(0)=0 and p(3)=1.

Here, k and f are given functions defined by

(-1,1) for0<z<1,
(7.2) (f(z),k(z)) =< (0,6) forl<z<2,
(-1,1) for2<z <3,

where § is a positive constant. Clearly, (7.1)-(7.2) is a one-dimensional version of a
problem of the form (2.2)-(2.5) with a non-homogeneous Dirichlet boundary condition
at x = 3. In this case, it is easy to verify that the weak solution of this problem is
given by

Stz — Lo for0<z<1,

(7.3) pe)={ (BE-1)+5qE-1) frl<s<2,
34 1 5542 1

—(m+§)+ﬁw—§x2 for 2 <z <3.

Furthermore, Table 7.1 shows the error ||p — py || 1 (q) for various values of 6 and h.
Clearly, the error is almost independent of ¢ and of order O(h). This is in agreement
with Theorem 4.3 and Theorem 6.1. Moreover, in Figure 7.1 we have plotted the
weak solution p of (7.1)-(7.2) for 6 =1/2, 1/16. Clearly, p is well-behaved as § tends
to zero, cf. also (7.3).

7.2. Case II. Next, we consider the two-point boundary value problem (7.1)
with coefficient function k defined as in (7.2) and source term f given by

f(x)=-1 for all z € (0,3).

3This example was studied from an analytical point of view in [24].
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(5:1/2 5:1/4 6:1/8 6:1/16
h lp —pulle) | lp—pullav@) | lp—pullai@) | lp—pulla @
10! 0.0439 0.0435 0.0432 0.0431
20! 0.0212 0.0211 0.0210 0.0210
401 0.0104 0.0104 0.0104 0.0104
80! 0.0052 0.0051 0.0051 0.0051
160! 0.0026 0.0026 0.0026 0.0026
TABLE 7.1

The table shows the numerical results for our 1D test problem studied in Case I, i.e. f(z) =0
for all z € (1,2).

0 0.5 1 15 2 25 3

FiG. 7.1. The figure shows the analytical solution of the problem considered in Case I. The
solid and dashed lines are plots of p for § =1/2 and § = 1/16, respectively.

That is, condition (2.5) for the source term f is violated. The weak solution of this
problem is

8543 1,2
386224 Wms(s_ 3530 1 rosest
- —25— 4 2
(7.4) p(x) s@ry 55(46+2)$ — 551 for 1<z <2,
1— 8643 1,2
3571 T 462% — 32 for2 <z <3,

and we observe that p(z) — oo for z € (1,2) if § — 0, cf. Figure 7.2.

Table 7.2 shows that the error ||p — pp||g1(q) increases rapidly as ¢ decreases.
This experiment indicates that a condition like (2.5) is needed in order to obtain
error estimates of the form (4.9) and (6.2).

0=1/2 6=1/4 0=1/8 0=1/16
h lp —prllai) | lp—pullaie) | lp—pullai@) | lp —prllai @)

10! 0.0708 0.1226 0.2347 0.4640

20! 0.0354 0.0612 0.1173 0.2319

4071 0.0177 0.0306 0.0586 0.1159

80! 0.0088 0.0153 0.0293 0.0580

160! 0.0044 0.0077 0.0147 0.0290

TABLE 7.2

The table shows the numerical results for our 1D test problem studied in Case II, i.e. f(z) = —1

for all z € (1,2).

7.3. Case IIIL. In the theory developed in sections 4-6, we allow As to have
large and discontinuous variations. In fact, it is assumed that As attains values on
certain levels, say O(1) and O(d). More precisely, we showed that the error bounds,
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F1G. 7.2. The figure shows the analytical solution of the problem considered in Case II. The
solid and dashed lines are plots of p for § =1/2 and § = 1/16, respectively.

presented in Theorem 4.3 and Theorem 6.1, hold for mobility functions As on the
form (2.2). Are similar results valid for smooth coefficient functions?

Again we consider a two-point boundary value problem on the form (7.1), with
source term f(z) = 0 for all z € (0,3). That is, condition (2.5) is satisfied. However,
in this case the coefficient function k is given by

2
k(m)z(m—%) +6 forallze(0,3),

and hence k is smooth and of large variation, i.e not on the form (2.2).
It is easy to verify that the analytical solution p of this problem is

p(z) = (2 arctan (%))1 arctan (m $/2) + % for all z € (0,3),

and we observe that p'(3/2) — oo as § — 0, see Figure 7.3. Thus, indicating that
the error ||p — pi || g1 () might increase as ¢ tend towards zero, which is confirmed by
Table 7.3. Hence, it seems like error bounds, similar to theorems (4.3) and 6.1, are
not obtainable for problems with smooth coefficients of large variation.

0=1/2 d=1/4 0=1/8 0=1/16
h ||P—Ph||H1(Q) ||p_ph||H1(Q) ||p_ph||H1(Q) ||p_ph||H1(Q)
107t 0.0188 0.0288 0.0452 0.0722
201 0.0094 0.0144 0.0227 0.0363
401 0.0047 0.0072 0.0113 0.0182
80! 0.0023 0.0036 0.0057 0.0091
160! 0.0012 0.0018 0.0028 0.0045
TABLE 7.3

The table shows the numerical results for our 1D test problem studied in Case III.
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Appendix A.

A.1. Proof of Theorem 6.1.
We start by constructing the best approximation vy in Vo, p of pla,, where Vo, p is
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F1G. 7.3. The figure shows the analytical solution of the problem considered in Case III. The
solid, dashed and dashed-dotted lines are plots of p for § = 1/2, § = 1/16 and § = 1/100, respectively.

the finite element space defined in (3.5). To this end, consider the function space
V= (weH'(); [ wds=0),
Qs
In this space Poincaré’s inequality holds, i.e. there exists a constant cyg such that

Al ¥? dx < g9 V|2 dz for all ¢ € V3 |
s

Qs Qs

cf. e.g. Dautray and Lions [10]. Next, we introduce the set V), , of discrete functions
in Vg, i.e.

ng‘;,h = {¢ € Vo, n; / ¢ dz =0} C V..
Qs
From (A.1) and (3.2) it follows that
(A.2) [0, ¥]1,0; = /Q Vi - (AVy) dx
3

defines an inner-product on Vg, . The associated norm is

1/2
1L0s = ( /Q Vo - (AVY) dw) .

Thus, the [, ]1 0,-projection 75, of r = plo, — Q| ™" [, p dz € V), in Vg, ;, is well
defined and satisfies

1]

[r—rn,¢li0, =0 forall g € V.

From assumption A5 we find that v, = 75 + |Qs]* st p dx belongs to Vo, . Fur-
thermore, p|o, — v, =1 — 71, and hence

(A.3) [p— v, ¥li0s = [r =T, ¥l10, =0 forall €V, .

Now, notice that the inner-product [-,-]1,0,, initially defined on Vs(z)ga also defines a
semi-inner-product on H'(Qs) and on Vg, n C H'(Qs). Let 1 € Vg, be arbitrary,
then ¢ — |Qs| ! fQJ ¢ dx € V3 ,, and from (A.3) and the definition (A.2) of the

[-,]1,00 inner-product it follows that

¢ dz]i 06 + [P — , |Qa|_1/ ¢ dz]i 05 = 0.

Qs

[p—vn, Y106 =[P — vn, ¥ — |Qd|_1/

Qs
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Consequently,

(A.4) [p—vn,¢¥h1,06 =0 for all ¢ € Vo, 1,
which together with inequality (3.2) implies that

(A5) [lp—wnllie, = inf |p—wnllie, < VM inf ||p—ws| &1 @;)-
whrE€Vay,h wh€Vag,h
That is, vy, is a best approximation, measured in the || - ||1,0,-norm, in Vo, of pla;,.

Since plg, —vp =71 — 1 € VSJ we find from inequalities (A.1) and (A.5) that

(A.6) |p — vnllmr (s < e " ér‘l/f . lp — wr || (0s)>

r€Vay,
where co; is a constant independent of § and h.
Next, equation (A.4) implies that
[vn, V]10; = [, ¥le,  for all ¢ € Vo, n N Hy ().

Hence, by assumption A2 and Lemma 4.2, part a), we find that

¥ (AVuy) do =0 for all ¢ € Vi, » N HY (),

Qs

and it follows that v, is a so-called discrete A-harmonic function in Q5. Moreover,
from assumptions A1 and A2 we conclude that

(A7) lvn — qn ||H1(95) <cillvn = gn ||H1/2(895) for all g, € Si,n,

cf. also Lemma 4.1.

Let gn € Si,n be arbitrary. Now, it turns out that we can use inequality (A.7)
to bound the size of ||p — qx[l1,0, on Qs by the size of ||p — gn ||g1(0,) on Q1. More
precisely, the triangle inequality, (A.5), (3.2), (A.7), the trace theorem and (A.6)
implies that

lp — gnlli,05s < [lp = vnlli05 + lvn — anll1,0;
<VM inf ||p—wh|lg s + VMIlvn — a5 05)

whEVay,n

<SVM inf  |lp—wnllm ;) + aVM||vn — gnllmirzo0,)

whrE€Vay,h

<VM inf flp—wsllmie,) + eV MIp = vnllae e,
h

Q5,h

+eiVMI|p = anllmirza0;)
<VM inf ||p—wallmiqs) + allTas VM| p = vn |l @ o)

wpE€Vag,h

+e1l| T, [[VM||p = anllmiy)

<VM inf [[p—whllaie,) +acallTo;(|[VM inf  |lp—wh||lme;)
wh € Vs wr€Vag,n

Qs,h Q5,5

+ei||Ta, VM| p = qn |l # ()
(A8)  =cop inf |p—wnllure,) +allTo, [VM|p—anlla@,)-

wh€Vag,h

Clearly, the constant cyo is independent of § and h. Furthermore, from Proposition
5.6 and assumption A4 we find that

( [ V-0 (Vo) i) 1/2

(A.g) S 023||p||H2(QJ)h+ C1||TQI||V M”p— qn ||H1(Ql) for all qn € Sl,h,
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where Co3 = (929C18-
Recall Lemma 4.2, part b), that the [-, -];-projection 75, of p in V3 belongs to S1 p.
Therefore, it follows from (4.16), (A.9) and (3.2) that

lp = pully < coallp—7hll <cos inf |[lp— gl
qh€S1,n

1/2
e inf ( V- ) - (AV(p— q)) do + v<p—qh)-<Av<p—qh>dw)

qn€ES1,n o}

: 2 2 Y
<ca inf ((023||P||H2(Q,;)h + eosllp — anllmr(a,))” + Mllp - th||H1(91)) ;
1,

where co4 and co5 are constants independent of § and h. By assumption A1l every
function wy, € Vg, can be extended to a function g, € Si by constructing the so-
called discrete A-harmonic extension of wy. Hence, from assumption A4 we conclude
that

llp — pally

1/2
<ew  inf ((enllpllmanh + el —wnllm@n)? + Mlp — i)

Vay,n

1/2
< caa ((cr2llplla2(s) b + c2scroll Pl 2 ) + M (caoll Pl a2,y B)?) 2.

Recall Proposition 5.6, that the Sobolev norms || p|| g2(q,) and || p||g2(q,) are bounded
independently of §. Hence, we conclude that there exists a constant cag, not depending
on ¢ or h, such that

llp — pnllt < cogh.

The desired result now follows from inequality (4.6).
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