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Preface 

 

This report is written as a part of the FOREMMS project. Its purpose was initially to give a 
general documentation and description of the state-of-the-art for forest parameter retrieval 
from satellite remote sensing.  During the process of studying literature and writing this text, 
the specification and goal of the FOREMMS system has been developing and changing into a 
system that are more focused, as it addresses s a more limited user group and a smaller 
parameter set.  This document has been developing the same way.  The number of forest 
parameters has been reduced according to the new focus, and the description of them has been 
developed. 

The document has taken advantage to, but also contributed to, other documents in the 
FOREMMS project, in particular the D2 document (Deliverable 2, System Design) and the 
reports from the Parameter Working Group (PWG).  We would like to thank Rune Strand 
Ødegård, who has written section 2.7 about biodiversity in this report, and the techniqual 
managers in FOREMMS, Rune Solberg and Roger Fjørtoft, for their useful comments, 
questions and suggestions to the text. 
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1. Introduction 

This document aims at giving an overview of state-of-the-art methods for retrieving forest 
parameters from satellite remote sensing.  The document will be the basis for the selection of 
algorithms for the FOREMMS project. The main goal in the FOREMMS project is to develop and 
demonstrate an advanced forest environmental and management prototype. The operational 
prototype shall be able to monitor the whole of Europe giving precise and coherent 
information on the environmental status and development of European forests. 

The interesting units of data that are measured by sensors we call parameters. A key question 
in FOREMMS is what kind of parameters satellite sensors can provide. This is the main topic to 
be discussed in this report. The answer to this question to a large extent defines the fundament 
of the FOREMMS system. Some of the parameters can be provided by other sources, these are 
called derived parameters, and some parameters (called measured parameters) must be 
estimated from remote sensing data using existing and new algorithms. In order to compute 
all the parameters, ancillary data  are needed for the computational process. These are already 
existing, and more or less static data, such as land use, previous forest maps, soil type, 
infrastructure etc. The FOREMMS system can be divided into two parts: a data acquisition 
system and a data retrieval system. In this document, only algorithms needed for the data 
acquisition system are discussed. 

Multiresolution monitoring  

FOREMMS will handle monitoring at three levels. Each level is connected to a geographical 
area of some typical size: 

• Level-1 areas: Selected intensive and small-size key-biotype areas of a typical size of 20 
km2 monitored in full detail by automatic field sensors, field studies (“manual sensors”) 
and airborne very-high-resolution remote sensing data (resolution of about 1 m). 
Automatic field sensors are intended to measure air, precipitation and soil variables. 
Airborne remote sensing data are typically collected each few years in measurement 
campaigns and supported by field personnel doing detailed point-location measurements.  

• Level-2 areas: Areas monitored by fixed and random position high-resolution satellite 
images (resolution 20-30 m). These satellite data cover areas of typically 3,000-30,000 
km2 and include Level-1 areas. They are acquired at about the same time as or perhaps a 
bit more often than, the airborne remote sensing data and field campaigns. Together all 
Level-2 areas cover about 10% of Europe's forests. The basic source of Level-2 data will 
be Landsat ETM images. 

• Level-3 areas: Areas for spatial statistical status prediction for Europe's total forested 
area based on medium resolution satellite data (resolution 250-1000 m), data from Level 
2 areas and data from previous monitoring of the same area. The medium-resolution 
satellite data is acquired frequently through the vegetation season (every few weeks). 
The basic sources of Level-3 data will be MODIS and AVHRR images. 

Organization of the document 

In section 2, we review previous approaches to estimation of forest parameters from remote 
sensing data. We limit the scope to optical data from existing operative satellites. A pre-
requisite for extraction of the forest parameters will be that the image data have been properly 
compensated for geometric and radiometric distortions. FOREMMS will include preprocessing 
algorithms for such correction, but it is not discussed in this report.  Basic methodological 
technology and areas for further research needed to derive these parameters with sufficient 
accuracy is discussed in section 3.   
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2. Extraction of forest parameters 

Most forest parameters are related to each other. A large group of parameters is connected to 
tree size and canopy structure (age, stem volume, crown cover, forest density, tree height, 
biomass), and another group of parameters is related to the chemical composition of trees and 
leaves/needles (chlorophyll concentration, water content, pigment concentrations, health 
condition, defoliation, mineral content, chemical stress). Also soil type, climatic conditions 
and landscape structure are related to the forest type and forest parameters. In most cases 
remote sensing instruments do not measure the desired forest parameter directly and para-
meter retrieval algorithms rely on adequate correlation between the measurable physical 
properties and the desired forest parameter. The relations between parameters are mostly 
specific to local species. This fact limits often the applicability of algorithms. These problems 
can be avoided to some extent by careful sensor/method calibration and validation using 
detailed and accurate ground truth data. Ancillary data such as digital elevation models and 
land use maps are often useful in improving the results. 

Some forest parameters are directly measurable. Laser altimeters, scanning lidars and ranging 
scatterometers (radars) measure the tree height directly. Also the crown cover extent can be 
measured in most cases with these instruments. The backscattering coefficient measured by 
SAR instruments depends on ground and canopy water content and distribution. At the P-
band a major contribution to the backscattering coefficient comes from the double reflection 
from tree trunks, which contain water. Therefore, a P-band SAR will provide information on 
the forest density and stem volume. At L- and C-band branch- and leaf-related reflection and 
scattering become more pronounced. Optical and infrared multichannel instruments will react 
to the forest structure and spectral properties (determined by chemical composition) of trees 
and leaves (health condition, content of chlorophyll).  

An important factor contributing to structure parameter measurement is tree shadows. The 
appearance of shadows makes a clear difference between high-resolution and low-resolution 
images and analysis methods. Shadows add texture to high-resolution images and texture 
analysis can give information about tree size. On low-resolution images shadows affect only 
the irradiation level and texture analysis is not feasible. Shadows are most pronounced in 
infrared images. Another key factor forming a spectral image is the spectral properties and 
chemical composition of trees, underbrush and ground. Low-resolution hyperspectral instru-
ments provide more information about mainly the chemical composition of an area and high-
resolution black and white aerial photographs provide more information on the structure 
parameters. The instruments in between, as high resolution multispectral and hyperspectral 
scanners can measure both parameter groups effectively. 

2.1.1. Previous projects 
Reviews of the feasibility of remote sensing methods for forest parameter extraction have 
already been done in some European forest remote sensing projects. An extensive feasibility 
study was part of the FIRS (Forest Information from Remote Sensing) project (Köhl and 
Päivinen 1996). The main objective of FIRS (http://www.egeo.sai.jrc.it/forecast/firs/) was to 
contribute to the development of a unified forest information system for the entire European 
Continent. One of its major aims was to assist in the development and implementation of 
methodologies for using remotely sensed data to obtain forest information.   

Forest mapping methodology was developed in FMERS (Forest Monitoring in Europe with 
Remote Sensing) project. The objective of FMERS (http://www.vtt.fi/aut/rs/proj/fmers/) was to 
demonstrate the usefulness of Earth Observation data for forest monitoring at European scale. 
During the project a methodology was developed to provide standardized geo-referenced and 
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statistical information describ ing the forest and other wooded land in Europe based on optical 
and microwave remote sensing data.  

The SEMEFOR pilot project (financed by the European Commission as part of the Environ-
ment and Climate program, DG XII) is aimed to demonstrate satellite based methods for the 
assessment of disturbances in European forests, to evaluate the cost-efficiency and to 
harmonise the used nomenclature. 

2.1.2. Outline of this chapter 
Before turning to the forest parameters a general discussion of the methodological approaches 
is given, where we look at classification, continuous parameter estimation, time series 
analysis and vegetation indices. The forest cover is fundamental to FOREMMS and it can be 
derived from classification of forest type or land cover. Then we discuss forest parameters 
like biomass (wood volum), Leaf area index (LAI), forest changes and biodiversity. 

2.2. Methodological approaches 
Most of the studies described in this document use general methods for the parameter 
estimation. The studies have tried e.g. to establish a relationship between remote sensing data 
and a given forest parameter using e.g. regression analysis or K-nearest neighbour inter-
polation. Thus, there are no detailed algorithm descriptions given, but the method class has 
been identified.  Before turning to the parameter list, we give an introductory overview over 
these general methodological approaches. 

The forest parameters discussed here are of two main types: categorical variables and 
continuous variables. Categorical variables can be obtained through a classification process, 
in which each pixel is attributed to one of a set of categories or classes. In this project we 
mainly consider supervised classification, in which case the properties of each class are 
known or can be deduced from ground truth. Estimators of continuous parameters are 
established by identifying a function that describes the relationship between the observed 
pixel values and the desired forest parameter. 

Parameter estimation and classification can be performed directly on the observed data, but in 
many cases it is advantageous to compute certain features from the original image data, and 
then effectuate the parameter estimation on the feature vectors. The features may e.g. describe 
the texture of a set of neighbouring pixels. The features should be selected so as to simplify 
the discrimination between the different classes, and the choice of well-suited features is a 
key problem.  

2.2.1. Image classification 
The general image classification problem consists in classifying the image X into a set of K 
classes, c1...cK. X can be multivariate and the elements of the feature vector corresponding to 
each pixel may stem from several spectral bands, multitemporal acquisitions and/or multiple 
sensors. The task is to estimate the most probable class label image C given the observed 
image data X, which in a Bayesian framework means maximising the posterior probability 

)(/)()|()|( XPCPCXPXCP = . P(X|C) is often called the image data model and 
represents the radiometric properties of each class. P(C) is the prior model for the class labels. 
Markov random fields are frequently used to impose spatial regularity constraints through a 
prior model.  
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2.2.2. Estimation of a continuous parameter 
Finding an estimator of a continuous forest parameter typically consists of establishing a 
relationship between the image data and measurements of this forest parameter. This may 
include physical models or statistical models. Statistical modelling relies on estimation of the 
relationship between the image data and the parameter using a combination of training data 
and prior knowledge regarding the type of relationship, e.g. linear or non-linear models with 
regularisation to ensure reasonably smooth func tions. The prior knowledge mentioned here is 
generally based on knowledge about physical processes. A frequently used class of methods is 
regression analysis. There is a large family of well-established models for multivariate data in 
the class of generalised linear models in literature (see e.g. Venables and Ripley 1999). 
Interpolation based on the kNN algorithm is also often used for the estimation of forest 
parameters. Yet another alternative is to use multilayer perceptron neural networks, but this 
approach is essentially similar to general regression. 

Holmgren et al. (2000) describe the weighted kNN method as a way of combining satellite 
image data and plot measurements of forest parameters. In the kNN method each target plot is 
assigned to a distance weighted average of the attribute data from the k closest reference plots 
in the spectral feature space. The distances between a target and a reference plot are expressed 
as different transforms of spectral values and/or ancillary data. A disadvantage of the method 
is that the lowest values are overestimated and the highest values underestimated.  

2.2.3. Multitemporal and time series analysis 
In some approaches it is insufficient to consider remote sensing data from one acquisition 
only, as the vegetation phenology is important for estimating the forest parameter. By 
selecting an appropriate combination of satellite images according to the phenological 
development, it will be easier to include the phenology into the analysis.  Various methods for 
analysis of multitemporal data are therefore reviewed.  Detection of changes will also involve 
analysis of time series or other ways of analysing multitemporal data. 

2.2.4. Vegetation indices 
One important feature in vegetation and forestry studies is the concept of vegetation index 
(VI).  The most common index is the Normalized Difference Vegetation Index (NDVI), but 
other indices also exist.  Vegetation and forest studies of time series will often involve the 
NDVI. 

NDVI is derived from red (R) light in the visual part of the spectrum (600-700 nm) and near-
infrared (NIR) radiation (700-1100 nm) The main idea is that green vegetation will increase 
the reflection in NIR, but reduce it in R.  The physical rationale is that the photosynthesis 
absorbs red light, and that the intercellular tissue in the leaves will reflect NIR.  

The NDVI is defined as NDVI = (NIR–R) / (NIR+R).  The nominator (NIR–R) represents the 
vegetation, as it will vary according to variations in the vegetation.  But it will also depend on 
how much solar energy that the ground receives. One important factor for variations in the 
solar irradiation is spatial variations in the solar incidence angle caused by the topography.  
The denominator (NIR+R) will be more invariant to the vegetation as NIR and R reacts the 
opposite way.  But since it is strongly correlated to the irradiation, this term is used for 
normalizing the expression. 

Another VI is the simple ratio, SR = NIR/R. This VI will also vary according to variations in 
the vegetation and be invariant to the irradiation.  Generally, both indices have shown to be 
linearly correlated to biophysical properties, like (green) biomass. An important difference is 
that NDVI have an upper bound of one, while SR is unlimited. According to their definitions, 
we can derive NDVI from SR and opposite:  NDVI = (SR–1)/(SR+1) = 1 – 2/(SR+1), and  
SR = 2/(1–NDVI)  – 1. 
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One problem of NDVI and SR is the fact that they depend on the soil background if the 
vegetation is not dense enough to cover the soil. In order to compensate for the soil effect, 
other vegetation indices have been suggested.  The soil adjusted VI (SAVI) is a modification 
of NDVI, and it is defined as:  SAVI = (1 + L) (NIR - R) / (NIR +R + L), where the adjustment 
factor L accounts for the spectrally different extinction of the radiation from the soil through 
the canopy (Huete 1988). Also note that R and NIR represent red and near-infrared 
reflectance, not absolute radiance reflected. 

Variations in the VI may also be induced by the atmosphere, but can be minimized in the soil 
and atmospherically resistant VI (SARVI) by considering the difference between blue and red 
reflectance values: SARVI2 = 2.5 (NIR - R) / (1 + NIR + 6R - 7.5B) (Huete et al. 1997). 

Simulations for different soils backgrounds (sand, silt, and clay) have shown that NDVI values 
increase with moist soil backgrounds, while Tasselled Cap greenness index (GVI) values are 
less influenced by soil background variations (Todd and Hoffer 1998). For all soil back-
grounds the Tasselled Cap wetness index (WI) increased as green vegetation cover increased. 

2.3. Forest cover and type 

2.3.1. Introduction 
Land cover classification schemes involve identification of forest cover as well as different 
forest types. Thus, forest cover and forest type can be derived from a land cover classification. 
Alternatively, algorithms for classification of forest type can be obtained by simplifying an 
existing land cover classification method.  This section will therefore describe algorithms for 
derivation both of forest type, forest cover and land cover. 

Forest cover 

The most important parameter in the FOREMMS system is the forest cover, in the sense that 
FOREMMS will mainly consider forested areas only.  In order to obtain efficient processing, it 
is important to avoid unnecessary processing of unforested areas, especially when the algo-
rithms include heavy computer processing. For unforested areas, some parameters will be 
meaningless, like tree height.  Though many parameters may be said to have a meaning 
outside the forests, like biomass, the algorithms will not be calibrated for such regions.  Only 
a few parameters need to consider unforested areas, for instance reforestation.  We will 
therefore include a fixed forest mask in the system, and we need to define this mask. 

In order to monitor changes in forest cover, it may be necessary to apply Level 3 data, and 
derive the fraction of forest cover and compare to former values of forest coverage or a 
coverage derived from the finer forest mask.  Therefore some algorithms for forest coverage 
will be reviewed. 

Forest type and tree species 

The main factor in separating different forest types is the tree species composition. Therefore, 
tree species classification or identification will be relevant for classification of forest type. 

In some cases, it will be of interest to use the composition of the species in the forest. It may 
therefore be a need to conduct a sub-pixel analysis of the pixels in order to estimate the 
fractional coverage of each species or groups of species.   

Multi-temporal approaches 

It is often the case that a given set of tree species cannot be separated at a given time (or based 
on a single image), but that a multi-temporal data set describing how the spectral signature of 
the tree species varies according to its phenology. Vegetation phenology means the develop-
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ment of the vegetation during the growing season. The phenology is closely linked to the tree 
species and forest type, and the best time to identify a certain tree species depends on the 
actual forest type involved, the species, and also the geographical location.  

The temporal data can be merged at a data-fusion level or a decision-fusion level. When the 
data is fused at decision level, selected features that are relevant for forest type is selected 
according to some carefully selected phenological model, (see e.g. Reed et al. 1994).  Wolter 
et al. (1995) noted that a common multitemporal approach for forest type classification of 
large areas is difficult because the phenological models will depend on the tree species, forest 
types, and geographical areas involved. 

Concatenating the multi-temporal images into one image is a more simple approach to multi-
date forest classification; (see e.g. Mickelson et al. 1998). The multitemporal information is 
treated just like different spectral bands in a multivariate classification algorithm. This 
approach does not require a full phenological model, but it assumes that the actual images are 
taken at appropriate times. Therefore, phenological knowledge must be used in the selecting 
the appropriate images given the forest type and the geographical location.  

2.3.2. Methodology 

Forest cover 

The CORINE landcover database (CEC 1993) covers large areas of Europe, and it classifies the 
area into several land cover classes, among them several forest classes.  CORINE is a high-
resolution database based on SPOT data (Champeaux et al. 2000).  The ESA forest map (ESA 
1992) may be used when CORINE land cover doesn’t exit.  If existing forest masks are not 
available or reliable, the forest mask can be derived from a forest type map. Forest/non-forest 
discrimination can also be derived by thresholding a biomass map (Häme et al. 1997). 

In a vegetation mapping over Western Europe it was observed that clustering on NDVI time 
series was not able to separate forests from grasslands (Champeaux et al. 2000).  The method 
was improved by focusing on the low reflectance in the visible part of the spectrum. This 
effect was most prominent in summertime for northern Europe and in the spring and autumn 
in southern Europe.  The forests were identified by thresholding the visible reflectances in 
monthly composites over three years, where the thresholds were determined from reference 
maps. 

Forest cover fraction 

The percentage of forest cover is often estimated by means of the NDVI vegetation index 
derived from NOAA AVHRR.  In order to improve the estimation, other spectral bands were 
tested and compared to NDVI in a study of temperate coniferous forests in the Cascade Range 
of Oregon (Boyd and Ripple 1997).  The MIR and TIR spectral bands of AVHRR were 
individually not strongly related to percentage forest cover, but when they were included in 
vegetation indices, an improvement in the derivation of forest cover was obtained.  Indices 
including visible, NIR and TIR were found to be the most suitable ones.  In general channel 3 
(MIR) did not cause further improvements of the indices. The exception was the complex 
division index, C3 / (C1 C2 C4 C5), which was able to separate among four different forest 
success ional stages present in addition to the improvement of forest cover derivation. 

The forest density for the conterminous USA, defined as the percentage of forest covers for 
larger areas, was mapped from AVHRR data by means of a mixed pixel model and linear 
regression between the AVHRR data and classified Landsat TM data covering limited areas 
(Zhu and Evans 1994; Zhu 1994).  The TM data were classified into forest and non-forest, 
aggregated into a forest density value for each AVHRR cell and then regressed to the spectral 
data of the AVHRR. It was necessary to develop separate models for each of the 15 physio-
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geographic region defined in the study. Forest information derived from sub-pixel measure-
ments was also found to aid forest type classification. 

Global continuous fields of the fraction of woody vegetation were derived from 8 km AVHRR 
Pathfinder Land data by means of a linear mixing model (DeFries et al. 2000). The model 
input were linear discriminants derived from 30 different metrics of the annual phenological 
cycle, using training data derived from a global network of Landsat scenes. In general the 
results from different years were consistent, except in high latitudes where variations in snow 
cover occurred, and there were also apparent problems with artefacts in the multi-year data 
set. The agreement between the derived data and the reference data was highest when the data 
was averaged over many years. Change detection will require more refinement and improved 
inclusion of end-members.   

Forest type  

Two previous studies at NR have investigated classification of tree types and cutting classes 
based on multi-spectral aerial images with a spatial resolution of 0.5 m (Aas et al. 1996; Aas 
et al. 1997). Feature extraction methods were used to extract spectral and textural information 
from local windows in the scene. The classification of tree species and cutting classes was 
much more robust when features computed from windows of size 25x25 m were used 
compared to classifying single pixels.   

In another study at NR the performance of a multi-parameter SAR sensor was compared to an 
airborne spectrometer (Volden et al. 1998). The hyper-spectral data combined with a model 
for spatial context gave good results for tree-species classification (95% correct). A simulated 
comparison between SPOT, Landsat TM and photographic film showed that hyper-spectral 
images give much better results. These two studies also propose a method for incorporating 
previous forest maps or stand borders in the classification. This improved the classification 
performance significantly.  

Multi-temporal approaches 

An image consisting of 18 channels was composed from the six reflective bands of three 
Landsat TM images during spring, summer and autumn, and the forest types classified with 
an overall accuracy of 79% (Mickelson et al. 1998). The classification result was a genus 
level forest classification with 20 classes characterizing dominant canopy species and 13 sub-
classes characterizing the under-story vegetation. 

Vegetation phenology is important for vegetation monitoring (Reed et al. 1994). NDVI time 
series were derived from AVHRR, and 12 different metrics of phenological variability and key 
events computed from the series.  The metrics included the onset of greenness, time of peak 
NDVI, maximum NDVI, rate of greenup, rate of senescence, and integrated NDVI.  There was a 
strong coincidence between the metrics and the predicted phenological characteristics. The 
metrics established the phenological consistency of deciduous and coniferous forests.  

The technique of applying classification trees on multitemporal data is a good alternative to 
more traditional methods for land cover mapping, since such trees are hierarchical and non-
linear they will be suited to handling non-parametric training data as well as categorical or 
missing data (Hansen et al. 1996). They compared the performance of a tree to a ML 
classifier using a global data set, and found that the accuracy of the two methods was 
comparable (82%). Finally, they pointed out that a tree also could be used to reduce the 
dimensionality of the data sets and to find those metric s that are most useful for discrimi-
nating among cover types.  In a later work Hansen et al. (2000) applied a hierarchical global 
land cover classification scheme, which uses a set of 41 multitemporal metrics that is created 
from a set of monthly AVHRR composites.  The metrics will typically be maximum, mean or 
minimum of a spectral channel or an index during the four warmest months (“summer”) or 
the 8 warmest months (“annual”).  The forests are identified at the third level in the decision 
tree. The metrics being applied to identify the forest cover include NDVI annual peak, NDVI 
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summer mean, red and NIR reflectance annual minimum, MIR radiance summer mean, red 
reflectance annual mean. The various forest types are included at next levels in the decision 
tree. Mixed forests are identified by annual mean of channel 4 (TIR) and maximum NDVI. 
Needle-leaf forests are identified by maximum NDVI in the temperate zone. Temperate broad-
leaved forests are identified by the minimum of MIR and the amplitude of NDVI.  

Clustering methods on NDVI time series was developed for mapping the land cover of the 
USA (Loveland et al. 1991).  Each NDVI set is composed from AVHRR data covering a 10-day 
or one month period.  The selection of the composition procedure will influence the accura-
cies when the NDVI composites are applied of for forest/non-forest classification (Roy 1997), 
and the recommended procedure is to use the maximum value of NDVI in the composition 
period for each pixel (Holben 1986).   

A hierarchical unsupervised approach was applied on Iberia (Lobo et al. 1997), because of its 
high environmental diversity and very strong environmental gradients. A time series of 12 
monthly NDVI values was derived from AVHRR, and the first two principal components were 
determined. Unsupervised classification by means of agglomerative clustering of 3000 
randomly sampled pixels yielded a dendrogram, from which three classification levels was 
identified.  For each level, the classified samples were used as training data for determining 
linear canonical discriminant functions and corresponding class signatures in terms of 
centroids and covariance matrices. All pixels were first transformed from temporal space to 
canonical space, and then for each three levels assigned to a class using the maximum 
likelihood method with a 95% probability threshold. Finally the temporal NDVI spectrum for 
each class was calculated as the average of the assigned pixels. The highest classification 
level identified the distinction between Atlantic and Sub-Mediterranean vegetation, being 
characterised by a summer and a spring peak of NDVI, respectively.  The lower levels in the 
hierarchical classification gave maps with a high degree of spatial continuity, and it was 
verified that the result was bio-climatically coherent. It was demonstrated that the NDVI time 
series is an accurate signal of vegetative phenology, which is not obtained from global maps 
of land cover. The ecological information at finer scales were found to be relevant and with 
detailed legends, and therefore the method could be suitable for regional scale applications.  

2.3.3. Discussion and conclusion 

Forest cover 

Forest cover is related to forest type/tree species as it can be derived from a classification of 
an image into different forest types or tree species (if the classification includes all forest 
types/tree species found in the area).  

Reasonably good estimates of forest cover are possible to find from remote sensing data. The 
studies discussed above derived forest cover from vegetation indices, but it should also be 
possible to derive from a direct classification of the multi-spectral image data. It is likely that 
multi-temporal data that includes signature development during the season is needed to 
achieve acceptable performance. The multi-temporal data can be incorporated by using two 
different approaches, either to develop feature extraction methods that derive the essential 
information from the time series, or to input the time series model to the classification module 
and develop means of fusing this information in the decision process. 

Forest cover fraction 

The studies reviewed above are related to AVHRR images and use subpixel methods to esti-
mate the forest density for AVHRR image pixels. These studies used spectral mixing models, 
which is one class of methods that can be applied to subpixel analysis. Other approaches may 
include statistical mixed pixel models (Solberg et al. 1995). 
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For medium resolution data, sub-pixel methods might not be required if one is interested in 
forest density estimates on a scale coarser than the image resolution.  

Forest type  

It should be possible to derive tree species (and thus derive information about forest type) 
from satellite images with accuracy high enough to make it interesting for the FOREMMS 
application. Classification methods should be used for this. It might be necessary to apply 
feature extraction to compute textural features from high and medium resolution images, and 
also to use models for spatial context in the classification process.  

Different tree species develop at different times during the season. As discussed for forest 
cover it is probably an advantage to develop classification mode ls which can utilize 
multitemporal data, e.g. in terms of monthly image data to include phenology in the model. 
Information about the phenology can be derived from e.g. time series of NDVI or other 
vegetation indices during the season.  

2.4. Biomass  

2.4.1. Introduction 
Biomass is defined as the total amount of dry organic matter (t/ha). It will include also bio-
mass below ground, but sometimes only biomass above the ground is considered. In this 
report, we define total biomass as the total biomass above and below ground (roots), while 
total biomass above ground will be specified when used. 

The total biomass above ground in a forest is composed of tree biomass above ground and 
understorey biomass. Tree biomass above ground can be calculated as the sum of stem wood, 
stem bark, living branches and needles biomass (Fazakas et al. 1999).  The organic matter of 
a tree including bark, branches and roots can be computed from existing models based on 
singletree measurements of diameter (dbh) and height (Häme et al. 1997). 

Wood volume (stem volume or tree volume) is one of the most important variables in 
traditional forestry resource assessments (Fazakas et al. 1999).  Since it is a volume measure 
(m3/ha), not a mass measure, it is not a measure of biomass.  However, it is very closely 
related to biomass, and connections may be established as linear relationships.  Stem volume 
refers to the volume of the stems only, and since it is measured on ground in practical forestry 
(Häme et al. 1997), we must assume that the reference data in FOREMMS will be given in 
terms of stem volume.  

The primary production is related to the amount of green biomass, which is a small fraction of 
the total biomass of a tree. Green biomass is often estimated from remote sensing data by 
means of some vegetation index, for instance the NDVI. Green biomass is also related to the 
leaf area, which is measured by the leaf area index (LAI), which is discussed in another 
section in this report. 

Strong relationships between the total biomass and the green biomass are often the case, but it 
is dependent on factors like tree species and age. NDVI has shown to be effective in estimating 
green biomass and LAI of non-wooden canopies, but it has been found to be a very poor 
indicator of forest biomass (Häme  et al. 1997), since the majority of the forest biomass is non-
green. The primary controls on the reflectance during the development and lifetime of the 
trees are other factors than the tree biomass because of saturation at an early development 
stage.  

The most common methods found in the literature for estimation of biomass from remote 
sensing data are based on regression functions, but the 'k-nearest-neighbour' (kNN) approach 
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is also used.  The following section gives a review of selected papers describing methods for 
estimation of biomass. 

2.4.2. Methodology 
The relationships between forest parameters and TM data were examined for a lodgepole pine 
forest in Yellowstone National Park (Jakubauskas and Price 1997). The analysis was carreid 
out by means of stepwise multiple regression analysis, which results in an optimal set of 
variables that explain the dependent variable and where the remaining (excluded) variables 
are not able to improve the explanatory power significantly.  When only the original spectral 
bands were examined, TM7 were found to explain 58% of the variance in total biomass. No 
significant improvement was obtained by introducing any other spectral bands. When trans-
formed TM data were included in the analysis, NDVI were found as the best variable, but only 
a very small improvement was obtained as NDVI explained 59% of the total biomass. 

Large areas of conifer-dominated Boreal forests have limited ground reference data. In a 
semi-physical two-step approach developed for boreal forest biomass estimation from AVHRR 
data (Häme et al. 1997), TM data was applied as a link between the ground data and AVHRR 
data. In the first step tree volumes were modelled by linear regression models of Landsat TM 
spectral data (R and NIR). Broadleaved trees have a 1.5-2 times higher NIR reflectance 
compared to conifers, and the volumes of coniferous and broadleaved trees were therefore 
modelled separately. The proportion of the total tree volume related to broadleaved trees was 
also estimated directly by linear regression models, partly because this proportion was 
considered as a fundamental variable of Boreal forests itself, and partly as an alternative for 
estimating the biomass of broadleaved trees. The next main step in the model estimation was 
the transformation of the corresponding spectral data in AVHRR into this spectral model. Two 
different methods were given for the estimation: a regression model and a mean/variance 
based approach. Finally, in order to estimate total biomass instead of stem volume, the 
relationship between these two closely related parameters was determined from a regression 
between outputs from known estimation models where plot measurement data is input.  The 
results showed that the red channel was the best single channel, and that NDVI was not 
appropriate for biomass estimation. The method applies only for large areas and works best 
on boreal forest zone.  

The 'k-nearest-neighbour' (kNN) method was applied to combine reflective TM data with NFI 
(National Forest Inventory) plot data to estimate tree biomass and wood volume for a forest 
estate (60°N, 17°E) in central Sweden (Fazakas et al. 1999). The biomass for each pixel is 
predicted as weighted averages of the biomass values of the spectrally closest reference plots. 
The chosen weights were proportional to the inverse squared distances in the spectral domain. 
They considered Mahalanobis distance as more appropriate to use than the Euclidean 
distance, but did not find any significant difference.  The number of spectral neighbours is 
recommended not be higher that 5.  The results were evaluated both by means of cross-
validation, where each plot in turn is tested against all the other plots, and by means of plots 
from an intensively sampled validation area. The results showed that though the estimates on 
a plot level had a large variation, the variation for the entire estate (510 ha) was much lower 
(RMSE was 8.7% for biomass and 4.6% for wood volume). The accuracy increased for 
aggregations of cells, and the method gave satisfactory estimates (RMSE  <10%) for mean 
wood volume for areas > 1 km2.  The RMSE for mean wood volume and mean biomass 
decreases as the unit area increases.  As the relationship between wood volume and digital 
numbers is non-linear, the method generates biased estimates if the spectral distances between 
reference plots are too long, but the method is asymptotically unbiased as the number of 
available reference plots increases. However, when historical stand characteristics were used 
as co-variates in an experiment where timber volumes were estimated in radiata pine 
plantations in New Zealand, the results indicated that the estimates were unbiased both for 
plots and stands, though with high RMSEs (Tomppo et al. 1999).  In an experiment utilizing 
Swedish National Forest (NFI) inventory plots, the site index, forest age, and mean tree height 
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from forest stand data were introduced as features in the ‘spectral’ domain (Holmgren et al. 
2000), and the standard error of stem volume was reduced from 36% to 17%. 

2.4.3. Discussion and conclusion  
It is desirable in FOREMMS to get estimates of biomass or stem volume at a continuous scale. 
Two categories of methods for estimation of biomass are found in the literature: regression-
based methods like linear regression, and the kNN interpolation method. It is likely that more 
general regression models can perform better than linear regression.  If continuous scale 
cannot be done robustly, it might be possible to classify the scene into areas with biomass 
levels in certain categories.  

Several of the studies have found that more reliable estimates have been found for entire 
forest stands than for single pixels. Models that can utilize ancillary information in terms of 
stand border maps and forest characteristics for the stands are thus desirable.   It has also been 
found that the estimates will be more reliable for larger cells that for smaller ones. 

The reported studies have been performed on limited test areas, and how the performance of a 
regression model for regions outside the area the model was derived for is an open question, 
which has to be addressed for operational applications. One solution will be to determine 
separate regression models for each forest type. 

This review shows that both regression models and kNN interpolation models may be utilized 
in the estimation of biomass and tree volume.  A decision of which of the two methods that 
we will select for biomass estimation in FOREMMS cannot be deduced from the review. The 
final choice of method for the baseline of FOREMMS will depend on a synoptic view of all 
parameters that will derive from remote sensing in FOREMMS. 

2.5. Leaf area index and FPAR 

2.5.1. Introduction 
Leaf Area Index (LAI) is defined as the one sided green leaf area per unit ground area in 
broadleaf canopies, or as the projected needleleaf area per unit ground area in needle 
canopies. One related parameter is FPAR, which means the Fraction of Photosynthetically 
Active Radiation absorbed by vegetation canopies (see the Boston University website 
http://cybele.bu.edu/modismisr/laifpar/laifpar.html) 

LAI is a key biophysical variable influencing land surface photosynthesis, transpiration, and 
energy balance.  Strong relationships between LAI and NDVI or SRVI have been found in 
coniferous forests in the western USA over large LAI ranges (Bonan 1995). Both LAI and 
FPAR are key variables in most ecosystem productivity models, and in global models of 
climate, hydrology, biogeochemistry and ecology. Global LAI surfaces were an early product 
of the MODIS Land Science Team (Turner et al. 1999), and methods based on radiative 
transfer models have been developed for that purpose. 

2.5.2. Methodology 
A simple way of estimating LAI is by means of regression of spectral data or some derived 
vegetation indices (VIs). Nilson et al. (1999) studied coniferous forest in central Sweden and 
found decreasing non-linear trends between several different TM bands and LAI, with relative 
errors about 30-40%. Studies of individual stands or well-defined forest types have revealed 
better correlation results. Baynes and Dunn (1997) studied 8-year-old pine stands and found 
that LAI could be modelled by strong inverse non-linear correlation functions of TM band 5 
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(r2 = 0.91) and of band 3 (r2= 0.71). LAI were also modelled by positive linear correlation 
with NDVI (r2= 0.81) and SR (r2= 0.78).  

Jakubauskas and Price (1997) analysed the relationships between LAI and TM data in a lodge-
pole pine forest in Yellowstone, USA.  Both spectral data and derived VIs were analysed by 
means of stepwise multiple regression analysis. When considering the spectral bands only, 
TM5 were found to explain 62% of the variance in LAI, and with no significant improvement 
from the other spectral bands. When both types of TM data were considered, LAI was best 
explained (R2=66%) by a combination of NDVI and the greenness-component of a scene-
specific Tasselled Cap transformation (see Crist and Cicone 1984).  

Different VIs (NDVI, SR, SAVI) were derived from TM images and compared with LAI mea-
sured in field at three sites within the temperate zone (Turner et al. 1999).  The general 
finding was a strong general relationship for low values of LAI, as the VIs were increasing up 
to LAI values of 3-5. For LAI values above 5 the sensitivity of the VIs was low, and they even 
decreased at the highest LAI values in the coniferous forests.  This decrease is explained by 
the reduced NIR reflectance in the complex canopies in mature forest stands. Atmospheric 
correction improved the relationship between LAI and VI, but topographic corrections had 
little or no effect. A serious problem is that forest type and other vegetation properties that are 
independent of LAI, will have significant effects on the VIs. None of the investigated VIs 
were found to be generally better than the others, but it was suggested to select between the 
various VIs according to forest type and successional stage. 

LAI is commonly estimated using NDVI, and other VIs based on VNIR radiation. However, it 
has been demonstrated that LAI is more closely related to middle -infrared (MIR) radiation 
than to visible light, and that MIR can be applied to improve the correspondence between the 
VI and LAI in boreal forests.  Brown et al. (2000) suggested a MIR based modification of the 
simple ratio, the reduced simple ratio, RSR = (NIR/R) (MIR-MIRmin) / (MIRmax-MIRmin).  In a 
study of boreal forests of Canada they found that RSR showed increased sensitivity to LAI 
and was reducing background effects in conifer canopies. Furthermore, RSR had the potential 
to unify deciduous and conifer species in LAI retrieval, which has impact when information 
about forest type is missing or where the forest types are mixed within a pixel. These results 
are verified by the findings of Boyd et al. (2000), who compared NDVI to a vegetation index 
based on both NIR and MIR radiation, VI3, for a boreal forest canopy.  The relationship with 
LAI was stronger than for NDVI, and the variation in LAI was better explained. However, in a 
study of LAI in a larger landscape scale in Glacier National Park, USA, NDVI was found to be 
the best index for estimating LAI, though the accuracy decreased with coarser pixels (White 
et al. 1997). The MIR corrected SR was found to overestimate the LAI because of difficulties 
in deriving the appropriate reflectance scale of the MIR correction, but it was a good indicator 
of understory canopy cover.  

The MODIS instrument is designed to provide global imagery at one single viewing angle and 
seven short-wave spectral bands (visible, NIR and MIR) , while the MISR (multi-angle 
imaging spectroradiometer) instrument is designed to provide global imagery at nine discrete 
viewing angles and four VNIR spectral hands. Algorithms for retrieval of LAI and FPAR fields 
both from MISR alone (Knyazikhin et al. 1998a) and from a combination of MISR and MODIS 
(Knyazikhin et al. 1998b) are applied in the production of the Terra standard product of LAI 
and FPAR.  Algorithms for deriving LAI / FPAR from MODIS reflectance data are found at 
http://modarch.gsfc.nasa.gov/MODIS/ATBD/atbd_mod15.pdf (see also Knyazikhin et al. 
1999). The algorithms are independent of any particular canopy reflectance model, and utilise 
information of the canopy spectral properties and structural attributes. They depend on a 
structural land cover classification into one of six global biomes, where broadleaf forest and 
needle forest are the two relevant for FOREMMS.  

The algorithm for producing global LAI and FPAR fields from the combination of MODIS and 
MISR canopy reflectance data (Knyazikhin et al. 1998b) is a synergistic algorithm based on a 
3-D formula tion of the radiative transfer process in vegetation canopies.  The radiative trans-
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fer in plant canopies have some specific features, which have made it possible to split the 
complicated 3-D radiative transfer problem into two independent and simpler sub-problems, 
and store their solutions in a look-up-table LUT. A land cover classification map is required 
in order to identify what biome the ground cover belongs to, and misclassification between 
distinct biomes can fatally impact the quality of the retrieval, but the impact of misclassi-
fication between spectrally similar biomes is negligible (Tian et al. 2000).  The algorithm is 
dependent on the spatial resolution of the data, and therefore the algorithm must be adjusted 
for data resolution in order to be utilized with data from other sensors. 

The algorithm for retrieval of LAI and FPAR from MISR data only (Knyazikhin et al. 1998a), 
is a two-step process that utilizes all the information provided by atmospherically corrected 
MISR data. The fist step is based on a set of models, which represent the biome type, canopy 
structure, and soil/understory reflectances. Candidate models are identified according to their 
correspondence with the retrieved spectral hemispherically integrated reflectance.  The 
second step identifies the best one of the candidates. Each of the candidate models are 
evaluated by means of their correspondence to the retrieved spectral directional reflectances at 
each of observed the MISR angles. The most probable values of LAI and FPAR are specified by 
means of measure theory using the set of all acceptable solutions. The algorithm was tested 
with bidirectional reflectance data over Africa from the POLDER instrument (Zhang et al. 
2000).  The test results demonstrated some advantages of using multi-angle data, as they can: 
1) decrease the dispersion and saturation of LAI,  
    and increase the quality of retrieved LAI and FPAR,  
2) improve the accuracy of LAI retrievals in geometrically complex canopies such as shrubs,  
3) help determine biome (land cover) types correctly  
    by using the minimum value of LAI dispersion. 

The algorithms for deriving LAI from MODIS reflectance data (Knyazikhin et al. 1999) also 
have a backup solution based on NDVI. For each of the six biomes, LAI and FPAR have been 
modelled as non-linear functions of NDVI.  The functions are given in terms of LUTs and are 
listed in table 2.3 in http://modarch.gsfc.nasa.gov/MODIS/ATBD/atbd_mod15.pdf.  

2.5.3. Discussion and conclusion  
In FOREMMS, large areas covering a wide variety of forest types are going to be mapped. 
Solutions based on regression with single bands or with VIs, will require large amounts of 
training data in order to be representative for the whole area. However, VI based methods that 
include MIR may be possible solutions. 

The full algorithms for MODIS will be very complicated to implement, and the results can also 
be obtained as standard products from MODIS. There is therefore no reason to implement 
those algorithms into FOREMMS unless we want to improve them or adapt them to other 
sensors.  Instead FOREMMS could include the LAI/FPAR product from MODIS. 

For FOREMMS it therefore seems that the best solution for a robust baseline algorithm will be 
to implement the MODIS backup solution algorithm, and if possible refine the LUTs that are 
being used. An advantage of this solution is that NDVI can be derived from any multispectral 
satellite image.  

2.6. Forest changes  

2.6.1. Introduction 
Multi-temporal images are essential for detection of forest changes.  In addition to change 
detection, such images are also applied for deriving information related to phenological 
phenomena, and for instance estimation of growth during a season. 
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For forest change detection from time series we must distinguish between seasonal responses 
of the vegetation, inter-annual variability, and directional change (Coppin and Bauer 1994). 
Directional change may be caused by intrinsic vegetation processes, land use or other human-
induced processes (e.g. pollution stress), and alterations in global climatic patterns. For a 
given forest monitoring system, its ability to detect changes will depend on its ability to 
account for variability at different scales. Coppin (1994) discusses four different types of 
signature changes: no change (closed canopy remained closed), canopy depletion (net overall 
canopy loss), recent storm damage (structural/textural canopy changes), and canopy 
increment (process of canopy closure). 

A simple approach to change detection is to compare two classified images, for instance two 
forest cover maps for detection of deforestation and afforestation. Other approaches may 
include thresholds, linear transformations, classifications, regression models and change 
vector analysis (Häme et al. 1998). 

The two main variables for forest growth are Gross primary production and aboveground 
primary production (NPAA). Some important aspects of NDVI concerning growth were 
reviewed by Bonan (1995). The NDVI is related to FPAR, which is important for the photo-
synthesis rate. The seasonal cycle of NDVI is correlated to the seasonal uptake and release of 
CO2. The annual integrated NDVI is related to annual net primary production (NPP).  

2.6.2. Methodology 
The most common approach to change detection is to study changes of individual pixels. 
Varjo (1996) studies changes on the stand level based on the assumption that at least part of 
the changes follow stand borders, especially man-made changes. They study changes as 
standwise differences of the three first central moments for individual Landsat TM channels 
using a nonparametric kernel method.   

Time series can be applied to detect e.g. defoliation by using well-established change 
detection techniques for optical sensors, like vegetation indexes or principal component 
analysis (Collins and Woodcock 1996). Changes are detected using a linear model relating the 
spectral signature at two different dates. The most common linear change detection approach 
is multidate principal component analysis. These methods are easier to use if the images are 
from the same sensor, and if they are well calibrated. Comparisons of linear change detection 
techniques for forest applications are given by Collins and Woodcock (1996) and Muchoney 
and Haach (1994). Nielsen et al (2001) presented a method for change detection based on 
multivariate alteration detection and maximum autocorrelation factors. 

Häme et al. (1998) presented an unsupervised change detection method that is based on 
clustering of two images. The detection and identification of the changes are performed in 
two separate clustering procedures. In the first phase the two images are clustered separately.  
In the next phase, the clusters in the latter image are reclustered into finer classes, which are 
compared to the first image. A detailed description of the method is given by Häme et al. 
(1998). When the method was tested in southern Finnish Boreal forest using TM data, it could 
reliably detect and identify clearcuts. The method also provided information on forest 
damage. 

Cohen et al (1998) compared two unsupervised classification methods for mapping forest 
harvest activity from a temporal dataset consisting of five sequential date-pairs of difference 
images derived from Landsat.  The merged image differencing method was merging the 
classification results from the five separate difference image pairs into a single map of forest 
harvest activity. The simultaneous image differencing method applied one single unsuper-
vised classification of the full sequential difference image data set.  Both methods mapped the 
clearcuts with more than 90% accuracy. 

Sohn et al (1999) applied a new spectral pattern matching approach that utilizes the spectral 
angle concept for mapping deforestation and successional forest regrowth. Forest regrowth 
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stages were mapped by assigning spectral clusters to reference classes, based on the minimum 
spectral angle rule. By applying the spectral pattern matching approach, spectral clusters can 
be assigned into information classes in an objective way. The conceptual difference between 
the spectral distance and spectral angle in feature space is also reviewed.  

Varjo and Folving (1997) monitored rapid forest changes, like cuttings, in large areas of 
boreal forests by utilizing an unsupervised clustering method and multitemporal radio-
metrically calibrated Landsat TM data. In order to obtain a change detection of acceptable 
accuracy, the classification units must be the forest stands instead of the pixels.  

Sachs et al (1998) used Landsat TM and MSS imagery to map forest cover and detect major 
disturbances between 1975 and 1992 for a large area of interior British Columbia. Changes in 
landscape pattern were examined by describing both conifer and harvested patches in each 
biogeoclimatic zone by means of calculated indices like interior area, perimeter/area ratio, and 
patch-shape complexity. 

Multi-temporal TM data showed that the ratios of band 5 to band 4 increased as longleaf pine 
were subjected to a one year prolonged drought (Pinder and McLeod 1999).  Mean ratios 
increased significantly (from 0.42 to 0.55) during the drought, but the amount of the increase 
varied among the forest stands. Ratios returned to pre-drought levels once the drought was 
broken.  

Royle and Lathrop (1997) studied the defoliation of an eastern hemlock forest in the New 
Jersey Highlands during a 10-year period by comparing the simple ratio VI from Landsat TM 
data. A regression model relating estimates of canopy condition to the temporal difference in 
the VI was developed to predict hemlock condition across the study area. The VI difference 
was highly correlated to hemlock damage as measured on the ground (r2 = 0.73).  

Forest growth is closely related to the carbon exchange. Bonan (1995) discussed remote 
sensing applications for modelling of the seasonal and annual carbon balance in terrestrial 
ecosystems.  The applications will take advantage of models that combine the biophysical and 
biogeochemical controls of CO2 exchange. The annual production of biomass and the 
seasonal cycle of CO2 exchange in boreal forests have been well approximated by such a 
model, where the required input is the beginning and end of the growing season, absorbed 
photosynthetically active radiation, foliage nitrogen concentration, and vegetation type 

In order to estimate Gross primary production (P-G) and aboveground net primary production 
(NPPA), Coops (1999) applied the 3PGS model using NDVI from AVHRR and Landsat MSS. 
The method is based on a monthly time-step model (Physiological Principles Predicting 
Growth using Satellite data (3PGS)), which requires monthly weather data, soil texture, and 
rooting depth. It will also require the fraction of photosynthetically active radiation absorbed 
by the forest canopies (fPAR), which is estimated from a satellite-derived NDVI. AVHRR and 
Landsat MSS data were used by the model, yielding 3PGS predictions at a more refined land-
scape scale. Field tests resulted in a linear relation between predicted and measured wood 
production (r2 = 0.4).  

2.6.3. Discussion and conclusion  
The time issue concerning detection of harvesting / deforestation and regrowth / afforstation 
is very different.  The former is happening fast and need to be detected fast, while the latter is 
slow processes, and can therefore be detected by more laborious and not so frequent methods. 

Forest harvesting and deforestation seems to be detectable by clustering methods within the 
forest mask.  Afforestation and regrowth will occur outside the forest mask and should be 
detected by a forest classification of the whole FOREMMS area. 

Forest health should be monitored by studying time series of NDVI or other forest parameters. 
Serious changes in forest health may also be detected by a change in forest class, or by the 
same clustering methods that will be used for detecting harvesting and deforestation. 
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As the primary production is dependent on the incoming solar energy, FPAR seems to be a 
relevant parameter for determining the primary production.  The total amount of absorbed 
PAR (photosyntetically active radiation) is given by FPAR and the incoming PAR, which can 
be determined from meteorological models and observations. 

2.7. Biodiversity 

2.7.1. Introduction 
The ecological interpretation of landscape patterns is one of the major objectives of landscape 
ecology. These landscape patterns needs to be quantified to establish relationships to eco-
logical processes and to detect changes.  

Wickham et al (1995) estimated 3 diversity estimates in the USA from AVHRR satellite data: 
land cover richness, vegetation richness and vegetation clustering.  

The definition of a system of nomenclature for mapping European Forest, (Köhl and Päivinen 
1996) suggested 3 parameters called 'dominance',  'contagion' and 'fractal dimension' (Dale  
et al. 1995; O'Neill et al. 1988), which is related to the spatial arrangement of patches. In the 
suggested nomenclature the spatial arrangement of patches is suggested as indicator attributes 
to describe the potential of forested areas to fulfil the functions described by the attributes 
'Threats to Species Diversity', 'Wildlife Habitats', 'Scenic Beauty' and 'Environmental Impact' 
(FIRS project - key parameter study). 

2.7.2. Patchiness / patch attributes 
Dominance is the complement to evenness, provides a measure of how common one land 
cover is over the landscape. Its value indicates the degree of which species dependant on a 
single habitat can pervade in an area. 

Contagion measures the degree to which land cover units are clumped or aggregated. 
Contagion is a useful metric for those species that require a large contagious area of particular 
forest type or land cover. 

Fractal dimension is an indicator for the complexity of spatial patterns. This indicator can be 
used to select areas that are suitable for species that inhabit at edges or require multiple 
habitats. Can also be used to select areas that are suitable for species that inhabitat large 
contagious areas.  

The GOFS (Global observation of forest cover) project has also identified a product related to 
forest change called Forest Fragmentation Product.  This type of parameter could be 
implemented in FOREMMS on different levels.  

A whole range of indices has been suggested to quantify the spatial arrangement of patches. 
In FOREMMS the most logical approach is to calculate indices based on the forest mask or 
available land cover databases (Level 2 data) with a large filtering window (e.g. 5km x 5km). 

The FRAGSTATS program (http://www.fsl.orst.edu/lter/data/software/fragstat.htm) was 
developed to quantify landscape structure. FRAGSTATS offers a comprehensive choice of 
landscape metrics and was designed to be as versatile as possible. Two separate versions of 
FRAGSTATS exist: one for vector images and one for raster images. Both versions of 
FRAGSTATS generate the same array of metrics, including a variety of area metrics, patch 
density, size and variability metrics, edge metrics, shape metrics, core area metrics, diversity 
metrics, and contagion and interspersion metrics. The raster version also computes several 
nearest neighbour metrics.  
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3. Discussion of algorithms  

As previously mentioned, the literature for extraction of forest parameters reviewed is mainly 
based on using general classes of method to estimate the parameter, and not specially 
dedicated algorithms. Two main classes of algorithms are needed: classification algorithms 
and algorithms for estimating a general parameter. 

3.1. Methods for image classification  
As the default method for image classification, we propose to use the ML classifier with a 
multivariate Gaussian density function. For optical images, the Gaussian data model is 
generally very well suited. Besides the elementary pixelwise ML classifier, a contextual 
version (e.g. Haslett’s algorithm) will be considered. Texture parameters computed on a 
neighbourhood could be included in the feature vector. One alternative to ML classification is 
to introduce Markov random fields or Markov chains as a prior model and perform maximum 
a posteriori (MAP) or maximum posterior marginals (MPM) classification. However, the 
computational cost is considerable and it is difficult to estimate the spatial regularity para-
meters of such prior models from a ground truth of limited size. Another alternative is to use 
non-parametric methods such as neural networks or clustering techniques, e.g. the k-nearest 
neighbours (kNN) algorithm. In this case, no precise data model is needed. This is a 
considerable advantage in many applications, but in our case the Gaussian model is well 
justified and multivariate ML classification seems to be the best methodological starting 
point.  

3.1.1. Multi-resolution analysis  
The multilevel analysis in FOREMMS will consist of estimating a parameter (e.g. a forest 
parameter) at Level 1 based on data from one sensor (or more), estimation of the same 
parameter at Level 2 based on data from a second sensor, and possibly at Level 3 based on 
data from a third sensor. Furthermore, a model describing the relationship between the 
parameter at Level 1, Level 2 and Level 3 must be established.  

Only a limited set of studies have used multiresolution data to predict forest parameters. The 
classification accuracy of low-resolution images can be estimated by using high-resolution 
images as ground reference information. Kloditz et al (1998) carried out a statistical analysis 
on simulated low-resolution data derived from TM data, which resulted in two models for 
combining the information from the aggregated TM data in order to predict NDVI from NOAA 
data.  

Multi-resolution pyramids for segmentation of a single image 

For image segmentation purposes, a popular approach is to create a pyramid representation of 
the original, single -sensor image by sampling it at different spatial resolutions. In some cases, 
this can speed up and/or simplify the segmentation problem. An example is given by Wang 
and Liu (1999). Multi-resolution Markov random fields (MRMRF) are often used to model 
the observed data at the different spatial resolutions and how this is related to the scene labels 
which one seeks to estimate.  The use of a MRMRF to model data at different spatial scales 
could be relevant to FOREMMS. 
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Multi-resolution pyramids for estimation of statistical parameter processes 

Image pyramid models or quad-tree representations are also useful to establish relationships 
when the original image data are measured at different resolutions. One example of such a 
model is given by Luettgen and Willsky (1995). A pyramid model describes the observed data 
or the underlying stochastic process that one seeks to estimate at different spatial resolutions, 
and how the different resolutions are related.  

Multiple scale modelling in terms of Kalman filtering is discussed for soil moisture prediction 
by Kumar (1999). Here, scale replaces the role time normally has in Kalman filtering. Instead 
of predicting new observations at a new time, observations at a finer scale are predicted. We 
will study such models in FOREMMS. 

3.1.2. Multitemporal image classification models 
We will also need classification models that incorporate multitemporal information from time 
series of images, e.g. to be able to use phenology. A principal decision in multi-temporal 
image analysis is whether the images are to be combined on the data-fusion level or the 
decision-fusion level (Jeon and Landgrebe 1999).  Data-level fusion consists or combining the 
multi-temporal images into a joint data set and performing the classification based on all data 
at the same time. In decision-level fusion, a classification is first performed for each time, and 
then the individual decisions are combined to reach a consensus decision. If no spectral-
signature changes (affecting the information classes) have occurred between the image 
acquisitions, this is very similar to classifier combination (Benediktsson and Kanellopoulos 
1999). A few studies have considered decision-level fusion in a model allowing class changes 
(Jeon and Landgrebe 1999; Raviv 1967; Solberg et al. 1996; Swain 1978). 

One possibility might be to start by using the methodological framework presented by 
Solberg et al. (1996). In this model, Markov chains are used to model the time dimension, and 
a model for legal transitions between development states can be built. As an example, 
consider a model of NDVI during the growing season (first leaf, max leaf etc.). Different tree 
species or forest types will be modelled using different transition times and states.  

3.1.3. Models for fusion of ancillary and remote sensing data  
Most of the studies for forest parameter extraction discussed in section 3 use only remote 
sensing images.  The performance of the algorithms is not perfect, there is a need of 
methodological improvements to achieve better accuracy. One possible source for algorithm 
improvement is to combine the image data with ancillary data in term of e.g. general land 
cover maps or other map information from CORINNE or other sources. There are generally 
no standard methods for combining map information with image information, but in previous 
studies we have tried to establish a methodological framework for this purpose (Solberg et al. 
1996).  A brief review and discussion of multisource image classification is given below. 
A prerequisite for multisource fusion is that the image data are co-registered. Image fusion 
can either be applied to visualize the combined image data set, or to use the combined image 
data set to classify or segment the scene into ground-cover classes. We will only consider the 
latter approach. 

The main approaches to multi-sensor data fusion found in the remote sensing literature are 
statistical methods (Benediktsson and Swain 1989; Solberg et al. 1996), Dempster-Shafer 
evidence theory (Lee et al. 1987; LeHegaratMascle  et al. 1997) and neural networks 
(Benediktsson et al. 1996). The most common approach to multi-sensor classification is to 
concatenate the data into one vector and treat it as if it were a set of measurements from a 
single sensor. Such a classifier is difficult to use when the data cannot be modelled with a 
common probability density function, or when the data set includes ancillary data, e.g., from a 
GIS system. 



FOREMMS Methods for retrieval of forest parameters from satellite remote sensing  23 

 

Norsk Regnesentral    NOTAT SAMBA/26/01 

Many multi-sensor studies have used neural nets because no specific assumptions about the 
underlying probability densities are needed. A drawback of neural nets in this respect is that 
they act like a black box in that the user cannot control how the different data sources are 
used. Another drawback is that specifying a neural network architecture involves specifying a 
large number of parameters. 

Hybrid approaches combining statistical methods and neural networks for data fusion have 
also been proposed. Benediktsson and Sveinsson (1997) apply a statistical model to each 
individual source, and use neural nets to reach a consensus decision. Most applications 
involving a neural net use a multi-layer perception, but other neural network architectures can 
be used. 

The fusion of the images can take place at different levels, the pixel, feature, or decision level 
(Solberg et al. 1996). Pixel-level fusion consists of merging information from different 
images on a pixel-by-pixel basis to create a new multisensor image, which is then input to a 
segmentation/ interpretation process. In feature-level fusion, a set of features from each image 
is merged and used for further interpretation. In decision-level fusion, the single -sensor 
images are input to single -sensor segmentation / classification algorithms, and then the 
computed probabilities for each ground cover type are combined to reach a consensus 
classification of the scene. The latter approach might be most useful in FOREMMS, where the 
sensors used gives images with very different spectral and spatial characteristics. We would 
also recommend to use the mathematical framework presented in (Solberg et al. 1996) as the 
basis for further improvements regarding the use of multisource data in FOREMMS. This 
framework includes means of combining image data with existing map information and very 
simple models for class changes or development. 

3.2. Estimating continuous parameters 
Two main approaches are suggested in the literature: kNN and linear regression. Unless the 
amount of training data is huge, kNN is likely to be very little robust. Regression-based 
approaches are much more robust. The performance of regression-based approached can 
probably be improved by using more general regression models than linear models. This is a 
well-established field of work in the statistics literature, and other classes of regression 
models should be tried, e.g. generalized linear models (Venables and Ripley 1999).  Further 
research in FOREMMS should compare the performance of both the simple regression models, 
the kNN approach, and more general regression models for a given data set and forest 
parameter. 

These parameter estimation methods are designed for single locations, and they do not 
consider the spatial neighbourhood of a location. There are many models for spatial statistics 
in the statistics literature, (see e.g. Høst et al. 2001). However, operating on a global level, 
many of them will be computationally intense, compared to operating on a local neighbour-
hood. With computational aspects in mind, we suggest that FOREMMS can use local models 
for spatial context, e.g. by using Markov random field models. This would make us able to 
use the same methodological framework as proposed for spatial context and ancillary data in 
image classification. 

3.3. Baseline methodology for FOREMMS 
A limited set of baseline algorithms have been implemented in the FOREMMS prototype: 

o Pixelvise classification has been implemented as maximum likelihood (ML) 
classification using Gaussian distribution models. 

o Contextual classification has been implemented by Haslett’s maximum a posteriori 
(MAP) algorithm.  The algorithm considers the contextual contribution to the 
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posterior probability in addition to the a priori probability and the likelihood.  The 
context is derived from a local neighbourhood around each pixel. 

o Estimation of continuous variables by means of non-linear regression has been 
implemented by means of neural network (NN) algorithms. 

o The kNN interpolation method will not be imple mented in the prototype. 

o Estimation of the patchiness attributes has been implemented. 

o Extraction of extract forest parameters by means of time series analysis of NDVI 
values is not implemented in the prototype. 

o Extraction of NDVI data for storage in the database is not yet implemented. 

3.3.1. Suggested improvements  
After the implementation of baseline algorithms into the FOREMMS prototype, we suggest the 
following options for further development after the prototype version, according to the 
discussions given in this note. 

Classification of forest cover is most relevant for change detection compared to existing 
databses like CORINE land cover. It must be undertaken on Level 3 data in order to ensure 
results within a reasonable time range.  Therefore we suggest to devellop a forest cover 
fraction algorithm for Level 3 data.  

Derivation of forest type from from Level 3 data should take advantange of the frequent 
acquistions of those data, and utilize the phenological information in such data.  Such 
algorithms often utilize NDVI data, and therefore derivation and storage of NDVI should be 
implemented in order to be able use these data later. We have suggested to apply a Markov 
chain based algorithm. 

Extraction of biomass is implemented by non-linear regression in a neural network (NN) 
algorithm. We suggest to evlauate this solution carefully before turning to the other option, 
implementing a kNN interpolation algorithm. Our suggestion for improvement and delvelop-
ment of continuous paramteres in general, is to use local models of spatial context and 
implement Markov random field models. 

The baseline algorithms do not include LAI/FPAR, but we suggest that the Modis backup 
algorithm is implemented, as it is given as a simple LUT function of the NDVI and main 
biome (forest type). In addition, FOREMMS should include the LAI/FPAR PRODUCT from 
MODIS. 
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