
On Decision Machines for
Media Transformation

 NOTAT/NOTE
 N o r w e g i a n C o m p u t i n g C e n t e r / A p p l i e d R e s e a r c h a n d D e v e l o p m e n t

IMEDIA/08/02

Peter Holmes
Knut Holmqvist

Oslo
August 2002

�
�������

 Notat / Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

Tittel/Title:

On Decision Machines for Media Transformation

Dato/Date: August

År/Year: 2002

Notat nr/
Note no: IMEDIA/08/02

Forfatter/Authors:

Peter Holmes, Knut Holmqvist

Sammendrag/Abstract:

Abstract

This document is meant to serve as an interim report of one of the channel S subprojects this year. This
subproject specifically addresses a problem area which goes under several different names, including:
media (or content) transformation, media adaptation, filtering and/or distillation.

This document offers an initial orientation to the problem area, as well as a more extensive review of
various dimensions and issues specifically relevant to the area of media transformation. It concludes
with a summary of the future work planned within the subproject in 2002.

Emneord/Keywords: decision machines, media (or content) transformation, media adaptation, media

filtering, media distillation

Tilgjengelighet/Availability: Open

Prosjektnr./Project no.: Multimedia Multichannel Production (channel S); 11010

Satsningsfelt/Research field: multimedia production

Antall sider/No of pages: 17

On Decision Machines for
Media Transformation

Peter Holmes
Knut Holmqvist

Norsk Regnesentral
August 2002

Table of Contents

1. INTRODUCTION...1

1.1 PURPOSE ..1
1.2 BACKGROUND..1

1.2.1 The value chain ...1
1.2.2 Conserving meaning..1

1.3 STRUCTURE OF THE DOCUMENT ...2

2. MULTIMEDIA DATABASE MANAGEMENT SYSTEMS ..2

3. ISSUES IN MEDIA TRANSFORMATION ...3

3.1 MEDIA ELEMENT TRANSFORMATION ..4
3.1.1 Transformation requests and rules..4
3.1.2 Transformation planning...4
3.1.3 Transformation execution..5

3.2 DIMENSIONS OF THE PROBLEM AREA..5
3.2.1 Use contexts...5
3.2.2 Media element packaging..6
3.2.3 Data types..7
3.2.4 Metadata ...8
3.2.5 Transformation approach ...8
3.2.6 Optimization of transformation ...12
3.2.7 Evaluation functions for plan optimization ...13
3.2.8 Grouping transformations...14

4. SUMMARY ...14

5. FUTURE WORK ..15

6. REFERENCES..16

1

1. Introduction
1.1 Purpose
This document is meant to serve as an interim report of one of the channel S [1]
subprojects this year. This subproject is organized under the project area for Multimedia
Multichannel Production; specifically, the subproject addresses a problem area which
goes under several different names, including: media (or content) transformation, media
adaptation, filtering and/or distillation.

The value in addressing this problem area arises from the need for media producers
and providers to control the overall volume, variety and complexity of the content they
create, administrate and deliver. In a “perfected” media transformation solution, it
would be possible for media producers / providers to store a single original version of
each media element. The transformation mechanisms would make it possible to adapt
any original media element into a form most suitable to the requesting source.

This document offers an initial orientation to the problem area, as well as a more
extensive review of various dimensions and issues specifically relevant to the area of
media transformation. It concludes with a summary of the future work planned within
the rest of the project period.

1.2 Background

1.2.1 The value chain
A simple value chain for multimedia production will contain the following phases:

• creation (i.e., creation of media elements)

• storage (i.e., storage of media elements in a MM DBMS1)

• retrieval (i.e., retrieval of media elements from a MM DBMS)

• media element transformation

• media element delivery / streaming

The first phase is related to creating the media files and putting them together into some
kind of presentation. The result is stored in the MM DBMS for later retrieval. When the
presentation is used, some form of transformation might be necessary. A picture might
have to be converted from CIELab to CMYK, a DV-video may have to be transcoded to
MPEG-1 and so on. Finally the presentation must be delivered to the consumer, on
paper, video or electronically.

1.2.2 Conserving meaning
As a presentation, media elements may be organized, retrieved and delivered as
individual entities. Alternatively, they may be organized into “packages”, and delivered
together as a set of more or less semantically-interdependent elements. The degree and
kind of such interdependence may be explicitly or implicitly represented, or may instead
be a matter which is completely subjective to the author and/or media consumer.

1 Multimedia Database Management System.

2

Regardless of the situation, one of the prime objectives of the transformation phase is to
strive to conserve the meaning of the presentation, to as great an extent as possible. For
text, this amounts to the use of transformation operations which do not render the text
unreadable (e.g., in size or density), nor renderings which yield text so terse that
meaning becomes completely lost. Images, for example, must not become so down-
scaled that essential details become obscured; at such a scale, images might as well be
discarded.

Another important aspect of a presentation can be layout (e.g., as in advertisements).
Here, significant yet sublime layout designs can be utilized to suggest meaning and
connote messages which are not immediately obvious through individual examination
of each of the elements in the presentation. In multimedia presentations, meaning can be
completely dependent upon inter-element timing and synchronization. Disruption of
such timing could render a multimedia presentation meaningless.

This kind of problem has come into greater and greater focus over the last decade. For
WWW pages, alternative approaches to this problem are summarized in [7]. These are
classified as “device-specific authoring”, “multiple-device authoring”, “client-side
navigation” and “automatic re-authoring”. In the first approach, it is the media author
which pre-specifies transformation. This is accomplished through use of specific page
definitions (page templates), each of which is associated with specific information
extraction and page-formatting routines.

In the multiple-device authoring approach, document tagging is used to specify well-
defined transformations from a single source document to a set of pre-defined document
renderings. In contrast, client-side navigation approaches allow users to alter the portion
of the WWW document which is visible at any time (e.g., through panning, zooming,
scrolling, expanding/collapsing graphic elements, etc.).

Of these various approaches for delivering “specialized” WWW pages, it is only the
automatic re-authoring approach which addresses media transformation as a planning
problem, as we do in this work. In contrast to our effort, the approach described in [7]
does not explicitly address temporal media types.

1.3 Structure of the document
The remainder of the document is structured as follows: Chapter 2 introduces the
significance of a distinguishing three layers of data representation within a multimedia
database management system (MM DBMS). Chapter 3 provides an overview of the
media transformation process, along with an extensive review of issues relevant to the
design of multimedia production and media transformation facilities.

A concise summary of the paper is provided in chapter 4, followed by a brief description
of project work planned for the rest of the project period.

2. Multimedia Database Management Systems
Two categories of applications can utilize the services of a MM DBMS:

• applications which present the contents of elements in the database

• applications which enable content editing.

3

In this paper we will primarily consider the first type of application. Applications which
store updated or changed media elements into the database are part of the second
category.

We assume that media elements in the MM DBMS can be in one of two logical and
explicitly represented states, final or revisable. Final elements cannot be altered, they
may however be the bases of new elements. Presentations that are revisable can still be
altered by the second category applications. Elements in a final state can be transformed
to another format or size at the request of and for use by applications.

Data in a MM DBMS are represented on several levels. We will base this discussion on
a three-level representation. These levels are:

1) Logical level

2) External level

3) Internal level

The logical level is an abstraction of the data in the database, as represented by data
models, data types, etc. The external level is the level through which applications
interact with the MM DBMS; one example is an API such as SQL. The internal level
concerns the MM DBMS-internal representation formats and processing mechanisms.
Only the MM DBMS should be concerned with the internal level; no other system
element should directly interact with it.

At the logical level, a MM DBMS might have a data type called “photo”, with
accompanying methods to deliver RGB- and CMYK-coded versions through the
external interface. If the MM DBMS, for whatever reason, chooses to store
transformations of a media element (e.g., a CMYK version of an element denoted
the_photo), this is of no concern to the applications using the MM DBMS. An
application asking for a CMYK-coded version of the the_photo does not need to know
whether the transformation was made on-the-fly or possibly cached by the MM DBMS
for future use.

Therefore, the_photo is the only externally-known media element, and the only way to
get a CMYK version of it is to ask for it through the external interface. If the application
stores this CMYK-coded media element into the database, this is considered as a new
media element of a different data type.

This three-layered approach can serve to make the database “application neutral”, as
discussed by Marder [2]. For a photo database system this approach is practical today,
as can be seen e.g. in OPI systems. For temporally-dependent presentations, however,
most solutions are not application neutral.

3. Issues in Media Transformation
This chapter has two subparts. The first part intends to present an introductory
description of the media element transformation process. The second part describes a
number of different dimensions and issues relevant to the area of multimedia
production, specifically in regard to the task of media transformation.

4

3.1 Media element transformation
Here, the description of the transformation process intends to be as general as possible.
This presentation seeks to describe media element transformation processes which can
require sequences or sets of transformation operations, in order to convert source media
elements into requested target element types and forms. Thus, the process description
may appear overly detailed, when only simple, “one-step” transformations are required
(such as a file format conversion).

3.1.1 Transformation requests and rules
The process is described as follows: A media element request is issued by some system
entity; typically, this request originates at some client. During processing, the original
request may be augmented / modified so as to include additional information useful to
the transformation task (e.g., as in [5]).

Here, the media element request is assumed to refer to some set of media elements, e.g.,
a set of elements desired by some requesting source. The request usually contains
explicit and/or implicit target constraints (or preferences), for each media element. Such
constraints can concern media type, media format, resolution, size, etc.

In order to achieve media transformation, the system includes a set of transformation
rules. Many of these transformation rules equate to operations which can be invoked
upon media elements. Some transformation rules may also exist which are designed to
operate upon well-specified collections of media elements, where these elements within
a given collection may differ in data type (e.g., [2], [5]).

In this next phase of the process, we shall refer to two distinct stages of media element
transformation: these are transformation planning and transformation execution.

3.1.2 Transformation planning
The transformation planning stage concerns the derivation of a plan by which the
requested media elements can be retrieved from the MM DBMS and ultimately
delivered to the requesting source, in a form which most closely matches the constraints
and preferences specified in the request. A complete plan consists of a specification as
to:

• which transformation rules should be applied to each media element (or
collection of media elements),

• the order in which the rules should be applied and

• upon which local or distributed system entity each rule should be executed.

Transforming a given media element into a form desired by the requesting source can
require the utilization of one or more transformation rules. In some cases, the use of
different rules and/or sequences of rules can yield the same transformation result2. In
complex systems, the space of possible transformation plans can be combinatorially
large, and search within that space must be controlled. For this reason, it is necessary for
a transformation solution to include some form of “decision machine” [3].

Deriving an “optimal plan” could solely involve minimizing the estimated cost of plan

2 For example, the (rotate ����������	��
������������������������������� ������������	��
���

5

execution. In practical situations, the goal of optimization is often to minimize some
combination of plan execution cost together with the cost of deriving the plan (e.g., the
time required to derive it). Search performed by the decision machine can be effectively
controlled through use of some form of evaluation function [14]3.

Often, an evaluation function consists of the combination of a cost function and a
distance (or difference) function (the latter is optional); these are described at length in
section 3.2.7. During plan derivation (i.e., search), an evaluation function can provide an
estimate of the “promise” of any partial transformation plan. Since partially developed
plans can be sorted by the evaluation function, this kind of search control makes the job
of optimizing plan derivation a matter of minimizing the evaluation function.

Designing the decision machine and evaluation function(s) — as well as the overall
transformation approach — is a complex task, and a number of design decisions can be
dependent upon factors such as use context, metadata availability and more (see section
3.2).

As an aside, one prominent goal of this work is to investigate the degree to which design
of the transformation approach and decision machine can be de-coupled from use
context. This is necessary in order to fully achieve application neutrality.

3.1.3 Transformation execution
Following the planning stage is the transformation execution stage, where the
transformation rules are applied to the media elements, according to the specifications in
the transformation plan. This process could involve “shipping” media elements to and
from distributed system entities, in order that specialized transformation rules can be
applied to those entities.

It should be pointed out that in some well-defined use contexts, it can be useful to
interleave the plan derivation and plan execution stages, or to iterate between these
stages. That is, it can make sense to derive and execute a transformation plan which is
expected to reduce the size of a (set of) media element(s), before deriving a plan by
which to convert the elements from one data format to another. This kind of approach
implies a need to group transformation rules into sets or classes; this topic is discussed
later in section 3.2.8.

3.2 Dimensions of the problem area
A number of issues arise related to media transformation during multimedia production.
These are presented and discussed below.

3.2.1 Use contexts
The mechanisms required for a given media transformation solution can be influenced
by the use context within which the solution is applied. Two sample use contexts are:

• Content / media creation: This context concerns work performed with media
prior to storage in final state.

• Content / media delivery: This MM DBMS context concerns end user and
system activities from the time at which (final) content is requested by the end
user until it is delivered.

3 Examples of this approach are found in e.g., [7][10][11].

6

To illustrate how use context affects the media transformation approach adopted,
consider the following: In the media creation context, the approach would likely require
some form of media element versioning facility (described later below) . For the media
delivery context, the media transformation approach adopted would likely include some
kind of caching mechanisms. These could be implemented at the server-side (or proxy-
side), at the client-side or both.

3.2.2 Media element packaging
This problem dimension regards the precise nature of a media element and issues arising
when they are packaged together. These issues can apply to logical, external and/or
internal element representations. Consider:

• Media element granularity and nesting: This concerns the coarseness of the
media element, i.e., whether it is atomic and which intra-element structures or
properties are defined and accessible. Alternatively, a media element may have
the capacity to function as a container for other media elements, in order to
create a form of “media-composite”. If so, media elements may be able to be
nested in several ways: examples could include limitation to a single level of
nesting or, alternatively, multiple levels of nesting. In either case, nesting may be
restricted to a single parent or, instead, multiple parents may be allowed.

A Macromedia Flash [25] movie can exemplify this kind of complex / nested
presentation. A Flash movie is temporal in nature and, in addition, can contain
other temporal elements such as audio, video or other Flash movies.

• Inter-element structure: When a media element can function as a container for
other media elements (in some greater or lesser way), it may also contain
internal information about relationships amongst the media elements it contains.
Containers of this kind which significantly differ from one another may imply a
need to assign them different data types, in order that they can be managed in a
more efficient way.

• Temporal synchronization: When media elements are packaged into a
presentation, there is often a need to specify certain kinds of temporal relations
and constraints amongst them. These relations can be specified within the top-
level container or package or, instead, specified within various subcontainers
(when multiple levels of nesting is allowed). Alternatively, these relations can be
specified completely outside the package and/or subcontainers, through use of
metadata associated with individual, yet specific media elements and containers.

• Layout / presentation: The use context for media elements may call for the
specification of information relevant to layout / presentation on the user’s
device. Like the issue of temporal synchronization, such specifications could be
included within the media elements themselves. Nowadays, however, such
specifications are more often included in higher-level media element containers
(when nesting is allowed) or, instead, as “external” metadata which is associated
with some form of high-level media element container.

• Representation of inter-element relations / constraints: Currently, a number
of international, industrial and de facto standards have evolved which can serve
as the basis for logical representation of relations and constraints amongst media
elements. Among these are XML, SMIL [17] and the MPEG family. For many

7

such standards, corresponding toolsets have been developed, thus easing the
burden somewhat when media transformation facilities are created / assembled.

• Control over media element representation and packaging: It can easily
become the case that one is subject to work with media elements which aren’t
“homegrown”. That is, one might have to work with and manage media elements
which are externally represented in a non-standard data format. When the data
format is proprietary or closed, there is little one can do with regard to media
transformation — often, transformation becomes an “all or nothing” decision.

With non-standard yet open media element representations, a need for
specialized transformation facilities arises; these may exist and be openly
available, or available yet subject to license. With open solutions, one can of
course build such facilities oneself.

It should be clear that the options for media element packaging significantly impact the
transformation approach. Multi-parent nesting can require mechanisms for detecting
cycles and eventual redundant processing tasks when planning transformations.
Differing kinds of media element containers may require new data types and, in turn,
specific processing facilities for transformation actions.

The manner in which media elements — as well as temporal- and layout-related
constraints — are represented and specified directly impacts the degree to which
specialized (e.g., data type-specific) processing mechanisms are required.

3.2.3 Data types
This problem dimension concerns the range and kinds of data types (or media element
types) to be managed during transformation, as well as the way in which they are
organized.

• Degree of specialization: In a MM DBMS, there is some set of system-standard
data types. Some media element types can be directly represented using the
system-standard data types. For other media element types, this is not always the
case (e.g., media elements which can contain other media elements). Here, it
may become necessary or useful to define specialized data models for efficient
representation. Thereafter, new data types can be defined and assigned, and
specialized routines / methods can be developed for high-level management and
processing of these new data types.

• Organization: The manner in which data types are organized plays a role in
regard to the degree to which processing software can be made generic. It might
be possible to organize various, specialized data types according to an object-
oriented data type hierarchy. In this way, object-oriented techniques could be
used to declare and define methods at various levels within the hierarchy —
methods which can be invoked across a differing ranges of data (sub)types.

In contrast, planning and executing media transformations may be more flexible
and effective (though perhaps less generic) by purposefully avoiding the use of
an object-oriented data type hierarchy. Such an approach is employed by Marder
[2].

8

3.2.4 Metadata
• Data types and kinds: As is the case with media elements, there is no fixed and

final set of data types for metadata. Still, many kinds of metadata can be
represented using simple data types such as numbers and strings. What is most
interesting is the semantic intention of metadata.

For a given media element, metadata can be stored about the inherent qualities
of the media element itself (e.g., for an audio segment, its sample rate, number of
channels, bits per channel, coding format, etc.). In addition, other information
can be stored — information which is not directly related to the media element’s
inherent nature (e.g., time and place recorded, type of equipment used, person
responsible, classification as ‘open’, ‘confidential’, ‘secret’, etc.)

• Degree of automaticity: This issue concerns the degree to which metadata is
automatically obtained or estimated (and eventually recorded for later use).
Furthermore, there is an issue as to when this information is obtained. That is,
some kinds of metadata (e.g., media-inherent metadata) can be automatically
accessed / derived and stored once, prior to the eventual use of the associated
media data.

Other kinds of metadata may require manual entry. This latter kind can often be
added at any time, thereby yielding potential “gaps” where metadata about
certain media elements is incomplete (and/or inconsistent).

• Storage and packing: The decision as to which metadata is obtained, estimated
and eventually stored is usually dependent upon the domain of applications
within which the associated media data is foreseen to be used. Precisely how the
metadata is represented, where it is recorded and how it can be accessed it also
dependent upon these conditions.

Sometimes, metadata is stored external to the raw data (i.e., in tables or files
other than the tables or files in which the raw media data is stored). Sometimes,
it is stored internally, that is, together with the raw data, as demanded by certain
multimedia standards. Depending upon the application, metadata can also be
found both internal and external to the raw data, in order to help facilitate certain
kinds of application functionality and/or boost application performance.

3.2.5 Transformation approach
The precise approach chosen for the transformation of (collections of) media elements
involves a number of interdependent factors and tradeoffs. Some of the most relevant
issues are included below.

• Performance requirements: Quality of result and transformation speed are two
requirements which cannot be bypassed. Assessment of result quality could
involve any number of objective or subjective criteria, such as error rate for an
speech-to-text function; error rate for auto-identification / tracking / extraction of
objects of interest in a moving scene; selection of cropping area, for an auto-
cropping facility, etc.

Transformation speed can be assessed across several dimensions as well; for

9

example: the time required to derive a media transformation plan, in contrast to
the time required to execute the plan. In distributed solutions, “transformation
speed” may also include the time required to deliver transformation results
between distributed system entities.

Certainly, there exists any number of other performance requirements; these are
often directly associated with specific use contexts and applications.

• On-demand vs. background transformation processing: Most media
transformation solutions perform a significant amount of transformation activity
on-demand, that is, when a given transformation request is being processed.
Transformation approaches may also include a greater or lesser extent of pre-
processing and/or background processing. Such processing can be performed on
(collections of) media elements, transformation rules, metadata, and more.

Certain pre-processing may be carried out in order to satisfy the design or
requirements of the transformation service itself. An example of this kind is
provided by Mohan, et. al. [6], where an “InfoPyramid” is first generated and
stored prior to use. This data collection contains alternative forms of each media
element such that at run-time, the system can efficiently select and deliver the
form most appropriate to the requesting client; often, little to no further
transformation / customization of the media element(s) is required.

Other benefits can be realized from background processing which helps the
system meet general requirements for transformation speed and/or other
performance factors. Here, one can choose to distinguish between background
processing tasks having different levels of priority. One kind are “just-in-case”
tasks — tasks performed based upon expectations of near-term system use. An
example here might be the transformation and temporary caching of a new,
popular music video into the kinds of formats most often requested by service
users.

Another kind of background processing task may concern the update of
information which could help the transformation planner. An example of this
sort could include the analysis of the set of available, individual transformation
rules, in order to derive “composite” transformation rules. Each such composite
transformation rule could consist of a subset of individual rules, collected
together and organized as a single, well-specified set of operations. Here, the
individual rules within a composite rule could be specified to operate in
sequence or parallel, in order to efficiently achieve a more high-level
transformation. Such analysis could allow for pre-computation of (high-level)
transformation operations and their associated costs, such that transformation
planning could become more efficient at runtime4.

4 Furthermore, new high-level composite transformation rules could be derived in the background, whenever new

individual rules are introduced. Once derived, the new composite rules could become available to the
transformation planner.

10

Yet another candidate for background processing are “low-level” tasks, such as
text indexing and/or automated inter-relation of metadata. Tasks of this kind
could be carried out in the background, whenever the system “has nothing else to
do”.

• Media element versioning: In use contexts where media elements are copied (or
cloned), edited (or transformed) then stored back within the MM DBMS, it can
become vital to include a media element versioning facility within the
multimedia production system. Such a mechanism associates with each media
element certain metadata about its ancestry.

In its minimal form, this kind of facility should include information making it
possible to track the sources from which each media element has originated.
More complex mechanisms could attempt to additionally record certain metadata
about the manner in which each media element has evolved from its original
sources.

• Local vs. distributed transformation processing: This issue concerns the
degree to which transformation planning and plan execution are performed
across distributed system entities. Consider this: The decision machine must
have awareness of — or have the capability to become aware of — all
transformation rules which could be efficiently and effectively utilized within a
transformation planning stage. This condition implies that relevant
transformation rules are available locally — or can become available remotely
— during planning.

Design decisions may stipulate that only rules available locally can be used
during planning, and that no new rules may become available to the planner until
some specific planning routine(s) are complete. Alternatively, the planner could
be designed so as to seek out new or specific kinds of rules from well-known
distributed resources, when needed.

This latter approach is clearly more complex; it requires an agreed-upon manner
by which to declare input and output information5 (or properties) for rules, as
well as each rule’s estimated execution costs (including eventual media element
“shipping costs”, when rule execution must transpire on remote entities).
Further, it requires common protocols by which to access and acquire this
information. Of course, this approach also introduces unavoidable delays during
the planning process. In good cases, these extra costs are balanced by increased
overall transformation power and flexibility.

• Use of standards: When transformation rules and execution resources are
accessed and/or employed in a distributed environment, information about these
resources must be available in some kind of standardized form. Presently, there
is no standardized representation for the properties of transformation rules;
different efforts have usually produced independent variants of such
representations. However, there are certain trends to employ XML-based markup
languages as rule property representation languages (e.g., [5]).

5 This information has also been denoted as “signatures” [2] and, in a stream binding context, denoted as “(flow)

type” information [15].

11

SOAP [19] — along with WDSL [20] and UDDI [21] as they evolve — together
have the potential to function as standardized technologies for advertizing and/or
exchanging information about rule properties in a distributed environment. For a
stream binding context [15] — aspects of which can be likened to the media
transformation problem — IDL [22] has been the basis for a media gateway
description language (GDL) [16]. GDL allows declaration of the input/output
properties of “media gateways”, entities which can transcode and/or scale media
streams. Further, these GDL-based declarations enable clients to find media
gateway services (e.g., transcoding) at runtime [16].

In contrast to rule property representation and localization of distributed
transformation services, distributed execution of rules is unlikely to be satisfied
by standards such as SOAP and iCAP [18] [8]. Use of HTTP by these
technologies can effectively prohibit them from handling media elements which
can become arbitrarily large (such as high-resolution, full-color video films). In
such cases, distributed transformation services should employ transformation
rules and mechanisms which can efficiently handle streams as input and output
data types. Use of mechanisms such as media gateways [16] could offer such a
start.

• Addressing preservation of temporal synchronization:
This issue concerns situations where one of the media elements requested
functions as a container (or package) for other media elements. Further the
package includes either direct or indirect specifications about temporal
synchronization amongst the elements it contains.

A simple example can be a media element package which contains one element
representing a video and another element representing subtitles associated with
the video. Should the transformation request include constraints specifying that
the video must be reduced in frame rate, it is necessary that the transformation
process yields a result in which the video and subtitles remain temporally
aligned.

• Coping with spatial layout specifications and constraints:
This issue likens that of the one concerning preservation of temporal
synchronization amongst media elements within a containing package. In this
case, however, the package includes specifications about the spatial layout
amongst the elements it contains. In contrast to the temporal synchronization
case, this case opens for a different degree of “transformation strictness”. That is,
transformation normally includes a requirement to preserve temporal
synchronization amongst the media elements within a package. Here, spatial
layout amongst package elements can usually be somewhat compromised when
transformed; the degree to which layout compromise may be acceptable is
primarily dependent upon the constraints within the transformation request.

• Acquisition of client profile / preferences information: Media element
transformation requires some kind of specification of target constraints for the
media elements desired by the requesting source (e.g., client). Such constraints
usually arise from client-side preferences and/or limitations. Constraint

12

information can sometimes be explicitly found in the request when first issued.
Technologies such as CC/PP [23] can also be used to augment the request with
data describing client capabilities [4].

Alternatively, it’s possible in a “user registration phase”, to explicitly request
information about the user’s terminal set. This information can be stored on the
server and later used together with “magic cookies” [24], in order to help
automate fetching information about client capabilities when the request is
received.

3.2.6 Optimization of transformation
• Atomic vs. global planning: This issue concerns whether the transformation

approach / solution is designed to:

• derive individual, optimized transformation plans, one for each atomic
media element or, alternatively,

• to derive a transformation plan — optimized across all requested media
elements — in a single transformation planning stage.

In the first case, the planner is limited to consider one media element at a time,
and can risk delivering plans which contain local optimizations, yet be sub-
optimal when considered across all requested media elements.

Solutions of the latter kind are much more difficult to realize: the search space is
more complex, as is the design of the cost and difference functions. In these
solutions, it is often necessary to design clever strategies and mechanisms which
balance search effort against plan quality.

• Search strategy for the planner: The planner’s search approach can be more or
less complex; this design decision often rests upon two major factors:

• the expected transformation complexities to be encountered within the
use context, and

• whether an atomic or global planning approach is adopted.

In contexts where element transformation commonly requires only “one step”
(e.g., transcoding a .JPEG image to .BMP), the search approach could be a
simple algorithmic routine which selects the appropriate transformation rule
using data found in an association list.

For contexts where more than one transformation rule is required, but atomic
planning is used, the runtime performance of an algorithmic planner can still be
acceptable when cost functions are accurate and the size of the ruleset is rather
moderate.

When the use context can call for multi-step transformations and/or when a
global planning approach is used, there may quickly arise a need to control the
planner’s search effort using heuristics. For example, one can use an evaluation
function which includes both a cost function and a difference function [14].
Even with good cost functions, devising accurate difference functions in these
contexts can become quite difficult.

13

Here, heuristic solutions can be employed, where distance functions and/or
pruning mechanisms are purposefully designed to reduce the size of the search
space examined by the planner. In addition, organizing transformation rules into
groups and controlling the planner’s access to these groups can also help reduce
search complexity.

3.2.7 Evaluation functions for plan optimization
Multi-step and/or global planning approaches can usefully employ evaluation functions
in order to more derive and sort transformation plans; these functions can be used
balance the degree of plan optimality against the amount of search effort spent by the
planner. In simplified form, these functions can liken

f(x) = g(x) + h(x),

where f(x) is the value of the evaluation function, g(x) is the value of the cost function,
and h(x) is the value of an (optional) distance (or “difference”) function [14]. In this
simplified evaluation function, the parameter x represents a partial plan developed by
the transformation planner. The cost function utilizes information about that partial plan
in order to estimate the cost of applying some (sequence of) transformation rules [11];
the cost function may also include the planner’s expenditures used to develop that
partial plan.

When present, the distance function is used to estimate the cost difference between a
partial plan and an optimal plan; it may also include estimates of eventual planner
expenditures.

In short, parameter values used within these cost and difference calculations are usually
acquired from metadata relevant to the media elements to be transformed, the
transformation rules themselves and/or examination of data about planner activity.

• Parameter domains: Evaluation functions can include a variety of parameters.
Some examples are:

• rule-specific parameters, e.g., estimated transcoding time, resource
consumption, complexity, quality degradation, etc.,

• factors relevant to distributed processing, e.g., estimated “shipping costs”
for media elements (i.e., costs such as delay), resource availability
estimates, etc.,

• parameters describing an end user’s quality demands and preferences
(e.g., “maximum wait time”, “deliver audio only should video quality
drop below a specified threshold”, “prioritize audio ahead of graphics and
images”, etc.)

• parameters describing the media author’s quality demands and
preferences (e.g., content priorities, content interdependencies, etc.)

• Availability of parameter values: At planning time, it is necessary that the
parameters to be used in evaluation functions have values — preferably values
which are as accurate as possible. The issue here is whether these values are the
result of information which is automatically derived (either pre-computed or at

14

runtime) or, whether the values arise from metadata which is manually supplied.
In the latter case, absence of data can, in the worst case, cause the planner to halt.
Otherwise absence of data (or poor data) can lead to inaccuracies in cost
estimation which, in turn, can lead to poor transformation plans.

• Responsibility for parameter values: The examples provided above indicate
that the availability of planning-relevant data can be the responsibility of the
system (e.g., auto-derived data) or the responsibility of one or more individuals.
These actors could be persons responsible for system development and
performance, persons responsible for content authoring and development and/or
the end-users themselves. In different systems and use contexts, there may also
be discrepancies between the actors responsible or accountable for relevant
metadata and the actors wishing to have control over that same metadata.

3.2.8 Grouping transformations
As mentioned earlier, certain transformation planning solutions can be made more
effective / efficient by interleaving the plan derivation and plan execution stages.
Iterative plan derivation and execution can also be a useful approach. When employing
evaluation functions, such solutions can benefit from the organization of transformation
plans into (possibly overlapping) sets. These sets can be characterized by properties
such as:

• rule cost and complexity

• location of rule execution (local or remote)

• whether a rule has a natural, “lossless” inverse (e.g., such as certain pairs of
compression / decompression functions)

• whether a rule is commutative and/or associative

• whether or not a rule leaves a media element’s type intact (e.g., image
cropping rules vs. speech-to-text functions)

• whether rules assemble or dissemble composite media elements

• the degree to which a rule increases or decreases the volume of the media
element(s) it transforms.

4. Summary
This work has tried to the describe issues important to media element transformation
processes from a general perspective. It has had a specific focus upon transformation
processes which can require sequences or sets of transformation operations, in order to
convert source media elements into requested target element types and forms.

This presentation has chosen to define this process as involving two different stages:
transformation planning and transformation execution. Some of the issues elaborated
upon here tend to focus more directly upon the planning stage, while others tend to be
more relevant to the plan execution stage or to multimedia production in general.

15

5. Future Work
As part of our own project effort in channel S, we shall investigate alternative
architectural approaches for supporting multimedia multichannel content production and
services. The preliminary work presented here has been valuable in preparing an
understanding as to the variety of technical issues one can face when addressing
problems related to media transformation.

Currently, we are beginning preliminary conceptual work upon an architectural
framework for support of media transformation. Specifically, we intend to address
approaches and techniques for supporting “just-in-case” media transformation. As
mentioned earlier in section 3.2.5, these kind of transformations are usually performed
in the background. Such techniques aim to help systems meet general requirements for
on-demand media services by selecting and performing transformation tasks based upon
expectations of near-term system use.

In order be more efficient, decision machines employed in these kind of approaches can
utilize information about:

• the expected “window of popularity” for individual media elements

• the media element formats expected to be most often requested

• media element packaging and metadata

• the kinds of transformation resources at disposition

• costs associated with use of a transformation resource

• resource availability

• scheduling, etc.

In our further work, we shall investigate alternative ways of using these various kinds of
information within a transformation framework, as part of a more encompassing
multimedia multichannel media architecture.

16

6. References
[1] channel S WWW site: http://www.nr.no/channelS/

[2] Marder, U., “Transformation Independence for Multimedia Systems”, Internal
Report, University of Kaiserslautern, April 2001 (24 pages). See
http://wwwdbis.informatik.uni-kl.de/pubs/papers/Ma01b.pdf

[3] M.P. Wellman, “Rationality in Decision Machines”, Position paper presented at the
AAAI Fall Symposium on Rational Agency, November 1995. See:
http://ai.eecs.umich.edu/people/wellman/decision-machine.html

[4] L. Suryanarayana, J. Hjelm, “CC/PP for Content Negotiation and
Contextualization”, K.-L. Tan et al. (Eds.): MDM 2001, LNCS 1987, pp. 239-245,
2001. Springer-Verlag Berlin Heidelberg 2001. See:
http://bim.im.fju.edu.tw/home/paperreading/agnetpaper/cc-pp.pdf

[5] T. Phan, G. Zorpas, and R. Bagrodia, "An Extensible and Scalable Content
Adaptation Pipeline Architecture to Support Heterogeneous Clients," To appear at
The 22nd International Conference on Distributed Computing Systems (ICDCS
2002), July 2002. See: ftp://pcl.cs.ucla.edu/pub/papers/icdcs2002-cap.ps.gz

[6] R. Mohan, J. Smith, C.-S. Li, "Adapting Multimedia Internet Content For
Universal Access," IEEE Transactions on Multimedia, March 1999, pp. 104-114.
See:
http://www.research.ibm.com/networked_data_systems/transcoding/Publications//ie
eemm.pdf

[7] T. Bickmore and B. Schilit,, “Digestor: Device-independent Access to the World
Wide Web”, Proceedings of the Sixth International World Wide Web Conference,
Santa Clara, California, 1999. See:
http://www.fxpal.com/PapersAndAbstracts/papers/bic97/

[8] Wei-Ying Ma, Bo Shen, and Jack Brassil, “Content Services Network: the
Architecture and Protocols”, In Proceedings of the 6th International Web Caching
Workshop and Content Delivery Workshop, Boston, MA , June 2001.
http://www.cs.bu.edu/techreports/2001-017-wcw01-proceedings/143_ma.pdf

[9] Hollfelder, S., Schmidt, F., Hemmje, M., Aberer, K., Steinmetz, A.: Transparent
Integration of Continuous Media Support into a Multimedia DBMS. In: Proc. Int.
Workshop on Issues and Applications of Database Technology (Berlin, Germany,
July 6-9), 1998. See: http://www.ipsi.fhg.de/oasys/reports/ftp/pdf/P1998-08.pdf

[10] M. Cherniack, S. B. Zdonik, “Rule languages and internal algebras for rule-based
optimizers”, Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Quebec, Canada, 1996. See:
http://www.cs.brandeis.edu/~cs227b/papers/brandeis-kola-sigmod96.pdf

[11] K.S. Candan, V.S. Subrahmanian V. Rangan, “Towards a Theory of Collaborative
Multimedia”, Proc. of the IEEE International Conference on Multimedia Computing
and Systems, Hiroshima, Japan, June 96. See:
http://www.cs.umd.edu/projects/hermes/publications/postscripts/ttcm.ps

[12] Chen, J.L., Yang, Y.D., and Zhang, H.J., “An Adaptive Web Content Delivery
System”. Proc. AH2000 (Tronto, Italy, 2000) Springer Press, 284-288. See:
http://www2.sis.pitt.edu/~jlchen/publications/ah2000.pdf

17

[13] R. Han, P. Bhagwat, "Dynamic Adaptation In an Image Transcoding Proxy For
Mobile Web Browsing", IEEE Personal Communications Magazine, Dec. 1998, pp.
8-17. See:
http://www.research.ibm.com/networked_data_systems/transcoding/Publications/IE
EE1298.pdf.zip

[14] Nils J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Co., Palo
Alto, CA, 1980.

[15] H. O. Rafaelsen and F. Eliassen, “Trading and Negotiating Stream Bindings”,
Proceedings of Middleware 2000, IFIP/ACM International Conference on
Distributed Systems Platforms, New York, NY, USA, April 2000. LNCS 1795
(Joseph Sventek, Geoffrey Coulson (Eds.), pp. 289-307, Springer-Verlag Berlin
Heidelberg 2000. See also:
http://www.ifi.uio.no/~frank/papers/paperMW2000.pdf

[16] H. O. Rafaelsen and F. Eliassen, "Design and performance of a media gateway
trader”, to be published in the Proceedings of the 4th International Symposium on
Distributed Objects & Applications (DOA ’02), Irvine, California, 2002.

[17] Synchronized Multimedia Integration Language (SMIL) 1.0 Specification. See:
http://www.w3.org/TR/REC-smil/

[18] Internet Content Adaptation Protocol (ICAP) Forum WWW site:
http://www.i-cap.org/

[19] Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000. See:
http://www.w3.org/TR/SOAP/

[20] Web Services Description Language (WSDL) Version 1.2. See:
http://www.w3.org/TR/wsdl12/

[21] Universal Description, Discovery and Integration (UDDI). See:
http://www.uddi.org/

[22] IDL Introduction from OMG: http://www.omg.org/gettingstarted/omg_idl.htm

[23] Composite Capabilities Preference Profiles (CC/PP) Working Group; see:
http://www.w3.org/Mobile/CCPP/

[24] Explanation of ‘cookies’, as provided by the O'Reilly Open Books Project:
http://www.oreilly.com/openbook/cgi/ch10_08.html

[25] Macromedia Flash: http://www.macromedia.com/software/flash/

