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Abstract

A snow-cover mapping method accounting for forests (SnowFrac) is presented. SnowFrac uses spectral unmixing and endmember

constraints to estimate the snow-cover fraction of a pixel. The unmixing is based on a linear spectral mixture model, which includes

endmembers for snow, conifer, branches of leafless deciduous trees and snow-free ground. Model input consists of a land-cover fraction map

and endmember spectra. The land-cover fraction map is applied in the unmixing procedure to identify the number and types of endmembers for

every pixel, but also to set constraints on the area fractions of the forest endmembers. SnowFracwas applied on two Terra Moderate Resolution

Imaging Spectroradiometer (MODIS) images with different snow conditions covering a forested area in southern Norway. Six experiments

were carried out, each with different endmember constraints. Estimated snow-cover fractions were compared with snow-cover fraction

reference maps derived from two Landsat Enhanced Thematic Mapper Plus (ETM+) images acquired the same days as the MODIS images.

Results are presented for non-forested areas, deciduous forests, coniferous forests and mixed deciduous/coniferous forests. The snow-cover

fraction estimates are enhanced by increasing constraints introduced to the unmixing procedure. The classification accuracy shows that 96% of

the pixels are classified with less than 20% error (absolute units) on 7 May 2001 when all forested and non-forested areas are included. The

corresponding figure for 4 May 2000 is 88%.

D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Improving the techniques for global and regional snow-

cover mapping may benefit both environmental interests and

hydrological applications. Climate changes may influence

the spatial extent of the snow (Barnett, Dümenil, Schlese,

Roeckner, & Latif, 1989; Cess et al., 1991; Cohen &

Entekhabi, 2001). Improved parameterization of the snow-

cover extent is needed to enhance climate predictions

(Roesch, Wild, Gilgen, & Ohmura, 2001). In seasonally

snow-covered regions, the snow cover affects the ecology

(Jones, 1999; Walker, Halfpenny, Walker, & Wessman,

1993), the vegetation pattern (Gjærevoll, 1956) and the

hydrological cycle. Information about the contribution of

snowmelt to the runoff is substantial for water resource

management (irrigation, flood prediction, hydropower pro-
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duction). Damaging floods have been caused by intensive

snowmelt and rain-on-snow events (Lundquist, Lunde, &

Bøe, 1996; Marks, Kimball, Tingey, & Link, 1998; Sui &

Koehler, 2001). In Norway, where 99% of the electricity is

produced from hydropower, 25–50% of the precipitation

falls as snow (Winther & Hall, 1999; Wold, 1992). Another

country where snowmelt is important for hydropower pro-

duction is Switzerland, which produces 60% of the electric-

ity from hydropower (Beniston, 1997). In these regions, the

quality of the runoff forecast depends on the reliability of the

snow-cover estimate.

Various techniques for surveying the snow coverage on

regional and global scales exist. Meteorological observa-

tions and regular manual surveys of snow depth and snow

density are traditional methods to estimate the snow water

equivalent and to follow the evolution of the snow cover.

Snow pillows are also used for snow monitoring (Sorteberg,

Engeset, & Udnæs, 2001). Contrary to the mentioned

techniques, satellite images provide continuous spatial

measurements, acquired globally at regular intervals. A
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number of methods for snow-cover mapping have been

developed for optical as well as for active and passive

microwave sensors (see review by König, Winther, and

Isaksson, 2001). For global monitoring of the snow-covered

areas, images from optical and passive microwave sensors

are currently most suitable (Hall, Kelly, Riggs, Chang, &

Foster, 2002; Romanov, Gutman, & Csiszar, 2000; Solberg

et al., 1997). Because the spatial resolution of the satellite

images from today’s passive microwave sensors is coarse

(5–25 km), and the active microwave sensors still do not

provide reliable information about the snow, optical images

are often applied in regional snow monitoring. Several

snow monitoring systems using optical images for runoff

forecasts have been developed (Baumgartner & Rango,

1995; Haefner, Seidel, & Ehrler, 1997; Solberg & Ander-

sen, 1994).

A problem for optical images, and also microwave

images, occurs in forested regions. Trees mask parts of

the snow-covered ground, as well as contribute to the

satellite-measured radiance. To improve the mapping of

snow in forests, the effects of trees should be accounted

for, otherwise, the snow cover may be underestimated in

forested areas, as has been observed with the Norwegian

Linear Reflectance-to-Snow-Cover algorithm (Solberg et

al., 1997). A few studies have particularly focused on

handling the forest problem for snow-cover mapping

(Klein, Hall, & Riggs, 1998; Metsämäki, Vepsäläinen,

Pulliainen, & Sucksdorff, 2002). It has been demonstrated

that snow in forests is mapped with lower precision than in

non-forested areas using the Moderate Resolution Imaging

Spectroradiometer (MODIS) snow mapping algorithm

(Hall, Foster, Salomonson, Klein, & Chien, 2001) and a

linear interpolation method (Metsämäki et al., 2002). An-

other promising approach for estimating subpixel snow

cover is spectral unmixing (Nolin, Dozin, & Mertes,

1993; Painter, Roberts, Green, & Dozier, 1998; Rosenthal

& Dozier, 1996). These spectral unmixing studies have

included snow-covered mountains and some forested areas,

but have not specifically investigated different forest types

(tree species, densities).

The objective of study is to develop a method suitable for

snow-cover monitoring of forested areas. The method is

based on a generalized reflectance model for snow-covered

forests, which is reviewed here (Vikhamar & Solberg, 2003;

Vikhamar, Solberg, & Seidel, in press). Snow-cover fraction

of a pixel is estimated by constrained spectral unmixing of

two Terra MODIS images (4 May 2000 and 7 May 2001)

covering a forested area in southern Norway. A map with

land-cover fractions, derived from a Landsat Enhanced

Thematic Mapper Plus (ETM+) image, is used during the

spectral unmixing to identify each pixel’s endmembers (term

used in spectral mixing modelling literature, referring to the

‘‘pure’’ spectral classes in a pixel), and to set area constraints

on the forest endmembers of the pixel. ETM+ images,

acquired on the same days as the MODIS images, serve to

validate the estimated snow-cover fractions. Results are
presented thematically for non-forested areas, deciduous

forests, coniferous forests and mixed forests of both full

and patchy snow-covered situations.
2. A method for mapping the snow cover in forests

(SnowFrac)

First, the generalized reflectance model for forests (gen-

eralized SnowFor) is reviewed. Secondly, it is described how

the snow-cover fraction within a pixel is estimated using

constrained linear spectral unmixing and a land-cover frac-

tion map (Fig. 1). This procedure is referred to as the

SnowFrac method.

2.1. A generalized reflectance model

Reflectance modelling is helpful to improve the under-

standing of the satellite-measured radiance from snow-cov-

ered forests. Therefore, a linear spectral mixture model

(SnowFor) for snow, individual tree species (birch, pine

and spruce) and snow-free ground as well as three physically

based submodels to SnowFor (BirchMod, ShadMod and

DiffusMod) are developed in earlier work (Vikhamar &

Solberg, 2003). BirchMod estimates the transparency of

leafless birch trees based on the density of branches. This

is to account for the spectral contribution of snow/ground

below individual birch trees. As opposed to leafless birch,

tree crowns of spruce and pine are assumed opaque. Shad-

Mod accounts for cast shadows on the snow surface caused

by single trees on flat terrain. Different approaches are

developed for spruce/pine and leafless birch. DiffusMod

models shielding of the viewable sky hemisphere caused

by tree crowns, as seen from the snow surface. This is to

account for reduced diffuse irradiance onto the snow surface,

as a consequence of the reduced viewable sky hemisphere.

Generally, these submodels are based on modelling single

trees within a pixel, and therefore need information about

individual trees (species, height, location) and the tree

density. For practical applications (snow-cover monitoring),

this kind of data set is generally not available, and therefore a

generalized linear spectral mixture model for snow-covered

forests (referred to as generalized SnowFor), which uses

appropriate available data as model input, is needed. The

generalized SnowFor is derived by scaling up the model

from single-tree scale to forest scale. Based on the experi-

ences from the earlier work generalizations are made by

keeping important factors, and excluding less important

factors, with respect to spectral influence on the satellite-

measured radiance. The generalized SnowFor model is

described as:

R̂ ¼ ACRC þ ABRRBR þ ASWRSW þ ABGRBG; ð1Þ

where R̂ is the modelled pixel reflectance for a given

wavelength k and AC +ABR +ASW +ABG = 1.



Fig. 1. Flowchart for the SnowFrac method, showing input data and algorithm for estimating snow-cover fraction. The land-cover fraction map is used for

selection of spectra for each pixel, as well as setting constraints on the area fractions of conifer and deciduous trees.

Fig. 2. BirchMod is applied for generating a land-cover fraction map. Branch

fraction, ABR, is estimated by vertically projecting leafless deciduous trees

onto the ground, using tree height as input to an empirical model (Vikhamar

& Solberg, 2003). Average tree height is used for the deciduous forest.
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The subscripts C and BR refer to conifer and branches of

leafless deciduous trees, respectively, while the subscripts

SW and BG refer to snow and bare ground, respectively. To

observe consistency, the same notation is used as in the

earlier work (Vikhamar & Solberg, 2003; Vikhamar et al.,

in press).

The generalizations are summarized as follows:

1. A single component describes conifer, since spruce and

pine are rather similar in both the shape of their spectra

and the natural reflectance variabilities. These observa-

tions were seen in spectra of pine and spruce tree crowns

measured in the field (Fig. 7 in Vikhamar & Solberg,

2003).

2. A single component for branches describes any leafless

deciduous tree species.

3. To reduce the amount of necessary input data, forest

characteristics are represented by average values rather

than information about individual trees within pixels.

BirchMod, which models the leafless branch fraction, is

kept for the generation of a map with land-cover

fractions. The leafless branch fraction is derived by

projecting branches of trees vertically on the ground

using an empirical model with average tree height as

input data (Fig. 2).

4. Effects of diffuse radiation for the snow surface (cast

shadows from trees, shielding of the sky hemisphere by

trees) are treated by the snow spectrum through the use of
multiple spectra for snow instead of explicit modelling of

individual effects. Hence, both the ShadMod and the

DiffusMod submodels are excluded due to their need for

single-tree information as model input.

5. Effects of diffuse radiation for the conifer tree crowns are

accounted for by using training areas with dense

coniferous forest to determine the conifer spectrum.

6. Radiometric terrain effects for snow are accounted for by

using multiple snow spectra. Terrain effects are larger for

snow than for coniferous forests (Vikhamar et al., in

press). Therefore, multiple spectra are applied for the

snow component, but not for the conifer component.

(Vikhamar et al., in press) found strong correlations

between topography and land-cover specific reflectances

using 30-m resolution Landsat TM images. A prelimi-

nary test with the MODIS images covering the study area

in this work showed that 500-m resolution was too coarse



Fig. 4. Land-cover map derived from the 7 May 2001 Landsat ETM+ image (30-m resolution, UTM coordinates). The categories are rough estimates of the

coverage of conifer and mountain birch. The table shows the area coverage of each category within the study area.
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Fig. 3. Digital elevation map of the Gålå –Kvitfjell region in southern Norway (UTM coordinates). Meteorological stations are marked: (1) Skåbu (890 masl);

(2) Espedalen (752 masl); and (3) Kvitfjell (1030 masl).
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Fig. 5. A 500-m resolution land-cover fraction map was derived from the 30-

m resolution Landsat ETM+ land-cover map in Fig. 4. For each pixel, the

derived map contains area fractions of conifer, branches of leafless deciduous

trees, non-forested area and lake.

Table 2

Overview of the constraints regarding the spectra selection and the area

fractions for the spectral unmixing experiments A–F

Experiment Land-cover

map selected

Forest fraction

constraints

Multiple

snow
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to find the same functional relationships by a simple

illumination-terrain modelling approach. Therefore, mul-

tiple snow spectra are used instead of explicit modelling

of terrain effects.

2.2. Snow-cover fraction estimation by constrained spectral

unmixing

Since the generalized SnowFor model is a linear spectral

mixture model, the snow-cover fraction of a pixel can be

estimated by linear spectral unmixing of multispectral data

(e.g., Adams, Smith, & Johnson, 1986). Spectral unmixing,

also called mixture decomposition, has been applied for

subpixel mapping of land-cover types in different environ-

mental applications including snow-cover mapping (Nolin et

al., 1993; Painter et al., 1998; Rosenthal & Dozier, 1996).

The observed pixel reflectance R for a given wavelength or

spectral band k is modelled as: Rk = R̂k + ek, where R̂ is the

modelled pixel reflectance from a spectral mixture model

(here the SnowFor model) and e is the residual error, which
represents the unmodelled portion of the observed reflec-

tance. Hence, for a satellite image consisting of m spectral

bands (k = 1, 2, . . ., m), we get m equations for each pixel.

This equation system can be rewritten in vector notation as:

r ¼ Eaþ e; ð2Þ

where r contains the observed pixel reflectance form spectral

bands, a represents the unknown area fractions of n end-

members, E is an m� n matrix representing n endmember

spectra for m spectral bands and e is the residual vector for m
spectral bands. As there are more equations than unknowns

(m>n), the equation system is overdetermined. Hence, for

each pixel, the overdetermined equation system is solved for

x using the least squares method to minimize the errors e. The
practice of using model constraints during the unmixing

varies in the literature. Common constraints are that the

endmember fractions either sum to 1 or be nonnegative and

sum to not more than 1 (Rosenthal & Dozier, 1996). The first

approach allows both negative area fractions and single area

fractions exceeding 1, which is not physically meaningful.

To give a physical sense, the area fractions must be in the

interval of 0 to 1, and should also be constrained to sum to

one. In this work, it is focused on benefiting from using a

land-cover map, which particularly contains fractional oc-

currence of each the forest endmembers within a pixel. In

this way, the land-cover fraction map is prior information,
Table 1

Two sets of nearly simultaneously acquired Terra MODIS (MOD02HKM)

and Landsat ETM+ (177/19) images were used in the analysis

Satellite image Date Time

(GMT)

Solar

elevation

Terra MODIS 04–05–2000 11:10 44.4

Landsat ETM+ 04–05–2000 10:29 43.7

Terra MODIS 07–05–2001 11:05 45.2

Landsat ETM+ 07–05–2001 10:27 44.4
which enable setting constraints on the forest area fractions

of a pixel. The bounded variables least-squares algorithm by

Stark and Parker (1995) allows setting different constraints

on each of the endmember fractions, and was therefore

applied for the mixture decomposition.

blVaVbu; ð3Þ

bl and bu are the lower bounds and upper bounds of the

vector a. Hence, the main idea studied here is twofold (Fig.

1). A prior generated land-cover fraction map is first used for

identifying endmembers within a pixel. As a consequence,

the number of endmembers, and therefore also the spectra,

vary from pixel to pixel. Secondly, for pixels containing

forests, the land-cover fraction map is used to set constraints

on the area fractions of conifer and leafless branches during

the unmixing calculation. Other area fractions are set to vary

between 0 and 1. Since the algorithm of Stark and Parker

(1995) does not contain a sum constraint, the area fractions

are normalized based on the fraction sum. The overall aim of

using a land-cover map is to reduce the number of unknown

variables in the equation system, and thereby improve the

estimation of the snow-cover fraction.
3. Study area and data set

A study area of 56� 50 km surrounding the Gålå–

Kvitfjell mountain region located 10 km north of Lille-

hammer city in southern Norway was selected for the experi-

ments (Fig. 3). The area covers deep valleys as well as
spectra spectra

A No No No

B Yes No No

C Yes Yes (ABR, AC) No

D Yes Yes (ABRF 0.1,

ACF 0.1)

No

E Yes Yes (ABR, AC) Yes

F Yes Yes (ABRF 0.1,

ACF 0.1)

Yes

All other area fractions within a pixel vary between 0 and 1.

Yes/No: description of area fraction constraint.



Fig. 6. MODIS spectra (4 May 2000) of snow and dense coniferous forests showing the large reflectance variability of snow as compared to coniferous forests.

Average and one standard deviation snow spectra were calculated from this data set. The table describes spectral characteristics of the MODIS channels 1–7.

Fig. 7. Endmember spectra used in the spectral unmixing experiments: (a) 7

May 2001; and (b) 4 May 2000.
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rounded mountain plateaus and has large variety in forest

cover density (Fig. 4). The vegetation pattern is characteristic

for the altitude differences in the region. Agricultural areas

and rivers are located in the valley bottoms. Dense spruce

forests cover the lower part of the valley sides, with a

transition to sparse spruce forests mixed with mountain birch

in the higher parts. On the mountain plateau, scattered

mountain birch is common, while the highest areas are

non-forested. Minor areas are covered with pine forests

and other deciduous tree species.

Two Terra MODIS scenes (MOD02HKM: level-1b cali-

brated, geolocated radiances, channels 1–7, 500� 500 m

spatial resolution) were selected for the analysis (Table 1).

There was full snow coverage on 7 May 2001 apart from

some snow-free valleys, while on 4 May 2000, the snow

coverage was thin and patchy. Both dates were characterized

by melting snow. Equal weather conditions were observed

on both dates at meteorological stations located in the test

area (Fig. 3): no clouds, high visibility and air temperatures

of 10.8 jC (4 May 2000) and 10.9 jC (7 May 2001)

measured at 12 h GMT in Skåbu (890 masl), and air

temperatures of 7.2 jC (4 May 2000) and 8.2 jC (7 May

2001) at 11 h GMT in Kvitfjell (1030 masl). No snow was

observed in Skåbu on 4 May 2000, while 37-cm snow depth

was measured on 7 May 2001. Snow-cover validation data

consisted Landsat ETM+ images (30� 30 m spatial resolu-

tion for channels 1–5, 7) acquired the same day as the

MODIS images. Additionally, snow spectra and snow

parameters (grain size, density, temperature, liquid water

content) were measured on several locations in the study area

and in Heimdalen (test site for other experiments located 30

km from the study area) during field campaigns on 6 and 7

May 2001. Spectra were measured with a portable FieldSpec

spectroradiometer (350–2500 nm, 2151 channels).

Image preprocessing consisted of geometric correction

and radiometric calibration. The MODIS calibrated radiance

values (level 1b) were converted to top-of-atmosphere re-

flectance (Bruce Berriman & Rogers, 2000). The geocoding



Fig. 8. The illustration shows (in percentage): (a) observed snow-cover fractions; and (b) modelled snow-cover fractions. For forested areas experiment C is

presented, while for non-forested areas experiment B is shown. The snow-cover fractions do not include snow below trees. Pixels including lakes are not

evaluated.
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in the meta-data of the MODIS images was improved using

the orthophotocorrected Landsat ETM+ images. Optimized

coregistration was estimated through an iterative process

consisting of: (1) resampling the ETM+ image from 30- to

500-m spatial resolution, stepwise for each 30 m in the north
Fig. 9. Differences (fraction error) between modelled and observed snow-cover frac

overestimation and blue is model underestimation.
and east directions; and (2) for each resampled low-resolu-

tion ETM+ image, finding the position in the MODIS image

with the highest pixel-to-pixel correlation (Bernstein, Colby,

Murphrey, & Snyder, 1983, p. 881). Finally, the coregistra-

tion with the overall best match was selected.
tions from Fig. 8: (a) 7 May 2001; and (b) 4 May 2000. Red indicates model
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A land-cover fraction map of 500-m spatial resolution

was experimentally generated from the 7 May 2001 ETM+

image, because no suitable land-cover map exists for the

entire study area. The map was made largely in two steps:

(1) classification of 30-m spatial resolution pixels into land-

cover types (Fig. 4); and (2) derivation of land-cover

fractions for 500-m pixels from the 30-m resolution land-

cover map, defined by the optimized coregistration position

(Fig. 5). In the first step, several classification techniques

(unsupervised classification, thresholding, principal compo-

nents) were combined to identify appropriate land-cover

types. Varying forest densities were possible to identify for

30-m resolution pixels when spruce and pine were treated as

a single coniferous class. Therefore, the 30-m land-cover

map contains coarse fractional classes of coniferous forest

(25%, 50%, 75% and 100%). A quantification of mixtures

of coniferous and deciduous forests within 30-m resolution

pixels was not possible, and, therefore, the complementary

part is modelled as non-forested area (bare ground). It is

noteworthy that snow-covered areas with leafless mountain

birch clearly separated spectrally from surrounding open

snow-covered areas. For pixels that were classified as

deciduous forests, the area fraction of branches was esti-

mated by applying the BirchMod model (Fig. 2). A rough

approximation of the average tree height (h = 3.5 m) was

applied to the empirical model ABR = 0.076h + 0.135. This

gives branch area fractions of 0.4 and 0.1 for pixels

classified as dense and sparse deciduous forests, respective-

ly. The 30-m land-cover map was controlled against vege-

tation maps (scale 1:20000) made by the Norwegian

Institute of Land Inventory, which unfortunately covered

only 14% of the study area. The remaining areas were

compared with lower-resolution maps containing a single

forest class only.

A snow-cover fraction reference map of 500-m resolu-

tion was derived from each of the two ETM+ images by a

combination of classification methods. Both supervised

classification and the normalized difference snow index

(NDSI) were applied on the 30-m resolution images. NDSI

was applied with several user-selected thresholds, and not

the thresholds proposed by Hall, Riggs, and Salomonson

(1995). Furthermore, snow-cover fractions were calculated

by aggregating the 30-m resolution images to 500-m reso-

lution images using the optimized coregistration position.

These snow reference maps of 500-m resolution included

the snow below the trees. Therefore, the forest cover was

subtracted from the snow reference maps in order to make

the maps comparable to the direct snow-cover fraction

output from SnowFrac (ASW in Eq. 1). For both dates, the

subtraction was made using the land-cover fraction map.
Fig. 10. Observed and modelled snow-cover fraction (experiment C), in

percentage, for all forest pixels in the test area: (a) 7 May 2001; and (b) 4

May 2000. Linear regression models are displayed.
4. Experiments

The performance of the SnowFrac method (Fig. 1) is

investigated by stepwise introducing constraints to the spec-
tral unmixing of the two MODIS images. In total, six

experiments, A–F, were carried out (Table 2).

Experiment A represents regular linear spectral unmixing

using the predefined selection of spectra for all pixels. In

this study, spectra of snow, ice-covered lake, conifer, birch

branches and snow-free ground are applied. In experiments

B, C, D, E and F, the land-cover fraction map is used to

identify and select endmember spectra for each pixel.

Additional constraints are set on the area fractions of conifer

and leafless branches in experiments C, D, E and F. For C

and E, the forest area fractions are set equal to those in the

land-cover fraction map, while D and F allow flexibility by

letting the forest area fractions deviate by F 0.1.

Multiple spectra for snow are introduced in experiments

E and F. Three different snow spectra are determined from

estimating the average and the standard deviation of pure

snow pixels observed in the two MODIS scenes. The

motivation for using multiple snow spectra is to account
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for the large reflectance variability observed for snow within

a scene (Fig. 6). This variability is caused by spatial

variability in physical snow properties (grain size, liquid

water content), shadow effects, reflectance anisotropy and

impurities on the snow surface. Using average and standard

deviation of observed MODIS spectra accounts for these

factors in an integrated way (see Section 2.1). The three

snow spectra were evaluated for each pixel from calculating

the root-mean-square (rms) of the errors e. The unmixing
Fig. 11. Cumulative line histograms of the error differences (the absolute value of m

C and D for 7 May 2001 (diagrams to the left) and 4 May 2000 (diagrams to the

experiments C and D. The diagrams are presented for pixels containing: (a) all

contains a column histogram (n= number of pixels) of observed snow-cover frac
result with the lowest rms error for a pixel was selected as

the output snow-cover fraction.

All endmember spectra used in the experiments are

shown in Fig. 7. Top-of-atmosphere reflectance spectra for

snow, conifer and ice-covered lake were derived from the

MODIS data. Spectra of birch branches and snow-free

ground were measured in situ, and calibrated to top-of-

atmosphere reflectance based on the ratio of surface reflec-

tance of snow (in situ) and top-of-atmosphere reflectance for
odelled observed snow-cover fraction, in percentage) for experiments A, B,

right). Experiments E and F are omitted due to large degree of overlap with

land-cover types, except lakes; and (b) non-forested areas. Each diagram

tions.
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MODIS snow pixels. Since it is not the intention of this

study to focus on snow-free bare ground, these areas are

handled in a simple way by generating a single ground

spectrum as an average spectrum of grass and soil spectra.
5. Snow-cover mapping results

This section presents the results obtained with the Snow-

Frac method for the Gålå–Kvitfjell study area in southern

Norway. The modelled snow-cover fractions are compared

with the Landsat ETM+ derived snow-cover fractions, for
Fig. 12. The same as in Fig. 11 but for pixels containing: (a) deciduous forests; an

the diagrams to the right represent 4 May 2000.
both 4 May 2000 and 7 May 2001. Maps with modelled

snow-cover fractions are presented in Fig. 8, showing the

same main visual features as the reference maps. Pixels

containing lakes were not evaluated since water-, snow- or

ice-covered lakes are not yet taken into account by the

model. All other forested and non-forested areas are includ-

ed in experiments A and B, while experiments C, D, E and F

solely treat the forested areas. Quantitative evaluation of the

modelling results are presented as: (1) fraction error maps,

calculated as the difference between modelled and observed

snow-cover fraction (Fig. 9); (2) scatter plots of modelled

versus reference snow-cover fractions (Fig. 10); (3) cumu-
d (b) coniferous forests. The diagrams to the left represent 7 May 2001 and
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lated histograms of the modelled fraction errors (absolute

value), presented as percentage of the pixels classified with

certain errors (Figs. 11, 12 and 13); and (4) aggregated

snow-cover area (km2) within the study area (Fig. 14).

These statistical measures are included to show different

aspects of the errors. The results are first presented for the

entire study area aggregated for all land-cover types. Next,

the results are presented for individual land-cover types:

non-forested areas, deciduous forests, coniferous forests and

mixed deciduous/coniferous forests.

5.1. Entire study area

The scatter plots of all forested areas in the study area

show that SnowFrac (experiment C) provides good snow-

cover fraction estimates for both MODIS scenes (Fig. 10). R2

values of the regression models are 0.95 and 0.85 for 7 May

2001 and 4 May 2000, respectively. The regression models

indicate that low snow-cover fractions are systematically

overestimated. The overestimation is most probably caused

by large snow-free areas with mixtures of endmembers,

which are not captured using a single spectrum for snow-

free ground. High snow-cover fractions are better modelled

on 7May 2001 than on 4May 2000, which may be explained

by differences in snow conditions. Compared to 7 May 2001,

the snow extent was much smaller, the snow depth was less

and the snow reflectance was lower (Fig. 7).

Cumulative histograms of the fraction errors (absolute

value, in percentage) aggregated for all land-cover types are

compared for experiments A, B, C, D, E and F (Fig. 11a).

Inquiries among hydrologic end users in Norway have

shown that the users need an accuracy of about 90%. Hence,
Fig. 13. The same as in Fig. 11 but for pixels containing mixed deciduous/conifero

the right represents 4 May 2000.
the users accept up to 10% errors. This is the reason why the

following focuses on errors of 10% and also 20% in the

analysis and in Figs. 11, 12 and 13. On 7 May 2001, less than

10% error was associated with 84% (experiments C and E),

66% (experiment D), 65% (experiment F), 62% (experiment

B) and 55% (experiment A) of all the pixels. Error less than

20% was obtained for 96% (experiments C and E), 90%

(experiments D and F), 85% (experiment B) and 76%

(experiment A) of the pixels. Overall, experiments C and E

provide the best results with the lowest errors, while exper-

iment A gives the largest errors. Similarly, on 4 May 2000,

experiment A is associated with the highest errors. However,

experiments B, C, D, E, and F provide almost equal results,

where 58–63% of the pixels have less than 10% error, and

87–88% of the pixels have less than 20% error.

5.2. Individual land-cover types

5.2.1. Non-forested areas

On 7 May 2001, most non-forested areas were fully snow

covered, while on 4 May 2000, these areas were partly snow

covered (Fig. 11b). Since no trees are present, only experi-

ments A and B are carried out for these areas. On both dates,

experiment B provides better results than experiment A. On

7 May 2001, 87% of the pixels have less than 10% error,

while 98% of the pixels have less than 20% error for

experiment B. On 4 May 2000, the errors for experiment B

are larger, with 50% and 81% of the pixels having less than

10% and 20% error, respectively. The calculated snow

coverage (km2) for non-forested areas in Fig. 14 confirms

the good results of experiment B, while experiment A

generally underestimates the snow coverage. Taking into
us forests. The diagram to the left represents 7 May 2001 and the diagram to



Fig. 14. Comparison of the observed and the modelled snow-covered area

(km2) for each land-cover type in the study area: (a) 7 May 2001; and (b) 4

May 2000. True SCA is the observed snow-covered area, excluding the

snow below the trees. The letters A–F refer to experiments A–F.
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account that only a single bare ground spectrum is applied in

experiment B, these results are quite promising.

5.2.2. Deciduous forests

Full and patchy snow coverage is also validated for

deciduous forests. On 7 May 2001, there was full snow

coverage in 97% of the pixels containing deciduous trees,

while theses areas were partly snow covered on 4 May 2000

(Fig. 12a). As expected, lower errors are associated with full

snow coverage than with partly snow coverage. Experiment

A gives the largest errors on both dates. On 7 May 2001,

experiments C and F provide the lowest errors with 95–96%

of the pixels classified with less than 10% error. Addition-

ally, experiments C, D, E and F result in 99% of the pixels

classified with less than 20% error. On 4 May 2000, only

43–48% of the pixels get less than 10% error, and 78–79%
of the pixels get less than 20% error for experiments B, C, D,

E and F. The aggregated snow-cover area estimates show

that some under- and overestimation occurs for the experi-

ments, except for experiment D, which correctly models the

observed snow coverage (353 km2) on 4 May 2000 (Fig. 14).

5.2.3. Coniferous forests

In the study area, most of the coniferous forests are

located on the lower valley sides and in the valley bottoms.

This location explains why 94% of the pixels covering

coniferous forests were snow-free on 7 May 2001. Similarly,

99% of the coniferous forest pixels were snow-free on 4 May

2000. It is important to note that the coniferous forest

fractions, derived from the land-cover fraction map, covered

all ranges from 1% to 99%. The results are particularly good

on 4 May 2000 with 98% of the pixels classified with less

than 10% error for all experiments; 100% of the pixels have

less than 20% error. On 7 May 2001, the errors are somewhat

higher with 82–86% of the pixels classified with less than

10% errors, and 95–96% of the pixels having less than 20%

errors for experiments B, C, D, E and F. Overall, the

accuracy for snow-free coniferous forests is high.

5.2.4. Mixed forests

The mixed coniferous and deciduous forests constitute a

transition zone between the coniferous forests on the valley

sides and the birch forests on the mountain plateau. In this

zone, considerably less snow is observed on 4 May 2000

than on 7 May 2001 (Fig. 13). Experiments C and E provide

best results on 7 May 2001 with 75% of the pixels having

less than 10% error, and 93% of the pixels having less than

20% error. On 4 May 2000, experiment B provides best

results with 70% of the pixels classified with less than 10%

error and 84% of the pixels classified with less than 20%

error. On both dates, experiment A gives the largest errors.

Most of the experiments overestimated the snow coverage in

mixed forests (Fig. 14).
6. Discussion

This section discusses the classification results from

experiments A–F. Perspectives for snow-cover monitoring

using SnowFrac are also addressed.

6.1. Classification accuracy and error sources

Generally, experiments A–F show that the classification

accuracy gets higher by increasing constraints in the unmix-

ing procedure. The largest improvement occur through the

use of the land-cover fraction map, which is introduced in

experiment B after experiment A. The overall largest error is

obtained for experiment A, which represents traditional

linear spectral unmixing where the same number and types

of endmember spectra are applied for all pixels in an image.

Spectra judged as the most representative for the whole study
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area were applied: snow, conifer, birch branches, lake ice and

bare ground (Fig. 7). The results show that some of the snow-

covered areas are misclassified to lake ice in pixels that do

not contain ice-covered lakes. Such misclassifications are

avoided in experiments B–F, because the endmember spec-

tra are specifically selected for each pixel based on the land-

cover fraction map. The use of a land-cover fraction map

therefore explains the significant improvement obtained for

experiments B–F, compared to experiment A.

Constraints on the forest endmember fractions represent

the common difference between experiment B and experi-

ments C–F (Table 2). Generally, on 7 May 2001, the error

differences in Figs. 11, 12 and 13 show higher classification

accuracy for experiments C–F than experiment B. On 4 May

2000, there are less distinct differences between experiments

B–F. The snow-cover area estimates in Fig. 14 do not show

these characteristics because both areas with underestimated

and overestimated snow-cover fractions are included. Possi-

ble causes to the different results for the two scenes are

unequal snow depth, snow area extent and physical snow

properties.

Most often, experiment C provide best results, closely

followed by experiment E. Generally, the use of multiple

snow spectra in experiments E and F do not further improve

the results of experiments C and D, respectively. The reason

may be that the three snow spectra may not well enough

capture the snow reflectance variability in the forested areas

of the study area, since the snow spectra were derived from

training areas with full snow coverage located above the tree

line. Conditions may be different inside forests. In particular,

accumulation of impurities on the snow surface may be

larger in coniferous forests and mixed forests as compared

to deciduous forests or non-forested areas (Melloh, Hardy,

Davis, & Robinson, 2001). Impurities affect the snow

reflectance, particularly in the visible wavelengths; an effect

that was modelled by Warren and Wiscombe (1980) and

recently measured by Melloh et al. (2001). Similarly, phys-

ical snow properties may have been different inside the

forests than at the training areas, and variability in both

liquid water content and grain size affects the snow reflec-

tance (Dozier, 1989; Warren, 1982; Wiscombe & Warren,

1980).

There are also general error sources that concern all the

experiments. The generalized SnowFor model, which is a

linear spectral mixture model, assumes the spectral contri-

bution to be proportional to the area extent of an endmember,

and independent of its location within a pixel. Non-linear

effects are likely to occur for some of the endmembers, and

these effects should be investigated in the future. Currently, a

linear model is used as an approximation.

For any subpixel analysis combining different image

sources, the geometric coregistration of the data is crucial

for the investigations. In this analysis, it was focused on

obtaining high-accuracy coregistration between the MODIS

and the ETM+ images. However, some geometric distortions

may remain. Another general error source is related to the
assumption of equal atmospheric conditions on the two

dates. This assumption is based on meteorological observa-

tions on the two dates, showing similar air temperatures,

relative humidity and visibility in the study area.

6.2. Perspectives for snow-cover monitoring

Is the SnowFrac method suitable for operational snow-

cover mapping? Monitoring makes other demands on a

method as compared to a method aimed for environmental

process studies. In general, a method aimed for monitoring

ought to be simple, automatic and robust. Does SnowFrac

fulfill these requirements?

The simplicity of a model is characterized by its number

of variables, its need for input data as well as the availability

of the input data. SnowFrac uses a linear mixture model,

which is generalized to require a land-cover fraction map and

endmember spectra in addition to the optical satellite image

to be analyzed. MODIS images from the Terra and Aqua

satellites are currently best suited for monitoring due to daily

coverage, large number of channels and moderate spatial

resolution. A spectral library may store endmember spectra

of leafless branches and bare ground, while spectra for snow

and conifers may be retrieved from the satellite image using

selected training areas. Provided it is not already available, a

land-cover fraction map may have to be generated for a new

area. Primarily, SnowFrac is developed for local and region-

al snow-cover mapping. Global snow-cover mapping may be

more challenging due to poor availability of global land-

cover maps of high accuracy. For SnowFrac, the land-cover

map is the key source to identify and select endmembers for

a pixel.

Automatic processing is considered important when a

model is run routinely on large data sets. In this work,

preprocessing of the MODIS images were carried out

manually to optimize the data set and the output results.

However, geometric correction can be made automatically

by correlation matching techniques and orbital modeling

(Huseby & Solberg, 1998). Rather simple methods for

atmospheric correction exist, which are based on informa-

tion in the image itself without needing additional atmo-

spheric measurements (Song, Woodcock, Seto, Lenny, &

Macomber, 2001). Calibration to surface reflectance is

needed when endmember spectra from a library are applied

on images acquired at different times. A measure of the

modelling error (root-mean-square) for a pixel is computed

by the spectral unmixing algorithm. This rms error not only

represents the accuracy of the snow-cover fraction estimate,

but also indicates the representativity of the applied end-

members. Large rms errors may indicate less representative

endmembers. The representativity of the endmembers may

also be explored through an unconstrained spectral unmixing

approach. Negative endmember fraction values may be an

indication of missing endmembers.

The robustness of a model includes the reliability and the

accuracy of the resulting output data. Presently, SnowFrac
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has only been evaluated for two different scenes of the same

study area. The results are promising, but considerably more

validation is needed to evaluate the method. Therefore, a

simple snow monitoring system for forests may be set up for

evaluation purposes by regularly mapping a few selected

test areas, where meteorological observations and in situ

snow surveys are available as validation data.

The land-cover fraction map makes SnowFrac flexible

for application. For hydrological applications, an estimate of

the total snow-cover area, including the snow below trees, is

required. For the energy balance in climate models, an

estimate of the area extent of snow between the trees may

be of higher interest than information about the snow below

trees. SnowFrac fulfills these requirements through an

assumption made for the snow below trees for the two cases

(Vikhamar & Solberg, 2003): (1) full snow coverage; and (2)

patchy snow coverage. When full snow coverage is observed

around the tree crowns, snow is also assumed present below

the trees. When snow-free areas are observed between trees,

completely snow-free areas are assumed below the trees. A

simple criterion may be introduced to judge whether the

areas below the trees should be included in the final

modelled snow-cover fraction of a pixel. This criterion

consists of summarizing the snow-cover fraction resulting

from the unmixing procedure and the forest fractions for a

pixel (ASW + AC + ABR). If the sum equals 1, full snow

coverage is assumed, and, thus, the total pixel area is

counted as snow covered. If the sum is less than 1, patchy

snow coverage is assumed and ASW is the resulting snow-

cover fraction. This shows an additional advantage of

applying a land-cover fraction map in the snow-cover

mapping algorithm.
7. Conclusions and future work

In this article, a method for mapping the snow cover in

forests is presented (SnowFrac). The method uses a linear

spectral mixture model including endmembers for snow,

conifer, branches of leafless deciduous trees and snow-free

ground. SnowFrac estimates the snow-cover fraction of a

pixel by spectral unmixing and endmember constraints. A

land-cover fraction map is applied in the unmixing process

to: (1) identify the number and types of endmembers for a

pixel; and (2) set constraints on the area fractions of the

forest endmembers. This reduces the number of unknowns in

the equation system and should thereby improve the result-

ing snow-cover fraction estimate.

SnowFracwas tested on Terra MODIS images (500� 500

m spatial resolution, channels 1–7) from 4 May 2000 and

7 May 2001 of the Gålå–Kvitfjell study area in southern

Norway. Snow-cover fractions were estimated from the

MODIS images and compared with Landsat ETM+ de-

rived snow-cover fractions. Six experiments were carried

out (Table 2), each with different endmember constraints

(no endmember constraints, land-cover map selected end-
members, forest fraction constraints and multiple snow

spectra).

The results demonstrate that the snow-cover fraction

estimates are enhanced by increasing constraints introduced

to the unmixing procedure. Largest improvement occurs

when endmembers are selected for each pixel based on the

land-cover fraction map. The classification accuracy includ-

ing both forested and non-forested areas shows that 96% of

the pixels are classified with less than 20% error (absolute

units) on 7 May 2001. The corresponding figure for 4 May

2000 is 88% of the pixels. For the forested areas, linear

regression models of observed and modelled snow-cover

fractions result in R2 values of 0.95 and 0.85 for 7 May 2001

and 4 May 2000, respectively. Largest errors are obtained for

the experiment representing traditional linear spectral

unmixing using the same number and types of endmember

spectra for all pixels.

The results of this study are quite encouraging for further

developing SnowFrac. Therefore, more evaluations should

be carried out, as well as quantitative comparisons with other

snow-cover mapping methods. SnowFrac fulfills some of the

requirements for a mapping method aimed for monitoring.

Further research should focus on enhanced modelling of

snow-free ground. One approach is to improve the land-cover

fraction map by including appropriate spectral ground classes

for each pixel, and combine with a library of endmember

spectra describing the temporal evolution of each class.
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