

Carnival
An Application Framework for Enforcement of Privacy Policies

Ragni R. Arnesen, Jerker Danielsson, and Bjørn Nordlund

Abstract—This paper presents Carnival, a framework

providing privacy access control and audit functionality to
application developers. Carnival enforces privacy policies that
regulate access based on the action requested, the identity and/or
roles of the requesting user, the purpose of the access, the
identity and preferences of the data subject associated with the
data, and the type of personal data to be accessed. A description
of our implementation of Carnival in Java, and an outline of how
to develop and deploy applications using this framework, is
provided.

Index Terms—Access control, Privacy, Privacy policy

enforcement.

I. INTRODUCTION
The presence of extensive data collection and processing

capabilities threatens the privacy of individuals and
organizations. However, the inherent privacy intruding effect
of these collection and processing practices can be
substantially reduced.

Data collectors should analyze their current collection
practices and evaluate the types and amount of data collected,
whether the collection is “needed and worth it” and whether
pseudonymized data or less granular data is sufficient for the
purposes of the data collection. (See e.g. Hansen and
Pfitzmann [11] for a definition of pseudonymity.)
Furthermore, under some circumstances it is possible to let the
data subject, i.e. the person whose identity is, or may be,
connected to the data, remain in control over her personal data
by letting her control the transformation between pseudonym
and identifier. That is, the data subject controls the keys that
unlock the pseudonyms.

However, there are circumstances where processing of
identifiable personal data is both useful and necessary. For
example, medical data must be collected and processed within
the hospital sector, and banks need personal data to evaluate

customers’ credit. In other cases, processing of personal data
(possibly pseudonymized) is not strictly necessary, but may be
of benefit to both data collector and data subject. An example
of such a case is the possibility for a data collector to
customize offers to the data subject based on her interests,
history, and current context, e.g. location.

Manuscript submitted August 2, 2004. The work presented in this paper is

fully funded by the Norwegian Research Council through the research project
“Personalized Internet-Based Services and Privacy Protection.”

R. R. Arnesen is with Norsk Regnesentral (Norwegian Computing Center),
P.O.Box 114 Blindern, NO-0314 Oslo, Norway (phone: +47 22852565; fax:
+47 22697660; e-mail: Ragni.Ryvold.Arnesen@nr.no).

J. Danielsson, is with Norsk Regnesentral (Norwegian Computing Center),
P.O.Box 114 Blindern, NO-0314 Oslo, Norway (e-mail:
Jerker.Danielsson@nr.no).

B. Nordlund is with Norsk Regnesentral (Norwegian Computing Center),
P.O.Box 114 Blindern, NO-0314 Oslo, Norway (e-mail:
Bjorn.Nordlund@nr.no).

In any case, as long as the personal data is not anonymized,
its use needs to be regulated. This paper proposes an
automated mechanism for mandatory enforcement of privacy
promises given to customers.

A. Motivation
The data subject whose personnel data is collected and

stored usually has little control over its usage. The notion of
privacy when personal data is collected implies some form of
trust in the data-collecting entity, but this trust is not
necessarily extended to its employees. There is thus a need for
privacy protection mechanisms to enforce the privacy
promises made by data-collecting organizations to data
subjects (e.g. customers).

Furthermore, privacy is very subjective. Different people
have different opinions of what is privacy intrusive and what
is not, and also on whether an entity is trustworthy or not. In
other words, people have different privacy preferences, and
should be allowed to express these preferences and have them
respected. For an organization having thousands of customers
with different privacy preferences, automated solutions for
privacy enforcement are necessary.

A system for automated and mandatory enforcement of
privacy policies would provide a tool for organizations to
enforce the privacy promises given to customers. The
implementation of such a system in an organization may
contribute to the establishment of trust, and allow individual
preferences to be taken into account.

This paper presents Carnival, a framework which, when
integrated with applications, provides both access control
regulated by privacy policies, and audit functionality to ensure
accountability.

Carnival provides functionality for proactive and reactive
control to ensure that the purpose of each access corresponds
to the purpose stated when the data was collected. It provides
a tool for organizations to ensure that their privacy promises
are enforced and not breached by individuals associated with
the organization.

B. Outline
Section II presents some related work in the area of privacy

access control. How privacy access control differs from
“traditional” access control is discussed in section III. Then, in
section IV the functionality needed in a framework like
Carnival is explored. How this functionality is provided by
Carnival is discussed in section V, and section VI explains
how Carnival is configured and used. Finally, section VII
provides some closing remarks.

II. RELATED WORK
In [7] Fischer-Hübner presents a formal task-based privacy

model for enforcement of privacy policies and its
implementation. The central idea is to control access to
personal data through strict control of the tasks users perform.
In this setting, a task consists of a set of allowed
transformation procedures. Access to personal data is only
granted if it is necessary for the task, the user is authorized for
the task, and the purpose of the task corresponds to the
purpose stated when the information was collected, unless the
user has consented to the new purpose.

Karjoth and Schunter present a privacy policy model for
enterprises in [10]. They create a privacy control language that
includes, among others, user consent, other conditions, and
obligations. The policy model allows administration of the
system authorizations to be distributed e.g. between a privacy
officer and a security officer, while guaranteeing separation of
duty.

IBM has developed Declarative Privacy Monitoring (DPM)
[5]. DPM is a Java library for adding privacy access control
and auditing functionality to J2EE web applications, and
hence it can only be applied to applications running in a J2EE
context. In contrast, our implementation of Carnival works
with plain Java applications. Like Carnival, DPM provides
access control based on the action requested, the identity/role
of the requesting user, the purpose of the access, the identity
and preferences of the data subject associated with the data,
and the type of personal data to be accessed. However, DPM
does not include any functionality for communicating the
current task (i.e. purpose) to the user or functionality for the
user to override the current task.

In [2] we present a framework for enforcement of privacy
policies. Here we give a description of the functionalities that
are necessary to enforce privacy policies and legislation. In
the context of this framework Carnival implements the
Reference Monitor and it provides a tool for generating the
logs that are analyzed by the components of the Monitoring
element.

The Hippocratic Database concept is introduced in [1]. It is
argued that future database systems should include
functionality for protecting the privacy of the data they store.
A strawman design for such a database is presented. The
design outlines, among others, how queries on the data in the
database is regulated according to policy and how information
about performed queries are logged.

One main difference between the proposed solutions is at
which layer the privacy access control logic is applied. The

purpose of an access is easiest determined at the layers closest
to the user, whereas the personal data accessed is easiest
determined at lower layers. DPM, like Carnival, implements
access control in the data layer of the application and
determines the purpose of access in higher layers. The
Hippocratic Database implements access control in the
database layer, and the implementation of Fischer-Hübner’s
privacy model implements access control in the operating
system layer. These two last solutions require applications to
propagate the purpose of accesses to the database and the
operating system, respectively.

III. PRIVACY ACCESS CONTROL
Access control forms a necessary basis for enforcement of

privacy, but it is important to realize that privacy access
control is different from “traditional” access control. This is
mainly for two reasons.

First, the purpose of data access is important. When
personal information is collected, the purpose of the collection
must be stated. If a subsequent request for access to the
information is made, the purpose of the information access
must correspond to the purpose stated when the information
was collected. Using the information for other purposes
should not be allowed unless the data subject consents, or
there is a legal right (or obligation) to do this. These principles
can be found in the OECD guidelines [12], and are important
in most enacted privacy legislations (e.g. EU Directive [6]).
The stated purpose of accesses is up to the discretion of the
user and therefore audit is necessary to detect misuse through
false purpose statements.

Second, access to personal information could lead to
obligations that must be addressed. For example, legislation
may require that a person should be notified when someone
runs a credit check on him, or one may be required to delete or
depersonalize information after a given period of time. In
many cases, it is not possible to check that the obligations are
fulfilled before information access is granted. Hence, proper
workflow control and audit of system behavior are crucial to
ensure that obligations are indeed fulfilled as required.

Privacy access control is regulated by the rules of a privacy
policy. An example of such a rule written in plain English is:
“An insurance agent (role) may read (action) information
about my financial situation and living conditions (data type)
if he uses it to offer me a tailored insurance package
(purpose), provided that I am notified (obligation)“. Such
rules may be written in a machine-readable policy language,
e.g. EPAL [3], for automated evaluation by a rule engine.

Carnival regulates access based on the current purpose of
the user. Privacy policies, and the purpose statements they
contain, may be rather abstract to be manageable and
accessible to humans. Computer applications are generally
only aware of what the user wants to do (i.e. the requested
operation), not why (i.e. for which purpose). To automatically
enforce abstract policies the stated purposes may have to be
refined into more concretely defined purposes and these

purposes can be associated with the operations of the
application.

If individual preferences are to be taken into account, there
will be one set of policy rules for each individual in addition
to the organization’s policy. Thus, the identity of the data
subject whose data is requested must be taken into
consideration when determining which policy rules to
evaluate against the access request. In addition, there may be a
need to retrieve and evaluate different types of context
information, such as access history, time of day, current
location of the data subject, or whether or not a specific
relation exists between the user and the data subject. This
contributes to the complexity of implementing privacy access
control.

IV. REQUIREMENTS
This section explores some important requirements that

apply to privacy access control mechanisms. The subsequent
sections describe how Carnival meets these requirements.

To be able to evaluate access requests against a privacy
policy, the following information must be retrieved for each
access request:

• The identity and/or roles of the user who wants to
access the data.

• The action requested on the data.
• The purpose of the access.
• The type of data requested.
• The identity of the data subject.
The identity of the data subject is needed to identify the

data subject’s individual policy, which formalizes the user’s
choices, consents and conditions. Note that this identity may
be a pseudonym.

Additionally, it may be necessary to provide other
information to evaluate deployment specific conditions. For
example, the policy of a pharmacy might state that a
pharmacist may only access prescriptions if the data subject of
the prescription is present (e.g. proven by inserting a smart
card into a reader). In this case the location of the data subject
is also needed to evaluate access requests.

The access control mechanism must obviously include
logic, or connect to logic, for evaluating access requests based
on the information above. This evaluation logic should be
easily replaceable; it should be possible to plug in evaluation
logic implementing different access control models and
supporting different policy languages.

Further, plug-ins for executing different types of
obligations should be supported. Obligations that should be
supported are obfuscation (e.g. making the data less granular)
and pseudonymization of data before access is granted.

In addition, the access control mechanism should guarantee
that the user and access control mechanism have the same
understanding of what the user’s purpose is. It is important to
ensure that a user cannot make the case that he or she was
accessing the data for another purpose than the one registered
by the access control mechanism.

Finally, to ensure flexibility, the policy-based access control
mechanism should be kept separate from the application code.
The access control mechanism should not make any
assumptions that the application in any way restricts access to
personal data.

V. CARNIVAL
Carnival intervenes in the execution of the application when

users access personal data. The central privacy-enforcing
element of Carnival is the Privacy Manager that protects data
objects containing personal data in the application. In Carnival
terminology such objects are called personal data objects.

The Privacy Manger can be seen as a container. Data in this
container is privacy protected; data outside this container is
not. Objects inside this container are called privacy-managed
personal data objects (or just managed objects).

The Privacy Manager intercepts both before and after
access to the personal data in managed objects. Before access,
logging and access control is performed. After access, logging
and obligation execution is performed. The Privacy Manager
can be integrated with the application using a number of
different techniques. In the current version of Carnival,
Dynamic Proxies1 are used. Another alternative could have
been to use Aspects2.

Figure 1 Overview of Carnival

A. Architecture
Carnival consists of the Carnival Framework and the Carnival
Server (see Figure 1). The Carnival Framework is integrated
into applications and it uses the services of the Carnival
Server in the enforcement of the privacy policy of the
organization.

The Carnival Framework is made up of the Privacy
Manager, a number of services (rectangles in Figure 1), and
optional developer- and deployer-supplied plug-ins (rounded
corners in Figure 1).

1 See http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
2 See http://en.wikipedia.org/wiki/Aspect-oriented_programming

http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
http://en.wikipedia.org/wiki/Aspect-oriented_programming

The Privacy Manager intercepts and collects information
about access requests to personal data in managed objects.
The Privacy Manager uses Data Subject Finder plug-ins to
retrieve the identity of the data subjects whose personal data is
requested.

The Rule Engine evaluates access requests on behalf of the
Privacy Manager. The Rule Engine used by the current
version of Carnival evaluates EPAL policies. It is possible to
replace this Rule Engine with other implementation possibly
supporting other access control models (e.g. Chinese Wall [4])
and/or policy languages. In the work of evaluating an access
request the Rule Engine may call one or several Condition
Evaluator plug-ins.

Accesses may result in obligations. These obligations are
interpreted by the Obligation Router and handed off to the
appropriate Obligation Executor plug-in.

Audit logs are created by the Logger service. It receives
information about access requests and accesses to managed
personal data objects from the Privacy Manager and
constructs log records according to the log policy.

Finally, the Purpose Selection service implements logic for
determining users’ current purposes. A method for
determining a user’s current purpose is presented in section
V.E.

The Carnival Server consists of:
• A Management interface, for managing organization

policy (vocabularies, privacy policies, and log policies)
and application configuration (links to user directory,
purpose rules, and privacy metadata descriptor).

• A Repository, providing the Carnival Framework
access to configuration and policy.

• A Purpose service, which stores users’ current
purposes. A central Purpose service enables the
purposes of users to be determined based on their
actions in different applications.

• A Log service, which receives and accumulates the
logs created by the Logger.

Carnival enforces privacy policies that regulate access
based on the action requested, the identity and/or roles of the
requesting user, the purpose of the access, the identity and
preferences of the data subject associated with the data, and
the type of personal data to be accessed. This information is
application independent. Hence, unfavorable coupling of
policy and applications is avoided. The same organization-
wide policy can be applied to all applications without any
adaptation to the policy.

The Carnival Server leverages this decoupling between
policy and applications by providing central management and
integration of policy enforcement in applications. It offers a
default implementation of the services that are needed by the
Carnival Framework. This reference implementation may be
replaced with other solutions implementing the interfaces and
services required by the Carnival Framework.

B. Execution flow
Carnival regulates access to get and set methods3 in

managed personal data objects. Carnival requires that all
access to personal data contained in personal data objects goes
through get and set methods.

When data in a managed object is requested the Privacy
Manager derives the action requested from the method called
and retrieves the purpose and roles of the requesting user from
the Carnival Server.

The Privacy Manager also retrieves information about the
data subject and the data types of the data to be accessed. This
information is collectively termed privacy metadata.

All this information is passed on to the Rule Engine that
determines which policy to evaluate the request against. If an
individual policy is available, it is used. Otherwise, the default
local policy is used.

If the policy contains conditions these are evaluated by
Condition Evaluator plug-ins. Condition Evaluators receive
information about the access request (user, data subject, etc)
from the Rule Engine. If the Condition Evaluator needs other
information for evaluating the condition the Condition
Evaluator retrieves this information from the application or
some external information source.

The Rule Engine may decide that the user is denied access
or, alternatively, that the access is granted. If access is denied,
an exception is thrown, which the application should take
appropriate actions to handle, e.g. roll back transactions
and/or provide a message to the user.

The Rule Engine may associate the grant to access with one
or several obligations, as determined by the applicable policy.
If so, the obligations are passed on to the Obligation Router
by the Privacy Manager. The Obligation Router routes the
individual obligations to the correct Obligation Executor
instances.

There are two types of Obligation Executors: synchronous
and asynchronous. Synchronous Obligation Executors block
until a result is returned. The Rule Engine may, for example,
demand that, before access is granted, the level of detail in the
result should be reduced according to a specification provided
by the policy. For example, the age of the data subject may be
replaced by an interval.

 Asynchronous Obligation Executors do their job in the
background. An example of such an Obligation Executor is
one that is capable of sending notifications to data subjects
through email.

The rest of this paper focuses on the access control
functionality of Carnival. Under the hood the logging
functionality is implemented much the same way as the access
control functionality. The main difference is that in the case of
logging, information collected is used to create a log record
that is sent to the Log Service, whereas for access control the
information is sent to the Rule Engine for evaluation. It is
important that the log is subjected to manual and possibly

3 A get method (e.g. getId) of an object retrieves the value of an instance

variable (id) of the object. A set method modifies the value of an instance
variable of an object.

automated audit to detect privacy violations.

C. Privacy metadata
The type of data to be accessed and whom the data is about

are natural to extract from the objects in the application that
represent the data subjects and that consequently contain
information pertaining to data subjects. For example, in an
Electronic Patient Journal (EPR) application it is natural to
extract this metadata from the objects in the application that
represent patients.

Consequently, Carnival introduces the concept of personal
data classes and objects. Personal data classes are classes that
define instance variables that hold personal data and where
one or more of these instance variables can be used to identify
the data subject of the contained personal data. Personal data
objects are instances of personal data classes.

Metadata must be provided for all personal data classes in
the application. The metadata serves two purposes, it defines:
(i) which types of personal data that the get and set methods of
the personal data classes return and modify; (ii) how the data
subject of a personal data object can be determined during
runtime.

tha
an

lan
typ
(e.
ch
vo

fil
dir
Se

 Figure 2 shows an excerpt of the metadata descriptor file
for the EPR application. It identifies the vocabulary used and
the personal data classes of the application. The Patient class
contains (at least) two instance variables holding personal
data. The id instance variable is of type PERSON_ID and the
instance variable firstName is of type PERSON_NAME. In
addition there is a reference to the Data Subject Finder plug-
in, epr.subfinder.Journal, which is used to identify the data
subject of an instance of the class.

The metadata descriptor is created during application
development and it may be edited during application
deployment. Among others, during deployment it is
determined which personal data classes that should be
managed. How applications using Carnival are deployed and
configured is described further in section VI.

Privacy metadata can also be provided through code
annotations or through annotations of UML-diagrams
constructed during the design phase. From these annotations
the metadata descriptor of the application can be automatically
generated. Figure 3 shows Java 1.5 annotations corresponding
to the metadata descriptor file in Figure 2.

Figure 3: Example annotated class

@no.nr.privacy.annotations.DataSubjectHelper
 (“epr.subfinder.Journal")
public class Patient{

 @no.nr.privacy.annotations.PersonalDataType("PERSON_ID")
 private int id;

@no.nr.privacy.annotations.PersonalDataType(“PERSON_NAME”)
 private String firstName;

.
 public int getId() {
 return id;
 }
 public String getFirstName() {
 return firstName;
 }

}

D. Extraction of privacy metadata during runtime
<?xml version="1.0"?>
<application name="EPR" >

 <vocabulary name="epr-voc.xml" >

 <personaldataclasses>

 <class name="epr.model.Pasient" managed=”y”>
 <datasubject>
 <finderclass classname="epr.subfinder.Journal" />
 </datasubject>
 <property name="id" >
 <type name="PERSON_ID" />
 </property>
 <property name="firstName">
 <type name="PERSON_NAME"/>
 </property>
 . . .
 </class>
 . . .
 </persondataclasses>
</application>
Figure 2: Example Metadata mapping file

The metadata maps the application data to a vocabulary so
t the policy written in this vocabulary can be interpreted

d enforced in the context of the application.
The vocabulary defines the entities (i.e. words) of the
guage used to express privacy policies. It defines valid data
es (e.g. first_name), purposes (e.g. diagnosis), and actions
g. read, write). The application developers are free to
oose a suitable vocabulary, preferably a standardized
cabulary for the application domain, if available.
Privacy metadata is supplied through metadata descriptor
es, one file for each application. These files can be edited
ectly or through the Management interface of the Carnival
rver.

When the Privacy Manager evaluates an access request to
personal data contained in a managed object the metadata of
the requested data is retrieved. The types of the data requested
is a static property, whereas the identity of the data subject is a
dynamic property that can only be determined at runtime.

When a managed object is accessed the data types and its
Data Subject Finder plug-in are looked up in the metadata
descriptor file. Finally, the personal data object is passed to
the Data Subject Finder plug-in that returns a string that
identifies the data subject.

E. Purpose selection
The Purpose Selection service implements Carnival’s

purpose selection logic. The Purpose Selection service’s
behavior is defined by purpose rules. In the current
implementation a user’s current purpose is determined as a

function of the user’s roles and the method invoked by the
user. The Purpose Selection service collects this information
before method invocations.

The application should provide methods that are called
when the user moves from one purpose to another. One way
of accomplishing this is to design the application so that each
task in the application is naturally delimited from the other
tasks, for example through providing different GUI views for
each task.

The user and application must of course have the same
understanding of what the current purpose is. One way to
achieve this is to have the application clearly display the
current purpose and require that the user actively change this
purpose if he/she disagrees. Carnival requires that applications
provide Carnival with some method of communicating
directly with users. More precisely, Carnival requires that
applications provide callbacks, which Carnival uses to present
the user’s current purposes, and functionality for actively
changing the current purpose.

VI. USAGE
The usage of Carnival can be divided into three phases:

development, deployment, and operation.

A. Development
When developing an application using Carnival some

design guidelines should be followed.
The application must take into consideration the fact that

access to a method can be denied leading to an exception
being thrown. Likewise, when an access has lead to
obligations this is communicated to the application through an
exception. This exception contains information about the
executed obligation and the result of the access, which may
have been affected by the obligation. For example, an
approximation may be returned instead of the exact value. The
information contained in exceptions allows the application to
communicate to the user why access was denied and/or which
obligations that have been executed.

Additionally, as stated before, the application should be
designed in such a way that it is easy to capture the current
purpose of users. Carnival also requires that Data Subject
Finder plug-ins and GUI callbacks for purpose management
are developed. Developers may also supply Condition
Evaluators and Obligation Executors relevant for the
application domain.

Furthermore, the privacy metadata descriptor file should be
written, listing all personal data classes of the application, as
described in section V.C.

B. Deployment
During application deployment, a vocabulary must be

constructed or selected if one does not exist (see section V.C).
The vocabulary used by the application may be adopted, a
new may be constructed, or a standard vocabulary may be
adopted. If the vocabulary bundled with the application is not
used, the application’s metadata descriptor file needs to be

updated so that it is compliant with the new vocabulary.
Additionally, Carnival must be provided with a local

privacy policy conforming to the chosen vocabulary, if not
already available. For all obligation types included in the local
policy, corresponding Obligation Executor plug-ins should be
provided, and for each type of condition in the policy, a
corresponding Condition Evaluator should be provided.

Finally, two application specific steps should be followed.
Firstly, it should be decided which personal data objects that
should be managed from the ones listed in the privacy
metadata descriptor. Secondly, purpose rules should be
provided (see section V.E).

C. Operation
When a relationship is established with a data subject (e.g.

customer) his or her privacy preferences may be taken into
account by creating an individual privacy policy for the data
subject. This policy is added to the Carnival’s repository of
policies to be enforced.

VII. CONCLUDING REMARKS
This paper has presented Carnival, a framework that

provides privacy protection functionality to applications.
Carnival enables the implementation of privacy access
control, which is different from the other types of access
control, as discussed in section III. In addition, it provides
functionality for producing audit trails to enable detection of
privacy violations. Finally, it defines a number of services and
plug-ins to support the enforcement of privacy policies: The
Purpose and Purpose Selection services which provide
information needed to evaluate policy rules, the Rule Engine
and the Condition Evaluator which evaluate access requests to
personal data, the Obligation Router and Executors which
enforce obligations resulting from data access, and the Logger
and Log services which handle audit trails.

However, note that Carnival does not include all
functionality needed to enforce privacy policies.
Organizations also need, among others, to provide channels
for data subjects to access their personal data and data about
its usage (Individual Participation Principle, see [12]), and
measures to continually uphold the accuracy and completeness
of the personal data stored (Data Quality Principle, see [12]).

Carnival fulfils the requirements listed in section IV, except
support for pseudonyms, which has not been implemented yet.
That is, it enables the retrieval of all information needed to
evaluate privacy policy rules and determine whether or not
requested access should be granted. Further, the access control
logic is replaceable, and hence supports the implementation of
different access control models and the use of different policy
languages. In addition, services are defined to support
different types of obligations.

The determination of a user’s current purpose is handled
through the inclusion of the Purpose Selection service.
However, the design of this service needs to be further
explored, as the determination of the current purpose is an
intricate problem. We are not convinced that we have seen the

best solutions to this problem yet. One possibility we will
investigate further is the use of a formal workflow-control
system based on the use of Petri nets (see e.g. [9]). An
advantage of this type of solution is that purposes can easily
be defined across different applications.

Going forward, we plan to add support in Carnival for
creation and management of pseudo domains, as proposed in
[8]. Carnival will thus include functionality for generating
pseudonyms, and regulating linkage between pseudonyms and
the disclosure of the identities behind pseudonyms. This
functionality is motivated by the fact that some functions in an
organization may not need to have knowledge of information
that directly identifies data subjects, typically the data
subjects’ name or identity number. Their work can equally
well be carried out when data subjects are identified by
pseudonyms. Additionally, different functions can be provided
with different pseudonyms for the same data subject,
preventing unauthorized linking and matching of information.

We also plan to further evaluate the usefulness and
performance of Carnival. Questions related to how intuitively
it is to integrate with applications, how well it scales, and how
it affects performance, will be further examined.

VIII. REFERENCES
[1] R. Agrawal, J. Kiernana, S. Ramakrishnan, and Y. Xu, Hippocratic

Databases, IBM Almaden Research Center. Available at:
http://www.almaden.ibm.com/software/dm/Hippocratic_Databases/hipp
ocratic.pdf

[2] R. R. Arnesen and J. Danielsson: “A Framework for Enforcement of
Privacy Policies,” in Proceedings of the Nordic Security Workshop
NORDSEC 2003, October 2003. Available at:
http://publications.nr.no/A_Framework_for_Enforcement_of_Privacy_P
olicies.pdf

[3] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter (ed.),
Enterprise Privacy Authorisation Language (EPAL 1.1), IBM, 2003.
Available via http://www.zurich.ibm.com/security/enterprise-
privacy/epal/

[4] D.F.C. Brewer and M.J. Nash, "The Chinese Wall Security Policy,"
IEEE Symposium on Security and Privacy, pp. 215-228, 1989

[5] Declarative Privacy Monitoring, IBM alphaWorks,
http://www.alphaworks.ibm.com/tech/dpm

[6] Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data.
Official Journal L 281, 23/11/1995, pp. 31-50. Available from
http://europa.eu.int/eur-lex/en/index.html

[7] S. Fischer-Hübner and A. Ott., “From a Formal Privacy Policy Model to
its Implementation,” National Information Systems Security Conference
(NISSC 98), 1998. Available at http://www.rsbac.org/niss98.htm

[8] R. Hes and J. Borking, (eds.), Privacy-enhancing technologies: The path
to anonymity, Revised edition. ISBN: 90-74087-12-4. Registratiekamer,
The Hague, August 2000

[9] K. Jensen, “Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, Volume 1, Basic Concepts.” Monographs in Theoretical
Computer Science, Springer-Verlag, 1997

[10] G. Karjoth and M. Schunter, A Privacy Policy Model for Enterprises,
15th IEEE Computer Security Foundations Workshop, June 2002

[11] M. Hansen and A. Pfitzmann, Anonymity, Unobservability and
Pseudonymity – A Proposal for Terminology, v0.21, Available at
http://dud.inf.tu-dresden.de/Literatur_V1.shtml

[12] OECD, Guidelines on the Protection of Privacy and Transborder Flows
of Personal Data, Available at http://www1.oecd.org/publications/e-
book/9302011E.PDF

http://www.almaden.ibm.com/software/dm/Hippocratic_Databases/hippocratic.pdf
http://www.almaden.ibm.com/software/dm/Hippocratic_Databases/hippocratic.pdf
http://publications.nr.no/A_Framework_for_Enforcement_of_Privacy_Policies.pdf
http://publications.nr.no/A_Framework_for_Enforcement_of_Privacy_Policies.pdf
http://www.zurich.ibm.com/security/enterprise-privacy/epal/
http://www.zurich.ibm.com/security/enterprise-privacy/epal/
http://www.alphaworks.ibm.com/tech/dpm
http://europa.eu.int/eur-lex/en/index.html
http://www.rsbac.org/niss98.htm
http://123.koehntopp.de/marit/pub/anon/Anon_Terminology.pdf
http://123.koehntopp.de/marit/pub/anon/Anon_Terminology.pdf
http://www1.oecd.org/publications/e-book/9302011E.PDF
http://www1.oecd.org/publications/e-book/9302011E.PDF

	Introduction
	Motivation
	Outline

	Related work
	Privacy access control
	Requirements
	Carnival
	Architecture
	Execution flow
	Privacy metadata
	Extraction of privacy metadata during runtime
	Purpose selection

	Usage
	Development
	Deployment
	Operation

	Concluding remarks
	References

