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1 Introduction

Markov Mesh models have a great advantage over general Markov Random
Fields in their being very time efficient for doing simulations. For Markov Mesh
models it is only necessary to scan through the grid once, updating each grid cell
conditioned on those neighbouring cells that have already being visited during
the simulation. MRFs, on the other hand, are commonly simulated using repeated
scans through the grid, each update being conditioned on all cells in the Markov
neighbourhood. Typically, for MRFs it is necessary to scan the grid hundreds or
even thousands of times.

Markov Mesh models have also proved to be easier to fit to a training image
than have Markov Random Field models. This has been documented in internal
presentations in the Multipoint projec.

However, to combine Markov Mesh models with hard data, for instance well
data, is not a trivial task. Since Markov Mesh conditioning only includes cells
that have already been visited during the simulation, it is not possible to take
into account future data events. When the simulation hits upon hard data it may
therefore be that these data points represent a misfit when seen in relation to
the simulated cells. Markov Random Fields do not have this problem since the
conditioning procedure is symmetric and the simulation is iterative.

The purpose of these notes is to show how to translate a Markov Mesh model
into a Markov Random Field formulation. This being done, it will be possible to
use the MRF formulation of a (well functioning) Markov Mesh model to perform
simulations conditioned on hard data.

The organization of the paper is as follows: Chapter 2 develops the theoreti-
cal formulas for the parameter translation, starting from general expressions that
are accounted for in Appendices A and B. Chapter 3 presents our Matlab imple-
mentation of the parameter translation and MRF simulation, with further details
given in Appendix C. Chapter 4 presents results based on three different training
images and Markov Mesh and Markov Random Field models generated from
these images. Chapter 5 gives a short summary and points out some main ideas
for further extensions of this work.
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2 Theoretical translation of param-
eters

We consider an infinite sequence of cells in one spatial dimension and fix one
of these cells to be the focus of our study. Label this cell as cell i. We assume a
sequential neighbourhood for cell i consisting of the previous L cells:

ηi = {i− L, i− L+ 1, ..., i− 1}.

The corresponding markov neighbourhood is ∂i = {i−L, ..., i− 1, i+ 1, ..., i+L}.
Fig.2.1 illustrates the relationship between the neighbourhoods.

Figure 2.1. Neighbourhoods, sequential and Markov

Basic expressions for the conditional probability in the two models are found
in Eqs.2.1 and 2.2. Derivation of the MM expression is shown in detail in Ap-
pendix A. The expression for the MRF conditional probability is identical to the
general form provided by the Hammersley Clifford theorem, given that the model
should be stationary.

MM: (2.1)

p(zi|z−i) = Ci(z∂i
) · exp(α0zi +

∑L
l=1 θlzi(zi−l + zi+l))∏i+L

k=i+1(1 + exp(α0 +
∑L

l=1 θlzk−l))
,

MRF: (2.2)

p(zi|z−i) = Di(z∂i
) · exp(F0zi +

L∑
l=1

Flzi(zi−l + zi+l) + h.o.).

Second order Markov mesh models described as Markov Random Fields 9



Ci(z∂i
) and Di(z∂i

) are normalization constants. Each of them is specific for cell
i, but does not depend on the value of zi. The external field in the MM model is
denoted α0, while the (2-particle) interactions are called θl. For l /∈ {1, 2, ..., L} the
interaction θl = 0. Higher order interactions in MRF are in Eq.2.2 not expressed
explicitely, this will come in later sections.

Notation becomes easier if we define, for k ∈ {i+ 1, i+ 2, ..., i+ L}

φk = φk(ηk\i) = exp(α0 +
L∑

l=1,l 6=k−i

θlzk−l), (2.3)

ψk = φke
θk−i . (2.4)

Notice that neither φk nor ψk depend on zi. We can now write the MM probability
as:

MM: p(zi|z−i) = Ci(z∂i
) · exp(α0zi +

∑L
l=1 θlzi(zi−l + zi+l))∏i+L

k=i+1(1 + φkeθk−izi)
. (2.5)

2.1 Normalization constants
If we can find a relation between the normalization constants Ci(z∂i

) and Di(z∂i
)

by assuming some specific value of zi, but no assumptions on any other facies
values, then this relation will hold for all values of zi. This statement is true be-
cause the normalization constants themselves are independent of zi. So assume
zi = 0. Then

MM: p(zi = 0|z−i) = Ci(z∂i
)

i+L∏
k=i+1

(1 + φk)
−1, (2.6)

MRF: p(zi = 0|z−i) = Di(z∂i
). (2.7)

The result for the MRF is obtained by assuming that each term in the higher order
interactions include one and only one instance of zi, all other interaction terms are
part of Di(z∂i

). Hence we have

Di(z∂i
) = Ci(z∂i

)
i+L∏

k=i+1

(1 + φk)
−1, (2.8)

which according to the statement above is valid for all configurations of the grid.
We insert this into Eq.2.2. The MM and MRF expressions then read

MM: p(zi|z−i) = Ci(z∂i
) · exp(α0zi +

∑L
l=1 θlzi(zi−l + zi+l))∏i+L

k=i+1(1 + φkeθk−izi)
, (2.9)

MRF: p(zi|z−i) = Ci(z∂i
) · exp(F0zi +

∑L
l=1 Flzi(zi−l + zi+l) + h.o.)∏i+L
k=i+1(1 + φk)

. (2.10)

Expressions 2.9 and 2.10 form the foundation of the following discussion.

10 Second order Markov mesh models described as Markov Random
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2.2 External field
External field and interactions with other particles is experienced by cell i when
zi = 1. Hence we will now study p(zi = 1|z−i). We have the general expressions

MM: p(zi = 1|z−i) = Ci(z∂i
) · exp(α0 +

∑L
l=1 θl(zi−l + zi+l))∏i+L

k=i+1(1 + ψk)
, (2.11)

MRF: p(zi = 1|z−i) = Ci(z∂i
) · exp(F0 +

∑L
l=1 Fl(zi−l + zi+l) + h.o.)∏i+L
k=i+1(1 + φk)

.(2.12)

The external field is for cell i the only felt potential when all other cells have
z−i = 0. Let us call this configuration Case 0:

· Case 0: z−i = 0

This configuration gives
φ0

k = φk(Case 0) = eα0 .

The superscript in φ0
k is an indicator for Case 0. Similarly we denoteψ0

k = φ0
ke

θk−i =

eα0+θk−i . For the probabilities we find

MM: p(zi = 1|z−i = 0) = Ci(z∂i
)

eα0∏i+L
k=i+1(1 + ψ0

k)
.

MRF: p(zi = 1|z−i = 0) = Ci(z∂i
)

eF0∏i+L
k=i+1(1 + φ0

k)
.

Hence

eF0 = eα0

i+L∏
k=i+1

(1 + φ0
k)

(1 + ψ0
k)

Denote

c0 =
i+L∏

k=i+1

(1 + φ0
k)

(1 + ψ0
k)

=
L∏

l=1

(1 + eα0)

(1 + eα0+θl)
(2.13)

The external field in the MRF formulation finally reads

F0 = α0 + ln(c0). (2.14)

Notice that all MM interaction parameters, in combination with α0, contribute to
the correction term ln(c0). Generally, the correction term may be large compared
to α0. Hence the external field F0 may be quite different from α0, and any intuitive
understanding of the Markov Mesh external field is not necessarily applicable to
the MRF model (and vice versa). However, in one specific case intuition holds: If
all 2-particle interactions θl in the MM model are weak compared to the external
field α0, then c0 ≈ 1 and F0 ≈ α0. Of course, if for all l the interaction parameters
satisfy ||θl|| → 0, the particles are independent of one another. A slight modifi-
cation is provided by the case when α0 >> 0 and the interaction parameters all

Second order Markov mesh models described as Markov Random Fields
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satisfy α0 + θl >> 0; in this case F0 ≈ α0 −
∑L

l=1 θl. If on the other hand we have
a situation where α0 << 0 and one of the interaction parameters is positive and
strong enough the outweigh α0, satisfying α0 + θl0 >> 0, while the other interac-
tions are weak, then F0 ≈ −θl0 . We will encounter this situation several times in
the examples shown in Chapter 4.

2.3 Two-particle interactions
We now turn to the problem of finding the MRF 2-particle interaction parameters.
It is convenient to start by inserting the expression for F0 (Eq.2.14) into the MRF-
expression 2.10, and set zi = 1 to find

MRF: p(zi = 1|z−i) = Ci(z∂i
)eα0c0

exp(
∑L

l=1 Fl(zi−l + zi+l) + h.o.)∏i+L
k=i+1(1 + φk)

.

Define what we will call Case 1 as follows:

· Case 1, l1-specified: zj = 0 ∀j 6= i, except that zi+l1 = 1 . We assume l1 ∈
{1, 2, ..., L}

That is, in Case 1 all cells in the Markov neighbourhood of i have the value zj = 0,
except for one cell. The distance between the nonzero cell and cell i determines
the lag l1. Let

φ1;l1
k = φk(Case 1, l1) = eα0+θk−i−l1 .

and ψ1;l1
k = φ1;l1

k eθk−i . For Case 1 we then find

MM: p(zi = 1|Case 1, l1)) = Ci(z∂i
)

eα0+θl1∏i+L
k=i+1(1 + ψ1;l1

k )
,

MRF: p(zi = 1|Case 1, l1)) = Ci(z∂i
)

c0e
α0+Fl1∏i+L

k=i+1(1 + φ1;l1
k )

.

This gives the requirement
eFl1 = eθl1

c1;l1
c0

,

where

c1;l1 =
i+L∏

k=i+1

(1 + φ1;l1
k )

(1 + ψ1;l1
k )

. (2.15)

That is, the 2-particle interaction in the MRF formulation can be expressed by the
MM parameters as

Fl1 = θl1 + ln(
c1;l1
c0

). (2.16)

For l1 = L the result is FL = θL. For all other lags the correction term is non-zero,
and its contribution can in general be large relative to θl1 .

12 Second order Markov mesh models described as Markov Random
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2.4 Higher order interactions
In this section we develop expressions and relations for the higher order interac-
tions in the MRF model.

2.4.1 Combined effect of higher order interactions
By substituting the expressions for F0 and Fl (Eqs.2.14 and 2.16) into the MRF
expression in Eq.2.2, setting zi = 1, and finally require the resulting expression
to equal the Markov Mesh conditional probability (Eq.2.11), we find that for the
higher order interactions in the MRF model the following relation must hold:

eh.o. interactions, when zi = 1 = f(z∂i
), (2.17)

where

f(z∂i
) = c−1

0

L∏
l=1

(
c0
c1;l

)(zi−l+zi+l) i+L∏
k=i+1

(1 + φk)

(1 + ψk)
. (2.18)

The above relation gives an expression for how the combination of all higher or-
der interactions in the MRF model depends on the MM parameters and the con-
figuration of the grid. The relation can be quite useful as it is. In a simulation it is
normally not necessary to know each of the interaction parameters individually,
only their combined effect. Eq.2.17 can be used as it is for this purpose. That is,
calculate the value of f(z∂i

) and use the result directly in the MRF simulations.
It is, however, a main purpose of these notes to study to which extent the

higher order MRF interactions are important in order to reproduce the statistics
of its mother Markov Mesh model. For this reason we want to break the rela-
tion in Eq.2.17 into components enabling us to find the value of each interaction
parameter individually.

2.4.2 Recursive algorithm
The higher order interactions can schematically be written

h.o. interactions =
∑
k,l

zi

zi+kzi+l +
∑

other 3-cliques;k,l

Fk,l

+
∑
k,l,m

zi

zi+kzi+lzi+m +
∑

other 4-cliques;k,l

Fk,l,m

+...+

+zi

zi+1zi+2...zi+L +
∑

other max-cliques

F1,1,....,1. (2.19)

Every clique in this expression contains one and only one instance of zi, since all
cliques not containing zi are part of the normalization factor Di(z∂i

). Notice also

Second order Markov mesh models described as Markov Random Fields
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that for each interaction level (each line in Eq.2.19) we have singled out the cliques
belonging to the future neighbourhood ∂i\ηi of cell i. The reason will become clear
in a moment.

Consider now a generalization of the cases we considered above; Case M. In
Case M there are M particles from the future neighbourhood of cell i that have a
nonzero facies indicator. All other cells have the value zero. That is:

· Case M, l1, l2, ..., lM -specified: zj = 0 ∀j 6= i, except that zi+lm = 1,m =

1, 2, ...,M .

We assume lm ∈ {1, 2, ..., L} and l1 < l2 < ... < lM−1 < lM .
Now concentrate on which contributions the left hand side of Eq.2.17 receives

for Case M. Since zi is part of any clique that enters Eq.2.19, the contributing 3-
particle interactions are

Fl1,l2 + Fl1,l3 + ...+ Fl1,lM + Fl2,l3 + Fl2,l4 + ...+ Fl2,lM + ...+ FlM−1,lM

=
M−1∑
m1=1

M∑
m2=m1+1

Flm1 ,lm2
.

Similarly, the 4-particle interactions contribute with

M−2∑
m1=1

M−1∑
m2=m1+1

M∑
m3=m2+1

Flm1 ,lm2 ,lm3
,

and so on. Every specific parameter appears only once. No interactions of higher
order that M + 1 contribute. We then separate the left hand side of Eq.2.17 into
two factors, one that contains the interaction of order M + 1, the other factor
containing all lower order interactions. The factor of the lower order interactions
is divided on both sides of the equation so that it in the following appears as a
denominator of the right hand side. We then find that Eq.2.17 can be expressed as

eFl1,l2,...,lM = f(Case M;l1, l2, ..., lM)

· exp(−
M−1∑
m1=1

M∑
m2=m1+1

Flm1 ,lm2

−
M−2∑
m1=1

M−1∑
m2=m1+1

M∑
m3=m2+1

Flm1 ,lm2 ,lm3

−...
−

∑
m1<m2<...<mM−1

Flm1
Flm2

...FlmM−1
) (2.20)

This expression is the main result for the higher order interactions. It gives a re-
cursive algorithm for finding the individual interaction parameters. First find all
parameters for 3-particle interactions by using the already found results for the

14 Second order Markov mesh models described as Markov Random
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2-particle interactions. Then find all 4-particle interactions by using the found 3-
particle and 2-particle interactions, and so on. The algorithm can schematically
be written as:

· for M = 2 : L

– for all combinations l1, l2, . . . , lM such that l1 < l2 < · · · < lM and lm ∈
{1, 2, . . . , L}

* calculate f(Case M;l1, l2, ..., lM)

* find the M -particle interaction parameter Fl1,l2,...,lM from

eFl1,l2,...,lM = f(Case M;l1, l2, ..., lM)

· exp(−
M−1∑
m1=1

M∑
m2=m1+1

Flm1 ,lm2

−
M−2∑
m1=1

M−1∑
m2=m1+1

M∑
m3=m2+1

Flm1 ,lm2 ,lm3

−...
−

∑
m1<m2<...<mM−1

Flm1
Flm2

...FlmM−1
)

– end

· end

2.4.3 Helpful relations
The functional value of f must in each case be found separately. To easen the
computational cost of this, one can benefit from the following recursive relation-
sships. Generally, for Case M we have that the value of f can be expressed as

f(Case M;l1, l2, ..., lM) = c−1
0

(
c0
c1;l1

)(
c0
c1;l2

)
...

(
c0
c1;lM

) i+L∏
k=i+1

1 + φk(Case M;l1, l2, ..., lM)

1 + ψk(Case M;l1, l2, ..., lM)
.

We denote

cM ;l1,l2,...,lM =
i+L∏

k=i+1

1 + φk(Case M;l1, l2, ..., lM)

1 + ψk(Case M;l1, l2, ..., lM)
. (2.21)

For Case M-1, when specified by the same lags l1, l2, ..., lM−1 as Case M (but not
lag lM ), we similarly have

f(Case M-1;l1, l2, ..., lM−1) = c−1
0

(
c0
c1;l1

)(
c0
c1;l2

)
...

(
c0

c1;lM−1

)
cM−1;l1,l2,...,lM−1

,

Second order Markov mesh models described as Markov Random Fields
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and hence

f(Case M;l1, l2, ..., lM)

= f(Case M-1;l1, l2, ..., lM−1) ·
(

c0
c1;lM

)
·
(

cM ;l1,l2,...,lM

cM−1;l1,l2,...,lM−1

)
. (2.22)

This relation can be used to save computational resources. Finally, to easen the
calculation of cM ;l1,l2,...,lM we mention the relation

φk(Case M;l1, l2, ..., lM) = φk(Case M-1;l1, l2, ..., lM−1)e
θk−i−lM , (2.23)

which is valid for k ∈ {i+ lM + 1, ..., i+ L}.

16 Second order Markov mesh models described as Markov Random
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3 Implementation

This chapter is devoted to the practical implementation of the theoretical results
of the previous chapter. The implemetation can be divided into the following
steps

1. estimate MM parameters

2. translate MM parameters to MRF parameters

3. simulate MM and MRF (Gibb’s sampler) to compare results

The estimation of MM parameters and simulation of MM-models in 1-D was al-
ready implemented elsewhere in the Multipoint project, and will not be described
here. While this chapter describes the overall methods used, the detailed docu-
mentation of all functions described in this chapter is found in appendix C. The
implementation is done in Matlab.

3.1 Implementation of parameter translation
For external field and 2-particle interactions we have the expressions in Eqs.2.14
and 2.16, which are straightforward to implement. For the higher order interac-
tions we use the relation in Eq.2.20, and the resulting recursive algorithm:

· for M = 2 : L

– for all combinations l1, l2, . . . , lM such that l1 < l2 < · · · < lM and lm ∈
{1, 2, . . . , L}

* calculate f(Case M;l1, l2, ..., lM)

* find the M -particle interaction parameter Fl1,l2,...,lM from

eFl1,l2,...,lM = f(Case M;l1, l2, ..., lM)

· exp(−
M−1∑
m1=1

M∑
m2=m1+1

Flm1 ,lm2

−
M−2∑
m1=1

M−1∑
m2=m1+1

M∑
m3=m2+1

Flm1 ,lm2 ,lm3

−...
−

∑
m1<m2<...<mM−1

Flm1
Flm2

...FlmM−1
)

Second order Markov mesh models described as Markov Random Fields
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1,3,4,5

1,3,4
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1,3,L 1,L−1,L

1,L−1

3 L−1

1

L2

1,2,3

1,2,3,4 1,2,3,L

1,2

4

3

1,2,...,L

5

1,L

2−particle interaction

1,3,4,L

4−particle interaction

3−particle interaction

Figure 3.1. Combinations with l1 = 1

– end

· end

Main challenges in the algorithm
1. For each M ∈ [2, L] find all combinations l1, l2 . . . , lM such that l1 < l2 < · · · <
lM and lm ∈ 1, 2, . . . , L ∀m.

2. For each configuration with M nonzero particles, find all subconfigurations
with M − 1, . . . , 2 nonzero particles.

3. Save the interaction parameters Fl1,l2,...,lM in such a way that they are easy to
access during the algorithm and afterwards.

4. Try to benefit from the relations on f and φk, see Eqs.2.22 and 2.23.

Solutions
1. Finding combinations: Figure 3.1 displays all combinations with l1 = 1.

For each M we start with the configuration l1 = 1, l2 = 2, . . . , lM = M . Af-
ter computing F1,2,...,M we use the function permutation.m1 to generate the
next configuration. This is repeated till the last configuration withM nonzero
particles is reached. There are

(
L
M

)
different configurations for each M .

2. Finding subinteractions: In Eq.2.20 we see that in order to compute the in-
teraction parameter for a given configuration K of M particles, we need the
interaction parameter of all subconfigurations, meaning that we need to find
all combinations of M − 1,M − 2, . . . , 2 particles ∈ K. This is done in the
function sumSubInteract.m.

1. We acknowledge Ragnar Hauge at NR for letting us use this function.
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i i+1 i+2 i+3 i+4 i+5

x 1 0 1 1 0

Figure 3.2. Example of configuration of future neigbourhood. The index of this configura-
tion is 20 + 22 + 23 = 13, since counting from cell i, cell 1, 3 and 4 are nonzero.

There are
∑M

m=2

(
M
m

)
∼ 2M different subconfigurations per configuration of

M particles. For each of these subconfigurations we add in the correspond-
ing parameter value that has previously been calculated. Hence a total of∑L

M=2

(
L
M

)
2M ∼ 3L additions are needed in order to take into account all

subinteractions for all configurations for all M .

3. Saving the parameters: Each interaction parameter Fl1,l2,...,lM corresponds to
a unique configuration of the future neigboorhood. We can look at each con-
figuration as a unique binary number which we call the index of the config-
uration. The different configurations corresponds to 2L − 1 different nonzero
indexes. We use this to make a table of all Fl1,l2,...,lM ordered by the indexes.
See Fig.3.2 for an example of indexing. The external field parameter F0 is
given index 2L.

4. Using the relations on f and φk

Using the binary index of a configuration, we can also make a table of values
of the function f , Eq.2.18, evaluated on each configuration. Then we can use
the relation between f(Case M; l1, l2, . . . , lM) and f(Case M-1; l1, l2, . . . , lM−1)

given in Eq.2.22 to compute the higher order interaction parameters. This en-
ables us to find the corresponding interaction parameters for a configuration
of the future neigboorhood in a straightforward way.

For each configuration of M particles the complexity of finding the func-
tion fM ;l1,l2,...,lM is almost identical to the complexity of finding the factor
cM ;l1,l2,...,lM in Eq.2.22, which is again of the order LM . The total complexity
of finding all f -values is then approximately

∑L
M=2

(
L
M

)
LM ∼ L22L−1.

We can also benefit from the relations on φk from Eq.2.23. In order to use this
relation we must save the φks for each configuration of the grid. This is done
in a ((2L−1)×L) matrix phi, where phi(binary index of config, :) gives φk for
k ∈ i+ 1, i+ 2, . . . , i+ L for the configuration, given its binary index. When
L is small, using the relation (2.23) will not save much running time, but for
larger Ls it is useful.
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Computational complexity of parameter translation
The overall complexity of the parameter translation is of the order 3L + L22L−1.
The first term is due to the need to sum up all parameters corresponding to sub-
configurations, see point 2 above. The second term represents the complexity of
evaluating the values of the function f , see point 4 above.

Useful reformulations used in the implementation
To find both 2-order interactions and higher order interactions we need c1;l1 , de-
fined in (2.15), for l1 ∈ 1, 2, . . . , L . Recall that:

φ1;l1
k = φk(Case 1, l1) = eα0+θk−i−l1

and
ψ1;l1

k = φ1;l1
k eθk−i . (3.1)

Equation (2.15) can be written as

c1;l1 =
i+L∏

k=i+1

1 + φ1;l1
k

1 + ψ1;l1
k

=
i+L∏

k=i+1

1 + eα0+θk−i−l1

1 + eα0+θk−i−l1
+θk−i

=
L∏

l=1

1 + eα0+θl−l1

1 + eα0+θl−l1
+θl

=

l1∏
l=1

1 + eα0

1 + eα0+θl
·

L∏
l=l1+1

1 + eα0+θl−l1

1 + eα0+θl−l1
+θl

=

l1∏
l=1

1 + eα0

1 + 1 + eα0+θl
·

L−l1∏
n=1

1 + eα0+θn

1 + eα0+θn+θn+l1

(3.2)

since θl = 0 for θ /∈ 1, 2, . . . , L.

We can also reformulate φk to clarify which parameters to use in the compu-
tation. Let J = l1, l2, . . . , lM . Looking closer at φk(Case M : l1, l2, . . . , lM) we find

φk(Case M : l1, l2, . . . , lM) = exp(α0 +
∑

l∈J :k−i>l

θk−i−l). (3.3)

3.2 Gibb’s sampler for MRF
Let

g(1|zδi
) = exp(F0 +

L∑
l=1

Fl(zi−l + zi+l) + h.o(zδi
)) (3.4)
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be the potential of cell zi. Gibb’s sampling algorithm can schematically be written:

nx=N+200;

grid=[zeros(1,100) randGrid zeros(1,100)];

for t=1:T

for all cells in (L+1:nx-L) in random order %update cell i

g0=1; %non-normalized prob for facies=0

find g1=g(1|z_delta_i)

normConst=1/(g0+g1);

p0=unif(0,1)/normConst;

if p0 < g0 %update grid

grid(i)=0;

else

grid(i)=1;

end

end

end %end gibbs simulation

The grid on which we simulate is padded in each end to avoid boundary
effects. For the complete algorithm, see gibbsMRF.m. If the size N of the grid is
large, computing g(1|zδi

) for each cell i, T times will be a slow process. Instead
we first find the value of

h(1|zδi
) =

L∑
l=1

Fl(zi−l + zi+l) + h.o(zδi
)) (3.5)

for all possible neighbourhood configurations and store these in a table.

Calculating the potential of a configuration
As suggested above, calculating the potential of all configurations before we run
the Gibb’s sampler will save us a lot of time. We have (22L − 1) different possible
configurations of the neigboorhood if we remove cell i, and the binary value of
the configuration (without cell i) is therefore used as the index of the table. See
figure 3.3.

Pseudo-code for making the table:

for all possible configurations c of a neighbourhood z_delta_i ,:

calculate h(1,c)

save potential for later use
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i−4 i−3 i−3 i−1 i i+1 i+2 i+3 i+4 i+5

1 0 0 1 0 x 1 0 1 1 0
1 2 3 4 5 6 7 8 9 10

i−5

Nbh−cell number:

Grid cell number:

Figure 3.3. Example of grid configuration. The index of this configuration is 20 + 23 + 25 +
27 + 28 = 425, since counting from l.h.s, not including cell i itself, the cells 1, 4, 6, 8 and 9
are nonzero.

end

However, since our main goal is to test if the higher order interactions give a
significant contribution, we make it possible to ignore some of the higher order
interactions and calculate an approximated potential. Let

ρ(zδi
, n) (3.6)

be an approximation to h(1|zδi
) using all particle interactions up to and including

n-particle interactions. Our new algorith is:

for all possible configurations, c, of a neighbourhood z_delta_i ,:

calculate rho(c, n)

save potential for later use

end

When L is large, calculating the potential from scratch each time will be a time
consuming process. For one given configuration we have the following relation:

ρ(c, n+ 1) = ρ(c, n) + “(n+ 1)− particle interactions of c”.

This means that if we have ρ(c, n) for some n and want to find ρ(c,m) for m > n

we only need to add the {n + 1, n + 2, . . . ,m}-particle interactions to get ρ(c,m).
The final algorithm then is:

for all possible configurations of the neighbourhood:

sum n+1,n+2,...,m-particle and add rho(c,n)

rho(c,m)=rho(c,n)+ {n+1,n+2,...,m}-particle interactions

save rho(c,m)

end

This algorithm is found in findSumInteractOfConf.m.

22 Second order Markov mesh models described as Markov Random
Fields



3.3 Statistics
In order to compare simulations (see the introduction to chapter 4 and also section
4.1 for more details on what we actually want to compare), our main concern is
the size of the objects in the simulated grids. We would like to know; size of 0-
objects and 1-objects, mean of sizes and variance of size. We also find number of
0-objects and 1-objects. All this is done in the function statisticsOnObj.m.
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4 Results from simulations

Having translated the estimated MM parameters to MRF parameters we want to
compare simulations of the MM model and the MRF model. According to the-
ory, when all parameters for the MRF model are taken into account, the statistics
produced by the MRF should be identical to that of the MM model. Hence a com-
parison between the full MRF model and the MM model can be viewed merely as
a check that the implementation is correct. It is on the other hand of great interest
to explore to which extent it is necessary to include higher order interactions in
the MRF model. If it could be shown that only interactions up to a certain order
are necessary in order to reproduce the MM statistics, then further exploitation
of the MRF, for instance for doing simulations conditioned on well data, could be
performed with a simplified MRF model. This chapter gives an initial analysis of
this topic. We also include a brief comparison between the statistics of the MM
model and that of the original training image, although this is not the main topic
of these notes.

4.1 Training images and model specifications
We have used three different training images, each TI consisting of 105 cells. Mean
object lengths in the three TIs are listed in Table 4.1. The objects’ lengths represent
very simple combinations of long and short object sizes. We have chosen mean
object lengths of 50 and 10. The small variability is chosen in order to have TIs
with clearly identifiable characteristics.

For each TI we have estimated MM parameters for the neighbourhood sizes
L = 3 and L = 5. This means we have created two MM models per TI. For TI
2 we have in addition made an MM model characterized by L = 10. Sequential
simulations were performed for each of these Markov mesh models, and statistics
collected with the purpose of comparing it to statistics from MRF simulations.

TI # 0-object size 1-object size

1 49.99± 1.23 49.97± 1.22

2 10.01± 1.25 49.97± 1.23

3 9.99± 1.24 9.99± 1.23

Table 4.1. Training Images’ mean object lengths, with standard deviation
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MM model MRF model,
highest interaction order

2 3 4 5 6 7 8 9 10 11

TI1, L = 3 x x x
TI1, L = 5 x x x x x
TI2, L = 3 x x x
TI2, L = 5 x x x x x
TI2, L = 10 x x x x x x x - - -
TI3, L = 3 x x x
TI3, L = 5 x x x x x

Table 4.2. Models considered

For each of the two/three MM models per TI the MM parameters have been
translated into MRF parameters, using the theory and implementation described
in earlier chapters. For each MM model the full MRF model consists of all interac-
tion parameters, i.e. up to and including order L+1. In addition we have defined
approximate MRF models by including interactions up to and including order
2, 3, ..., L (for the L = 10 we only considered interactions up to order 8). Table 4.2
lists the different models considered. For each MRF model, full or approximative,
we have then carried out simulations. Each simulation was done for a grid con-
sisting of 2000 cells, with a total number of 50,000 Gibb’s iterations per cell and
sampling every 50th iteration. The statistics studied are mean object length for
0-objects and for 1-objects, and standard deviation of object lengths.

4.2 Brief comparison of MM to TI statistics
Figure 4.3 displays mean object lengths and standard deviation of object lengths
as found by the sequential simulation of the Markov Mesh model for TI 1 and
L = 3. Comparing these histograms to the characteristics of TI 1, where mean
object lengths were given by

length(0-objects) = 49.99± 1.23,

length(1-objects) = 49.97± 1.22,

it is clear that mean object lengths are well reproduced by the Markov Mesh
model. Standard deviations of TI object lengths are however not well reproduced
by the MM model, the MM standard deviations being much higher than the vari-
ability in the training image.

Similar results are found for all TIs and MM models (L = 3, 5, 10) considered.
The reason for the dicrepancy between MM statistics and TI statistics is likely to
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be the choice of model, i.e. the restriction to 2-particle interactions in the Markov
Mesh models. It is of course of interest to find Markov Mesh models that better
represent the characteristics of the TIs. This is however not to be followed up
here, as the main purpose of this paper is to compare the different MRF models
to their mother MM model. For this purpose the defined Markov Mesh models
are fine.

Figure 4.1. Mean object lengths and object length standard deviations, Markov Mesh
model estimated from TI 1, L=3

4.3 Comparing MRF to Markov Mesh
We now break away from comparing the simulation results to the TI statistics.
Instead we focus on the comparison of different MRF models to their mother
Markov Mesh model.

4.3.1 Detailed comparison for the model defined by TI 1, L = 5

For a neighbourhood size determined by L = 5 we have studied five different
MRF models. These models consist of interactions up to and including those of
order 2, 3, 4, 5, and 6, respectively, see Table 4.2. The model with interactions of
order 6 is the most general MRF model that exists for this neighbourhood, it is
referred to as the full MRF model.

Consider first the results obtained for the full MRF. Fig.4.2 compares the statis-
tics of the MRF (right) to the MM (left) for this case. We observe that the his-
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tograms are quite similar. This is as expected, since the full MRF model according
to theory is identical to the MM model.

Figure 4.2. Mean object lengths and object length standard deviations. Markov Mesh
model left, Markov Random Field for h.o.i.=6 to the right. TI 1, L=5

We next look into whether the MRF model defined only in terms of the 2-
particle interactions can reproduce the statistics of the MM model. Fig.4.3 dis-
plays histograms analogous to those in Fig.4.2, but obtained by using the 2nd
order MRF model. The histograms to the left in the figure are those for the MM
model. The figure shows very clearly that the statistics of this MRF does not
match the MM statistics at all. The MRF model produces objects whose mean
length is eather large (1-objects, mean length is around 100) or quite small (0-
objects, mean length is around 12). For the MM model on the other hand, both
object types have similar mean lengths, around 50. The mean standard deviation
is, for each object type in the MRF model, of the same magnitude as the mean
length. This behaviour of variability is analogous to the MM results.

Fig.4.4 illustrates the development of the grid throughout simulations for the
L = 5, 2nd order MRF (left) and full MRF (right). Each row shows a snapshot
of the grid configuration. The initial grid configurations for the two simulations
were identical. Starting from the first measurement, shown in the uppermost row
of the figure, the two models clearly develop different mixes of object lengths as
the simulation goes on (moving downward in the figure). The 2nd order model
has a strong dependency between subsequent measurements and is quite unwill-
ing to develop anything but the small 0-objects and the large 1-objects. The full
MRF model is different. In this case there is more variability in the object lengths,
and mixing of different configurations throughout the simulation is better.
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Figure 4.3. Mean object lengths and object length standard deviations. Markov Mesh
model left, Markov Random Field for h.o.i.=2 to the right. TI 1, L=5

The need for higher order interactions in the MRF model can be understood
in terms of the interaction parameters. Fig.4.5 lists the estimated MM parameters
and the MRF parameters that arise as a result of the parameter translation.

Comparing the external field and 2nd order interaction parameters for the
MM and MRF models it becomes clear that the correction terms in Eqs.2.14 and
2.16 have an effect. For instance is the MRF external field F0 approximately equal
to −θ1, in agreement with the comment made at the end of chapter 2.2. Also
the 2nd order interactions of lag 3 and 4 differ quite a lot between MM to MRF,
whereas interactions at the shorter lags 1 and 2 are rather similar. For the highest
lag, 5, the interactions are identical, in accordance with theory (see Eq.2.16).

Now compare the magnitude of MRF higher order interactions (order 3, 4, 5, 6)
to the MRF 2nd order interactions. If all higher order interactions were small com-
pared to the 2nd order interactions, the statistics would not change very much as
more and more interactions were included in the model. But of the values listed
in Fig.4.5, the interaction parameter F1,3,4 has a magnitude indicating that it may
have a significant impact on the results. This is the reason why the results for the
MRF models in Figs.4.2 and 4.3 are so different. From the values listed in Fig.4.5
it is to be expected that the three MRF models characterized by interactions of or-
der 4, 5, and 6, respectively, will give quite similar statistics. Some of the 3-particle
interactions are large enough that they might produce some changed behaviour
when compared to the 2nd order model. But the big impact, making the MRF
behave in the same way as the MM model, is expected to set in when 4-particle
interactions are included. We will see in the next section that this is indeed the
case.

Second order Markov mesh models described as Markov Random Fields
29



Figure 4.4. MRF grid snaphots during simulation. The vertical axis counts snapshots
through the simulation, in units of 50 Gibb’s updates per cell. The horisontal axis show
the cell number in the grid. MRF 2nd order model to the left, MRF full model to the right.
TI 1, L=5

4.3.2 Comparison for all models
Fig.4.6 summarises the comparison between all the different MRF models and
each of their mother MM model. The figure consists of three subfigures, each sub-
figure being labelled by the training image that was used to define the Markov
Mesh models. Each of these subfigures in turn consists of four panes, represent-
ing the four quantities mean object lengths for 0-objects and 1-objects, and mean
standard deviation for 0-objects and 1-objects, respectively. Now focus on one
of these quantities and a single training image, thus identifying one single fig-
ure pane. For each training image there are several MM models, each defined by
the neighbourhood size L. Recall the models listed in Table 4.2. In the given figure
pane there is one graph per MM model. Each point on the graph is found by com-
paring the MRF statistics to the statistics of its mother MM model. More specifi-
cally, we have computed the given quantity’s mean value for the MRF model and
divided by the mean value obtained for its mother MM model. The horisontal
axis represents in all cases the highest interaction order included in the consid-
ered MRF model. Each figure pane also includes a horisontal line at the value 1;
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Figure 4.5. MM parameters (left column) and MRF parameters. TI 1, L = 5

if and only if the fraction “MRF/MM” equals 1 do the two models have identical
mean values. The graph thus shows how the inclusion of higher and higher or-
der interactions in the MRF model affects the statistics of the MRF as compared
to the MM model. For each graph in the figure the rightmost point, representing
the behaviour of the full MRF models, is expected to be very close to 1.

Some observations are:

· The graph patterns are almost independent of the TI. Be aware that the MM
models produce different results for each TI, the mean object lengths ob-
served in the MM statistics being similar to the mean object lengths of the
TI from which it was derived, see Table 4.1. Thus the fact that the graph pat-
terns in Fig.4.6 are almost independent of the TI is merely a statement that the
higher order interaction have analogous effects on the MRF’s approximation
to the full model, independent of the object patterns seen.

· The full MRF models produce statistics that is very close to the MM statistics

· When L > 3, as soon as the 4-particle interactions are included the MRF
statistics is very close to the MM statistics. This observation corresponds
to the expectations we developed based on the interaction parameters in
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Fig.4.5. Fig.4.6 shows that this holds for all TIs.

· For L = 3 it is enough to include 2nd order interactions in the MRF model,
neither 3- nor 4-particle interactions make much of a difference to the statis-
tical results.

· For L = 5 and L = 10 the 2nd order MRF model tends to make shorter
0-objects and longer 1-objects than the MM model, while the model that in-
cludes 3-particle interactions tends to make the 0-objects longer and the 1-
objects shorter. This is true for all three training images.

The fact that the graph patterns are almost independent of the TIs can be un-
derstood by looking at the MM parameter values. Fig.4.7 shows the estimated
parameters for all MM models considered. It is a striking fact that when com-
pared across TIs, the relative strengths of the parameters are very similar. For
instance, for L = 3 the interactions θ1 and θ3 are quite strong compared to the lag
2 interaction θ2, while the ratio of for instance θ3/α0 is also almost constant across
the TIs. Similar regularities are seen for the L = 5 MM models. It is a general
trend for the L = 3 and L = 5 models that interactions at the shortest and longest
lags are significantly stronger (i.e. large absolute value) than the interactions at
the other lags. For L = 10 there is a similar pattern, although not so striking.
With very similar relative strengths among MM parameters for a given model,
the ratios being compared across TIs, it is likely that also the MRF parameters
develop similar patterns. This we have observed in the MRF parameters. Fig.4.8
illustrates this. We have plotted the values of the MRF parameters against their
one-dimensional index (see for instance Fig.3.2 for an explanation of this index),
the top figure pane being for L = 3 models and the bottom pane for L = 5 mod-
els. The figure clearly shows that there is very little variation across the different
TIs.

It is appropriate to at this point remind that even though the parameter values
are quite similar across the TIs, the patterns developed are not the same: Both the
full MRF and the MM models make grid patterns where the mean object lengths
are comparable to those in their respective TI (long-long for TI 1, long-short for
TI 2, short-short for TI 3).

To summarize, we can understand why the graph patterns in Fig.4.6 are al-
most independent of the TIs by looking at the MM parameters. It is at this point
an open question why the different TIs give so similar parameter estimates for the
MM models. To explore this problem further it is necessary to study the estima-
tion procedure more closely. This is left for future work and will not be discussed
here.

32 Second order Markov mesh models described as Markov Random
Fields



Second order Markov mesh models described as Markov Random Fields
33



Figure 4.6. MRF mean values relative to MM mean values. TI 1, TI 2, and TI 3



Figure 4.7. Markov Mesh parameters



Figure 4.8. MRF parameters for L = 3 and L = 5



5 Summary and concluding remarks

We have in this report shown how a stationary Markov Mesh model consisting
of external field and 2-particle interactions in one spatial dimension can be for-
mulated as a Markov Random Field. Explicite formulas and recursive algorithms
expressing the individual MRF parameters in terms of the MM parameters have
been developed. It has also been shown how the combined effect of all higher
order interactions in the MRF model can be computed directly from the MM pa-
rameters, without a need to first find all individual MRF parameters.

We have also described a Matlab implementation for the parameter transla-
tion and a Gibb’s sampler simulation procedure for the Markov Random Field.

The Matlab implementation has been used to study the relation between a
Markov Random Field and the Markov Mesh model from which it was derived.
In particular we have explored to which extent higher order interactions in the
MRF model are of any significance to the observed statistics. The results showed
that in general the higher order interactions are indeed important; the 2nd order
MRF is not sufficient to reproduce the statistics of the MM model.

We would like to point out that our study does not discuss to which extent
a 2nd order MRF, with parameters estimated in the best possible way, is able to
produce statistics similar to a 2nd order MM model. Our work has focused on
the importance of the higher order interaction parameters in the derived MRF.
An important motivation for this is that it has been observed elsewhere in the
Multipoint project that successful model fitting is often easier for MM models
than for MRF models. And hence the parameter translation developed in this
report can be viewed as a method for doing successful MRF model identification.

In future deployment of MRF models derived from MM models, for instance
with the purpose of performing simulations conditioned on well data, it is likely
to be time saving to exploit (generalizations of) the expression where the com-
bined effect of all higher order interactions in MRF are taken into account simul-
taneously. Since we have shown in this report that the higher order interactions
in general cannot be neglected, to find each one of them invidually may not be
the best method.

Future extensions of the work described here include the following topics:

· More general interactions: Realistic grid patterns generally require more
general interactions than the 2nd order interactions in the considered MM
models; even the simple patterns of the TIs used in this report are not well
reproduced by this simple set of MM models. The extension of the translation
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procedure to more general MM models is thus of uttermost importance. It is
likely that some of the ideas shown in this report can be generalized, in par-
ticular the method of identifying parameters in terms of the neighbourhood
configuration it represents. This problem will be followed up in the future.

· Higher spatial dimensions: For higher spatial dimensions we expect that
many of same procedures and formulas can be used. Simply let the one-
dimensional indices represent an ordering of the cells in the neighbourhood.
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A Markov Mesh conditional proba-
bility

This appendix shows the derivation of the expression in Eq.2.1, the starting point
for the Markov Mesh model in these notes’ main discussion.

A.1 General relation between Markov Mesh models
and Markov Random Fields

The joint probability of an N -particle system can always be written as

p(z) = p(z1)p(z2|z1)p(z3|z1, z2) · · · p(zi|{zj : 1 ≤ j < i}) · · · p(zN |z−N)., (A.1)

where the subscripts i, j indicate cells and we have used the notation

z−i = {zj : j 6= i}. (A.2)

The definition of the Markov Mesh model is that the conditional probability p(zi|{zj :

1 ≤ j < i}) depends, not on all cells with j < i, but only on the cells that belong
to the sequential neighbourhood ηi. That is

p(zi|{zj : 1 <= j < i}) = p(zi|{zj : j ∈ ηi}). (A.3)

Let’s now concentrate on one specific cell i and calculate the conditional prob-
ability for zi, given all other values, p(zi|z−i). The general expression is

p(zi|z−i) =
p(z)

p(z−i)
. (A.4)

We use the general expression from A.1 for the joint probability and insert the
expression that is specific for Markov Mesh models, A.3. This gives

p(zi|z−i) =
p(z)

p(z−i)

=
1

p(z−i)
p(z1)p(z2|z1)p(z3|z1, z2) · · · p(zi−1|{zl : l ∈ ηi−1}) (A.5)

·p(zi|{zj : j ∈ ηi})
∏

k:i∈ηk

p(zk|{zp : p ∈ ηk}) (A.6)

·
∏

k̂:i/∈ηk̂∧k̂ 6=i

p(zk̂|{zp̂ : p̂ ∈ ηk̂}). (A.7)
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The factors in lines A.5 and A.7 are independent of zi, whereas all factors in line
A.6 depend on the value of zi. We denote the product of the zi-independent fac-
tors as Ĉi, indicating with the subscript that although there is no dependence on
zi the factor Ĉi is nevertheless specific for cell i. The conditional probability for a
Markov Mesh model can then be written as

p(zi|z−i) = Ĉi · p(zi|{zj : j ∈ ηi})
∏

k:i∈ηk

p(zk|{zp : p ∈ ηk}). (A.8)

It follows from this expression that the Markov Mesh model is a Markov Random
Field model with a Markov neighbourhood ∂i that satisfies

∂i ∪ i = ηi ∪ {ηk : i ∈ ηk} ∪ {k : i ∈ ηk}. (A.9)

The set {k : i ∈ ηk} needs to be included since the MM neighbourhood ηk does
not include cell k itself. The analog for the Markov neighbourhood is the property
i /∈ ∂i

A.2 Sequential conditional probability for 2-particle
interactions

We assume that the Markov Mesh model is characterized by 2-particle interac-
tions and an external field. This assumption is expressed in terms of the sequen-
tial conditional probability as

p(zi|{zj : j ∈ ηi}) = Ri(zηi
)eG0zi+

P
j∈ηi

Gi,j(zi,zj). (A.10)

Here Ri(zηi
) is a normalization constant specific for cell i, G0 is the constant exter-

nal field, and Gi,j(zi, zj) denotes the interaction between cells i and j. For binary
facies fields the interaction can be written

Gi,j(zi, zj) = β0(1− zi)(1− zj) + β1zi(1− zj) + β2(1− zi)zj + β3zizj

= β0 + (−β0 + β1)zi + (−β0 + β2)zj + (β0 − β1 − β2 + β3)zizj.

The four β-parameters denote the interaction strengths, and since they occur only
in the specific combinations shown in the last expression the interaction can be
expressed as

Gi,j(zi, zj) = θ0(zi + zj) + θi,jzizj. (A.11)

The constant eβ0 has been absorbed by the normalization constantRi(zηi
), and we

have assumed translational invariance so that β1 = β2. Now redefine the normal-
ization constant according to

Ri(zηi
) · e

P
j∈ηi

θ0zj → Ri(zηi
).
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The sequential conditional probability can then be written

p(zi|{zj : j ∈ ηi}) = Ri(zηi
)e(G0+nθ0)zi+

P
j∈ηi

θi,jzizj ,

where n =
∑

j∈ηi
. We also redefine the external field in the sense

α0 = G0 + nθ0,

and so
p(zi|{zj : j ∈ ηi}) = Ri(zηi

)eα0zi+
P

j∈ηi
θi,jzizj . (A.12)

Now require normalization, i.e. require that

p(zi = 0|{zj : j ∈ ηi}) + p(zi = 1|{zj : j ∈ ηi}) = 1.

This gives that the normalization constant must be

Ri(zηi
) =

(
1 + eα0+

P
j∈ηi

θi,jzj

)−1

. (A.13)

And hence

p(zi|{zj : j ∈ ηi}) =
eα0zi+

P
j∈ηi

θi,jzizj(
1 + eα0+

P
j∈ηi

θi,jzj

) . (A.14)

A.3 Full conditional probability for 2-particle interac-
tions

From Eq.A.8 we have that the full conditional probability for a Markov Mesh
model can be written

p(zi|z−i) = Ĉi · p(zi|{zj : j ∈ ηi})
∏

k:i∈ηk

p(zk|{zp : p ∈ ηk}). (A.15)

Insert into this equation the sequential conditional probabilities from Eq.A.12.
This gives

p(zi|z−i) = Ĉi ·Ri(zηi
) · eα0zi+

P
j∈ηi

θi,jzizj ·
∏

k:i∈ηk

Rk(zηk
) · eα0zk+

P
l∈ηk

θl,kzkzl

= Ĉi ·Ri(zηi
) ·

{ ∏
k:i∈ηk

exp(α0zk +
∑

l:l 6=i∧l∈ηk

θk,lzkzl)

}
· (A.16){ ∏

k:i∈ηk

Rk(zηk
)

}
· exp

(
α0zi +

∑
j∈ηi

θi,jzizj +
∑

k′:i∈ηk′

θk′,izk′zi

)
.(A.17)

The factors in line A.16 are independent of zi, but depend on the facies of the
MRF neighbourhood ∂i. We denote the product as

Ci(z∂i
) = Ĉi ·Ri(zηi

) ·

{ ∏
k:i∈ηk

exp(α0zk +
∑

l:l 6=i∧l∈ηk

θk,lzkzl)

}
. (A.18)

Second order Markov mesh models described as Markov Random Fields
41



The product
∏

k:i∈ηk
Rk(zηk

) depends on zi through the expression in Eq.A.13. The
expression for the full conditional probability is therefore

p(zi|z−i) = Ci(z∂i
) ·

exp
(
α0zi +

∑
j∈ηi

θi,jzizj +
∑

k′:i∈ηk′
θk′,izk′zi

)
∏

k:i∈ηk

(
1 + eα0+

P
j∈ηk

θk,jzj

) . (A.19)

Notice that this expression is valid for any spatial dimension, any choice of se-
quential neighbourhood, and any choice of how the cells are labelled. It can in
general be further refined by taking into account translational symmetry, since
this gives relations between the interaction parameters θi,j and θk′,i.

For a 1-dimensional system where the cells are labeled according to their
physical ordering along a line, translational symmetry gives the relation θi,j = θj,i.
This implies, with the notation

θl = θi,i±l

and a sequential neighbourhood

ηi = {i− L, i− L+ 1, ..., i− 1},

that the final expression for the conditional probability is

p(zi|z−i) = Ci(z∂i
) · exp(α0zi +

∑L
l=1 θlzi(zi−l + zi+l))∏i+L

k=i+1(1 + exp(α0 +
∑L

l=1 θlzk−l))
. (A.20)

This is identical to Eq.2.1.
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B Normalization constant in Markov
Mesh model

The conditional probability of the Markov Mesh model can be written

p(zi|z−i) = Ci(z∂i
)
exp(α0zi +

∑L
l=1 θlzi(zi−l + zi+l))∏i+L

k=i+1(1 + eα0+
PL

l=1 θlzk−l)
, (B.1)

= Ci(z∂i
)
exp(α0zi +

∑L
l=1 θlzi(zi−l + zi+l))∏i+L

k=i+1(1 + φkeθk−izi)
, (B.2)

where we in the last expression have used the shorthand notation

φk = φk(zk−L, ..., zi−1, zi+1, ..., zk−1)

= exp(α0 +
L∑

l=1,l 6=k−i

θlzk−l),

for k ∈ {i+ 1, i+ 2, ..., i+ L}.

The function φk depends on the facies of each cell in the sequential neighbour-
hood ηk, except for the facies in cell i.

The normalization constant is determined by the requirement p(zi = 1|z−i) +

p(zi = 0|z−i) = 1. I.e. we require

Ci(z∂i
)

(
eα0+

PL
l=1 θl(zi−l+zi+l)∏i+L

k=i+1(1 + φkeθk−i)
+

1∏i+L
k=i+1(1 + φk)

)
= 1.

Using the notation ψk = φke
θk−i , the requirement can be written

Ci(z∂i
)

i+L∏
k=i+1

(1 + ψk)
−1 ·

(
eα0+

PL
l=1 θl(zi−l+zi+l) +

i+L∏
k=i+1

1 + ψk

1 + φk

)
= 1

and we have that the normalization constant can be expressed as

Ci(z∂i
) =

i+L∏
k=i+1

(1 + ψk) ·

(
eα0+

PL
l=1 θl(zi−l+zi+l) +

i+L∏
k=i+1

1 + ψk

1 + φk

)−1

. (B.3)

This expression is valid for any grid configuration.
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The conditional probabilities can then be written, for zi = 0 and zi = 1 respec-
tively,

p(zi = 0|z−i) =
i+L∏

k=i+1

(
1 + ψk

1 + φk

)
·

(
eα0+

PL
l=1 θl(zi−l+zi+l) +

i+L∏
k=i+1

1 + ψk

1 + φk

)−1

,

p(zi = 1|z−i) = eα0+
PL

l=1 θl(zi−l+zi+l) ·

(
eα0+

PL
l=1 θl(zi−l+zi+l) +

i+L∏
k=i+1

1 + ψk

1 + φk

)−1

.
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C Documentation of scripts/functions

This appendix is a documentation of the scripts and functions used in the simula-
tions. The script compareMM_MRF runs all simulations given a training image
and saves simulation data for each case in a unique folder with name according to
the case. The following shows which functions are used in a full simulation. The
functions in bold, except makeTI, are called from compareMM_MRF. A function
in a lower level is called by the previous function in a higher level, ex: paramTrans
calls permutation.

C.1 Stepwise /Dependence
Step 0: make TI.

· makeTI

Run compareMM_MRF:

Step 1: Estimate MM-parameters from TI.

· estSequential1D_2order (estimate coeff) (Odd)

– sequential1D_2order (Odd)

– logisticRegression (Odd)

Step 2: Translate MM-parameters to MRF-parameters.

· paramTrans

– sumSubInteract

– permutation

Step 3: find the potential (MRF) for each possible configuration of the neighbour-
hood.

· findSumInteractOfConf

– interactOfConf (subfunction)

* permutation

Step 4: run MRF-gibbs sampler using the potential found in step 3.

· gibbsMRF
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– statisticsObj

Step 5: simulate MM-model using parameters found in step 1.

· simMM

– simSequential1D_2order (Odd)

– statisticsObj

Final: compare MRF- and MM-simulations.
Visual inspection of figures and comparison of calculated means (calculated
in statisticsObj).

C.2 Main parameters
Syntax: name (type, size):

coeff (int array, L+ 1× 1):
={θL, θL−1, . . . , θ1, αo}. Array of estimated MM-coefficients, indexed as shown.

conf (int array, M):
Indexes of nonzero cells in future nbh. Cell number in grid → index in table:
i+ 1 → 1, i+ 2 → 2, . . . , i+ L→ L.

grid (int array, N × 1):
simulated MM- or MRF-model.

highestOrder (int):
highest order interaction to be considered.

K (int):
number of particles with facies=1 in markov neighbourhood, δi.

L (int):
size of sequential neighbourhood.

logProb (double array, (T/sample) × 1): log(P(grid))). Gives the log-probability
of the configuration of the whole grid for each sampled grid.

lowestOrder : lowest order interaction to be considered.

M (int):
number of particles with facies=1 in future neighbourhood.

N (int):
size of simulated grid
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nx (int):
size of grid to simulate on, nx=N+200, padding in each end.

nonZeroNbh (int array, K):
Current configuration of markov nbh, δi. Array of index of nonzero cells, not
including cell i. Index: i− L = 1, . . . , i+ 1 = L+ 1, . . . , i+ L = 2× L

param (double array, 2L × 1):
translated MRF-interaction parameters. Index of array is binary configura-
tion of the interaction seen as particles in the future nbh.

potOfPast (double array, 22L× 1):
potential of seqential nbh. index is binary value of seq.-nbh.

sample (int):
how often to sample in Gibb’s-simulation of MRF. Assumed “distance” be-
tween independent grids.

sample (int array, (T/sample)×N :
array of all sampled grids in one MRF-simulation.

statObjSizeArray (double array, 6× number of sampled grids):
array of statistics on the size of the objects in the simulated grids.
statObjSizeArray(1,:): mean of size of 0-objects in each simulated grid.
statObjSizeArray(2,:): mean of size of 1-objects –”–.
statObjSizeArray(3,:): standard deviation of size of 0-objects –”–.
statObjSizeArray(4,:): standard deviation of size of 1-objects –”–.
statObjSizeArray(5,:): number of 0-objects –”–.
statObjSizeArray(6,:): number of 1-objects –”–.

statMM_array (double array, 6× (T/M)):
statObjSizeArray for the current case of MM simulations

statMRF_array (double array, 6× (T/sample)):
same as above but for MRF simulations

statTI (double array, 6× 1):
statistics on current training image.

sumInteractUp2HO (double array, 2L × 1 ):
log-potential (sum of particle interactions up to highestOrder) of all possi-
ble configurations of neighbourhood. Index is binary value of configuration.
Given a nbh, index is:

∑
2(nonZeroNbh−1). See fig 3.3.

T (int): number of simulations (Gibb’s)

TI (int array,1× 100000 ): training image
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C.3 Description of each function
The parameters described in the last section are not repeated here.

Syntax: function [output]=nameOfFunction(input).

compareMM_MRF (script)
the main script that runs all simulations. The functions called is described in C.1.
All results are saved in a directory called
<prefixDirName>_TI_<intTI>_T_<T>_N_<N>, and subdirectories. For each L
we run simulations with all numbers in highestOrder as the highest order particle
interaction. Results for each case is saved in its own dir.
PARAMETERS: intTI: number on current training image, see table 4.1.
SAVE: In main dir, for each L: L-info.mat={param, coeff, L, T ,N} and
MM-variabels.mat={statMM_array}.
In dir h.o<..>, for each higherOrder: MRF-variabels.mat={sumInteractUp2HO,
statMRF_array,logProb,sampleGridArray}, and plots of burn in, histogram and
logProb.
RETURN: -

function [sumInteract]= findSumInteractOfConf(L, param,highestOrder)
find potential for all possible configurations of neighbourhoods.
PARAMETERS: highestOrder: the highestOrder particle interaction to be
considered (included)
RETURN: array of potential (particle interactions) for all possible configuration
of the nbh-grid.

function [statObjSize]= gibbsMRF(param, sumInteract,randGrid,T,N,L,sample)
simulate MRF and return statistics of simulations. Updates the grid-cells in
random order.
PARAMETERS: startGrid: initial state of grid to run Gibb’s sampler on
nx: size of grid to simulate on, (we cut of 100 in each end t o do stat)
RETURN: statistics of T/sample grids.

function [sumInteractParam]=interactOfConf(nonZeroNbh,L,param, highestOrder)
Internal function in the script higherOrderCombinations. Sums the higher order
interactions ≤ highestOrder for a given configuration of the Markov
neighbourhood (nonZeroNbh). Starts from left in the array nonZeroNbh and
adds all forward particle interactions up to highestOrder, then moves one step
right to next nonzero cell and repeats.
RETURN: sum of interactions parameters for one markov neighbourhood with
the cells in nonZeroNbh nonzero.
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function [TI]=makeTI(N,mean0, mean1, spread0, spread1)
Make a training image (TI) with mean of size of 0-objects is mean0, and mean of
size of 1-objects is mean1. Size of 0-objects vary between
[mean0− spread,mean0 + spread] and same with 1-objects.
RETURN: TI.

function [param]=paramTrans(L,coeff,pathDir):
Recursive algorithm for translating MM-coefficients to MRF-parameters. Makes
a text-file, paramTransOut, which lists the parameters. The file is saved to pathDir.
PARAMETERS: pathDir: current directory to save results in
RETURN: translated MRF-parameters.

function [pos, findParam]=permutation(pos,M,L)
find next configuation of the nbh.
PARAMETERS: pos: array, current position of the M nonzero particles
(configuration of future nbh or whole nbh)
findParam: boolean, if false, last configuration is reached.
RETURN: new position of nonzero particles, cont or not.

function [statObjSize] = simMM (coeff, J, N, L)
simulate J times the MM-grid of size N .
RETURN: statistics of all simulations.

function [statObjSize]=statisticsObj(grid)
find statistics on sizes of 0-objects and 1-objects.
PARAMETERS: grid: array of simulated grid (MM or MRF)

function [subInteract]= sumSubInteract(conf,param)
find sum of subinteractions for a given conf.
PARAMETERS:-
RETURN:- sum of subinteractions.

C.4 Organizing result files and folders
We have been looking at 3 different training images, see Table 4.1. The training
images are saved in a directory called data. All results from one training image
is saved in a directory called <prefixDirName>_TI_<intTI>_T_<T>_N_<N>. A
subdirectory with name L_<L> is made for each L. This directory contains the
following:

· L-info
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· MM-simulation plots

· MM-variabels.mat

· one directory for each h.o

For each highestOrder, a directory called h.o_<highestOrder> is made. It
contains the following:

· MRF-simulation plots

· MRF-variabels.mat=(sumInteractUp2HO,
statMRF_array,logProb,sampleGridArray)
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