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1 Introduction

Financial portfolios usually consist of several different assets and rebalancing the

portfolio is necessary in order to control the weights in the different assets. Most

papers neglect transactions costs, but it is documented in, e.g., Atkinson et al.

(1), Donohue and Yip (4) and Leland (5) that this may be a significant problem.

In the present paper it is proved, assuming only a concave utility function, that

transaction costs imply that there is a no-trade region where it is not optimal to

perform trading. If the transaction costs are proportional, then it is optimal to re-

balance when outside the no-trade region to a state at the boundary of this region.

If the transaction costs have fixed or flat elements, then the rebalance from out-

side the no-trade region should be to a state at an internal surface in the no-trade

region but never a full rebalance. This extends previous results by considering n-

symmetric assets, using a general utility function, and a larger class of stochastic

processes. Furthermore, we provide an approximate formula and a more precise

iterative simulation algorithm for the boundary of the no-trade region and the

internal surface it should be rebalanced to in the case of fixed elements in the

transaction costs.

The problem of optimally rebalancing a portfolio with transactions costs is

studied in several papers, see Chang (3) and Liu (6) and references herein. The

case of two assets can be analyzed analytically, see, e.g., Taksar et al. (12) and Øk-

sendal and Sulem (10). The multi-asset problem under strong assumptions has

been studied by, e.g., Donohue and Yip (4). There are also some papers with dy-

namic programming algorithms for determining the no-trade region in higher

dimensions, see, e.g., Sun et al. (11) and Leland (5). Atkinson et al. (1) give an

approximate formula for the boundary. Most papers conclude that there is a no-

trade region where trade should not be performed, and all rebalance from a state

outside the no-trade region is to the boundary of the no-trade region. Donohue

and Yip (4) formulate this as a general result with general n and only assuming

concave utility function, but does not prove the result. Furthermore, they con-

sider different rebalance strategies for portfolios with one risk-free asset and up

to seven risky assets. Liu (6) gives a thorough discussion of the problem with

constant absolute risk aversion and one risk-free investment and n uncorrelated

geometric Brownian motion investments. The paper discusses both proportional

and fixed transaction costs and shows the existence of a no-trade region that is a

fixed threshold for each investment with risk. All rebalance is between an invest-

ment with risk and the risk-free investment.

Optimal rebalancing of portfolios with transaction costs 6



There are different formulations of the optimal portfolio problem. The clas-

sical paper Markowitz (7) employs a utility function defined on a portfolio. Le-

land (5) and Donohue and Yip (4) focus on portfolios with targets ratios and the

utility function is deviance from the target ratios and the total transaction costs.

The recent paper Liu (6) builds on the work of Merton (8) that optimizes the con-

sumption that is possible based on the portfolio. All models only seem to imvolve

geometric Brownian motion. The properties of the different formulations appear

quite similar, but they offer different mathematical challenges. The present paper

extends the framework of Markowitz (7) with n symmetric investments by also

incorporating transaction costs in addition to a more general utility function and

a larger class of stochastic processes. Our formulation includes the formulation

of Leland (5) and the formulation of Merton (8) if we assume the consumption

and investment are known. Our assumption with n symmetric assets generalize

the assumption in Liu (6) where there is one risk-free asset at the cost of more

complex analysis and complex boundary to the no-trade region.

The theoretical agreement regarding the existence of a no-trade region is in

contrast to the current practice in most portfolios. Donohue and Yip (4) state that

the typically reduction of transaction costs by using an optimal rebalance strategy

is 50%. It seems to be most common to rebalance to what is considered the optimal

balance at fixed time intervals, often monthly or each quarter, see, e.g., Leland (5).

Other portfolios define intervals for the weights in each asset and adjust to the

boundary of these intervals either at fixed periods or continuously. Frequently,

these decision criteria are often combined with a full rebalance at certain situa-

tions. In the Norwegian Petroleum Fund (9) the rebalance is mainly performed

when deciding which new assets to buy. In addition, the portfolio is rebalanced

to the target weights if the weights are outside certain intervals over two consec-

utive months. The bank states that as a large investor it is an advantage that the

time of rebalances is not known in the marked and that the size of each rebalance

is not too large. The strategy presented in this paper satisfies these criteria. The

document from Norges Bank (9) includes a numerical simulation study of the

transaction costs under different rebalancing strategies.

Section 2 describes the model, and the theorem regarding the no-trade region

is proved. Different utility functions are discussed in Section 3. Sections 4 and 5

illustrate the theory with examples using different utility functions. The optimal

relative weights and the no-trade region are described in both cases. In Section

4 analytic calculations are sufficient. In this section is it also described how to

rebalance a portfolio to the boundary of the no-trade region. In Section 5 it is nec-

essary with approximations and simulation. A procedure on how to determine

the no-trade region approximately is provided, and it is shown how to improve

this approximation by simulation. This example shows that the transaction costs
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are reduced to 1/4 by the use of an optimal no-trade region. The paper is ended

by some closing remarks in Section 6.
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2 The model

Consider n assets, and let Vi,t denote the stochastic value of asset i, for i = 1, 2, . . . , n

at time t. We assume that the stochastic properties of Vi,t are known, and that the

processes are Markovian, i.e., if Vi,t is known, we do not get more information re-

garding the value at a later point in time by knowing the value of Vi,s for all values

s < t. We assume these stochastic processes are sufficiently regular in order that

a utility function is defined on the stochastic process. For most utility functions

this implies that the expectation and a measure for variability is defined over a

time period (t, T ) with T > t. In particular, this will be satisfied if log(Vi,t) are

correlated Levy processes. Levy processes include Brownian motion.

The portfolio is given by at = (a1,t, a2,t, . . . , an,t) where ai,t denotes the weight

of asset i at time t. The value of the portfolio at any given time t equals

Wt =

n
∑

i=1

ai,tVi,t. (2.1)

We denote by

rj,t =
aj,tVj,t

Wt
(2.2)

the relative weights. In order to simplify the formulation we let ai,t ∈ R, i.e.,

both positive and negative values are considered, where negative values indicate

a short position in the asset. The results will be similar if we consider only non-

negative weights. The investor may at any time rebalance the portfolio. Let the

time of rebalance be at times t1, t2, · · · . We will consider only one rebalance at a

time and therefore omit the index in order to simplify the notation. A rebalance

at time t implies that the portfolio is changed from

Wt− =
n

∑

i=1

ai,t−Vi,t (2.3)

to

Wt+ =

n
∑

i=1

ai,t+Vi,t (2.4)

where ai,t are functions of time t that are constant between each rebalancing, and

ai,t− and ai,t+ denote the limits when approaching t from below and above, re-

spectively. In the case there are discontinuities in the value of the assets, Vi,t, we

will always let Vi,t denote the limit from the right, i.e., Vi,t = Vi,t+. This also in-

cludes (2.3). The reason for this definition is that if a jump in Vi,t implies a rebal-

ance, this is performed immediately, and obviously based on the values after the

jump, i.e., Vi,t = Vi,t+.

Optimal rebalancing of portfolios with transaction costs 9



Assume that

Wt+ = Wt− − c(Dt) (2.5)

where the function c(Dt) ≥ 0 is the cost of selling or buying assets at time t. The

set Dt contains all relevant information or data regarding the assets up to time t,

i.e.,

Dt = {(ai,s, Vi,s) | i = 1, . . . , n, s ≤ t+}.

We will assume that the transaction costs have proportional and fixed terms, i.e.,

c(Dt) =

n
∑

i=1

[

ci,1|ai,t+ − ai,t−|Vi,t + ci,2χ(ai,t+ − ai,t−)
]

(2.6)

where ci,j ≥ 0 for i = 1, 2, . . . , n and j = 1, 2. The function χ(ai,t+ − ai,t−) = 1

if ai,t+ − ai,t− 6= 0, i.e., if there is a rebalance in asset i at time t, and it equals

0 otherwise. For each asset i the cost function consists of a fixed fee if ci,2 6= 0

and a cost proportional to the weight if ci,1 6= 0. This formula covers the prop-

erties of interest from a theoretical point of view, and it is trivial to extend it to

let the transaction costs, e.g., depend on whether we sell or buy an asset. If we

include tax, the cost function is more complicated depending on when the asset

was bought, the difference between value when sold and bought and depends on

the country. We have c(Dt) = 0 if there is no rebalance at time t.

We need to define a utility function U(Wt) as a real valued function of the

stochastic process Wt. It is natural that the utility increases in E{WT} for some

value of T > t and decreases in a measure for the variability. See Section 3 for a

discussion on possible utility functions.

At every time t the investor optimizes U(Wt). Since the investor at each time

t focuses on the future, i.e., s > t, a different function is optimized for each value

of t. When the investor optimizes at time t, we assume the investor applies the

same strategy for each later point t1 > t when optimizing U(Wt1). We assume

Markov strategies, i.e., the strategy is a function that only depends on the present

situation and not the entire previous history; viz.

at+ = Sz(at−,Vt) (2.7)

where at− and at+ denotes the weights before and after a possible rebalance at

time t, and Vt denotes the values of the assets at time t. The same strategy is

applied for every value of t. The set of admissible strategies are parameterized by

z ∈ Z.

The simplest possible strategy is never to rebalance, that is, ai,t is constant in

time, and we denote this by z = 1. Another strategy is rebalance in order to have

the relative weights within a given interval. Denote the interval by [̂r1, r̂2]. Thus

r̂1
i ≤ ri,t+ ≤ r̂2

i

Optimal rebalancing of portfolios with transaction costs 10



or
r̂1
i

Vi,t
Wt− ≤ ai,t+ ≤

r̂2
i

Vi,t
Wt−.

We denote this strategy as z = 2, or alternatively z = (2, r̂1, r̂2). For this strategy

it is necessary with detailed rules to determine how this rebalance is performed,

e.g., only rebalance when one weight reaches the boundary of the admissible in-

terval. Other strategies are of course also possible.

Instead of having discrete rebalancing at times t1, t2, . . . , it is possible to con-

sider the case of continuous rebalancing. For instance, one can rebalance contin-

uously in order to have constant relative weights. This may be denoted as z = 3

or z = (3, r̂t) if we want to include the relative weights in the notation. Thus

ri,t+ = ri,t−

or

ai,t+ = ai,t−
Wt+

Wt−

=
ri,t−

Vi,t

Wt+.

In the case of continuous rebalancing it is necessary to redefine (2.3)–(2.6) to a

continuous setting. In this case the value of the portfolio has a continuous reduc-

tion cc(Dt) due to transaction costs where1

cc(Dt) =
n

∑

i=1

ci,1|a
′
i,t|Vi,t. (2.8)

The coefficient a′
i,t denotes the derivative of ai,t. Many stochastic processes, in-

cluding Brownian motion, will have unbounded transaction costs if there is con-

tinuous rebalancing in order to have constant relative weights if not all ci,1 = 0.

Since a portfolio depends on the present weights at+ and the strategy z, we

will use the notation W (at+, z) where at+ is the weights after a possible rebalance

at time t. We will often omit the plus sign if this is clear from the context.

We want as general formulation of the utility as possible and need the follow-

ing definitions:

Definition 2.0.1 We collect the basic definitions below:

We are given n assets with value Vi,t, i = 1, . . . , n, at time t.

(i) A portfolio is given by weights at = (a1,t, a2,t, . . . , an,t) of some assets where the value

of the assets Vi,t are modeled by stochastic processes. The value Wt of the portfolio is given

by equation (2.1). The investor has the opportunity to rebalance the portfolio according to

the equations (2.3)–(2.6) or (2.8) in case of continuous rebalancing.

(ii) An investment strategy is a function Sz defined by (2.7). We denote such strategies

1. The subscript c indicates continuous rebalancing.
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admissible. Let the set of admissible investment strategies may be parameterized by z ∈ Z.

We write z = (z1, z2) where z1 ∈ {1, 2, . . . , m}, and z2 denotes (when required) the pa-

rameter values needed in the definition of the strategy.

(iii) A utility function is a real-valued function U(Wt(at, z)) where Wt defined by the

equations (2.1)–(2.6), or (2.8) in case of continuous rebalancing, is assumed to be suf-

ficiently regular such that U is well-defined. The portfolio value Wt depends on at, the

portfolio weights, the stochastic processes Vt describing the value of each asset, and the

investment strategy Sz parameterized by z.

(iv) U(Wt) is continuous/continuously differentiable/concave if U(Wt(at, z)) is contin-

uous/continuously differentiable/concave in at for every value of z. The utility function

is concave if for any a1 and a2 satisfying
∑

i a1,iVi,t =
∑

i a2,iVi,t = A where A is a

constant, we have

U(Wt(βa1 + (1 − β)a2, z)) ≥ βU(Wt(a1, z)) + (1 − β)U(Wt(a2, z)) (2.9)

for any constant 0 < β < 1. We say that U(Wt) is strictly concave if (2.9) holds with

strict inequality.

(v) We say that U(Wt(at, z)) has compact level sets in the weights if for each combination

of A > 0, D ∈ R, and z ∈ Z, the set

ΩA,D,z,t = {at ∈ Rn |
∑

i

ai,tVi,t = A, U(Wt(at, z)) ≥ D}

is compact.

(vi) We say that the transaction costs are super linear in the weights if the transaction

costs due to a rebalance Dt from at− to at+ satisfy

c(Dt) ≥ B||at− − at+||Vt
(2.10)

for a constant B > 0. We use the notation ||at||Vt
=

∑n
i=1 |ai,t|Vi,t.

(vii) We say that the utility is super linear in the weights if there exists a constant M > 0

such that

U(Wt(ât, z)) ≥ U(Wt(at, z)) + M ||ât − at||Vt
(2.11)

if âi ≥ ai for all i and for all values of z.

(viii) U(Wt) is homogeneous if U(cWt) = cU(Wt) for all constants c.

(ix) For a strategy z and constant A > 0, we say that ãA,z,t is an optimal weight if it

maximizes the utility, that is,

U(Wt(ãA,z,t, z)) = sup
at

P

i ai,tVi,t=A

U(Wt(at, z)). (2.12)

Note that when there are transaction costs, equations (2.3)–(2.6) imply that
∑

i ai,t+Vi,t <
∑

i ai,t−Vi,t.

Optimal rebalancing of portfolios with transaction costs 12



(x) An optimal investment strategy z̃ is a strategy with the following property: It requires

a rebalance at time t if and only if U(Wt(at, z)) may be increased and then it is rebalanced

to a value that optimizes U(Wt(at, z)). More precisely,

U(Wt(at+, z̃)) = sup
ẑ∈Z

U(W (Sẑ(at−,Vt), ẑ)) (2.13)

for all values at−. Note that at+ = Sz̃(at−,Vt).

(xi) A no-trade region is a region Ωt where (at−, z) ∈ Ωt if and only if it is not possible to

increase U(W (at, z)) by a rebalance including a change of strategy z and including the

transaction costs at time t. More precisely

Ωt = {(at−, z) | at− = Sz(at−,Vt) and

U(Wt(at−, z)) = sup
ẑ∈Z

U(Wt(Sẑ(at−,Vt), ẑ))}. (2.14)

The no-trade region may be defined both in terms of the weights at and the relative weights

rt.

When defining optimality we use the Bellmann principle of optimality “If a strat-

egy is optimal for each point in time at that point of time, given that an optimal

strategy will be used thereafter, then the strategy is optimal”, see Bellman (2). We

may then formulate the following theorem.

Theorem 2.0.2 Consider an admissible set of investment strategies parameterized by

z ∈ Z. Let U(Wt) be a utility function defined on a portfolio Wt =
∑n

i=1 ai,tVi,t, that

is continuously differentiable, concave and has compact level sets in the weights. Let

the transactions costs, c(Dt), be of the form (2.3)–(2.6) or (2.8) in case of continuous

rebalancing.

(A) There is an optimal weight ãA,z,t for each value of A =
∑

i ai,tVi,t > 0 and z. The

optimal weight is unique when the utility function is strictly concave.

(B) If c(Dt) = 0 for all values of t, then the optimal investment strategy is to rebalance

continuously, in order to get optimal weights, i.e., one chooses z = 3 and thus (ãA,3,t, 3)

given by (2.12).

(C) If the transaction costs, (2.10), and the utility function, (2.11), are super linear in the

weights, then there is a no-trade region, Ωt, and (ãA,z̃,t, z̃) ∈ Ωt.

(D) If there is a no-trade region and the transaction costs have ci,2 = 0 for i = 1, . . . , n,

then there exists an optimal strategy where one only rebalances to the boundary of the

no-trade region.

(E) If there is a no-trade region and the transactions costs have ci,2 = 0 for i = 1, . . . , n,

and Vi,t for i = 1, 2, . . . , n have stationary relative increments2 and the utility function

2. The distribution of Vi,t+∆t/Vi,t is independent of t.
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is homogeneous, then the no-trade region is time independent in the relative weights rt.

(F) If ci,j > 0 for i = 1, . . . , n and j = 1, 2 and the utility function is super linear in the

weights, (2.11), there is a no-trade region. From a state outside the no-trade region it is

optimal to rebalance to a state at an internal surface in the no-trade region.

Proof 2.0.1 (A) Since U has compact level sets in the weights, there exists for each strat-

egy z some weights ãA,z,t where the optimum is obtained. The function U is concave. The

optimal weight is unique when the utility function is strictly concave.

(B) Since U is continuous on the compact set ΩA,D,z,t, there exist parameters (ãA,z̃,t, z̃)

that optimize U(Wt). More precisely,

U(Wt(ãA,z̃,t, z̃)) = sup
(at,z)

P

i ai,tVi,t=A

U(Wt(at, z)) (2.15)

for each value of t. When there are no transactions costs, it is optimal always to rebalance

to have these weights according to property (2.12).

(C) Consider a rebalance from at− to at+. Define a third state ât such that âi,t = ai,t+

if ai,t+ ≥ ai,t− and âi,t = ai,t+ + β(ai,t− − ai,t+) if ai,t+ < ai,t− where β is determined

such that
n

∑

i=1

âi,tVi,t =

n
∑

i=1

ai,t−Vi,t =

n
∑

i=1

ai,t+Vi,t + c(Dt).

These two equations may be rewritten such that

β
∑

i
ai,t−>ai,t+

(ai,t− − ai,t+)Vi,t

=
∑

i
ai,t−>ai,t+

(ai,t− − ai,t+)Vi,t +
∑

i
ai,t−<ai,t+

(ai,t− − ai,t+)Vi,t = c(Dt). (2.16)

Since c(Dt) > 0, the second equality implies that β is positive, while the first one gives

that β ∈ (0, 1). Thus âi,t ≥ ai,t+ and âi,t is between ai,t+ and ai,t− including the end-

points for all i. Let Dt be a rebalance from at− to at+. Since β < 1 and the transaction

costs are super linear we have the following inequalities

||ât − at+||Vt
≥ c(Dt) ≥ B||at− − at+||Vt

for a constant B > 0.

According to the item (A) above, there exist optimal weights ãA,z,t for each value of t.

However, when there are transactions costs, it is not necessarily optimal to rebalance to

these parameter values. At the optimal weights ãA,z,t, the derivative of U with respect to at

vanishes on the set
∑

i ai,tVi,t = A, since we assume that U is continuously differentiable.

We have that
∑

i âi,tVi,t =
∑

i ai,t−Vi,t = A. The derivative will also vanish along each

Optimal rebalancing of portfolios with transaction costs 14



line in this plane. Then a Taylor expansion in one variable gives that for all ε > 0, there

exists δ > 0 such that

U(W (ât, z)) ≤ U(W (at−, z)) + ε||at− − ât||Vt

for all ||at− − ãA,z,t||Vt
< δ, ||ât − ãA,z,t||Vt

< δ and all values of z.

Using that the utility function increases at least linear in the weights and that δ may

be arbitrary small, we have

U(W (at+, z)) ≤ U(W (ât, z)) − M ||ât − at+||Vt

≤ U(W (at−, z)) + ε||at− − ât||Vt
− MB||at+ − at−||Vt

≤ U(W (at−, z)).

Hence, it is not possible to increase the utility by rebalancing from at− to at+. The above

calculation is valid for any value of z and hence also for the optimal strategy z̃. Since it

is not possible to increase the utility by a rebalance from at−, there must be a no-trade

region containing (ãA,z̃,t, z̃).

(D) We will prove that if the transaction costs only have proportional elements and

not flat elements (i.e., ci,1 > 0 and ci,2 = 0), then all rebalance is to the boundary of the

no-trade region. In the following argument, we will assume that we apply the optimal

strategy z̃. Let a be outside the no-trade region and assume the optimal rebalance is to

another state d. By definition, the state d cannot also be outside the no-trade region, since

then it will be possible to increase the utility by rebalancing from d. If d is in the interior

of the no-trade region, we may define a third point b which is on the line between a and d

and is on the boundary of the no-trade region. Let ca,b, be the transaction costs between a

and b. When the transaction costs are proportional, then ca,d = ca,b + cb,d. Then we may

consider a rebalance from a to d to first be a rebalance from a to b and then from b to d.

From the assumptions we have U(W (a, z̃)) < U(W (d, z̃)). Since b is on the boundary of

the no-trade region and d is inside the region, we have U(W (b, z̃)) ≥ U(W (d, z̃)). This

implies that we will not be able to improve the rebalance by rebalancing to the interior of

the no-trade region compared to a rebalance to the boundary of the no-trade region.

(E) If all the elements that determine the no-trade region are time independent, then

also the no-trade region is time independent. The transaction costs (2.6) are time indepen-

dent if it is proportional with the transaction and there are no flat elements (i.e, ci,2 = 0).

It is necessary to assume that the utility function is homogeneous in order to change

corresponding to proportional transaction costs. Hence, if Vi,t has stationary relative in-

crements, then the no-trade region is time independent in the relative weights rt.

(F) When all ci,j > 0, the transaction costs are super linear and the existence of

the no-trade region follows from item (D). When the utility function is continuous and

ci,2 > 0, it cannot be optimal to perform infinitesimal changes in the weights. Hence from

a state outside the no-trade region it is optimal to rebalance to a state inside the no-trade

region. When the fixed transaction costs are paid, there still are proportional transaction

Optimal rebalancing of portfolios with transaction costs 15



costs and item (D) above implies that there is another no-trade region. Hence the optimal

rebalance is to a point at the boundary of this interior no-trade region. There may be an

interior no-trade region for each combination of assets to sell and buy.

In a practical problem the investor will often increase or decrease the invest-

ment. This is an opportunity to rebalance to a lower additional cost than when

there are no investment or consumption. Hence, these changes are important for

the strategy to optimize the utility including reducing the transaction costs. If

these changes are known in advance, the size of the no-trade region will increase

when approaching the time when there is a change. The result may be that we

only rebalance at these time-points.

In general, rebalancing implies that the investor sells assets that have increased

in value over the last period. However, if the knowledge about the change in the

value of an asset over a period implies a change in the expected further perfor-

mance of the value of the asset, e.g., due to time dependent variance, it is critical

that this is modeled in a satisfactory way and included in the rebalancing strat-

egy. It is well known that the optimal weights ãA,z,t are sensitive to small changes

in the parameters in the stochastic process of the assets. If our expectation re-

garding the stochastic processes may change, e.g., due to new information, then

this uncertainty should be included in the model. This will imply that the utility

is more stable in at, the no-trade region will be larger and the probability that

we rebalance to weights that we soon after find out are far from optimal due to

changes in the expected performance of the stochastic processes, is smaller.

Usually, there are some assets that have high expectations and high uncer-

tainty. If these increase as expected, we may expect to sell these assets regularly

in order to maintain the relative weights. However, if these assets have decreased

in value, it may be optimal to wait and hope that these assets will increase in

value such that a rebalancing will not be necessary. This asymmetry is shown in

Tables 5.1 and 5.4. See also discussion at the end of Section 5.0.1. The significance

of this effect depends on the difference in expectation and the variability. With the

utility function discussed in Section 4 however, the no-trade region is symmetric.

This utility function only considers properties at the moment it is evaluated and

not expected development later. Therefore, the difference in expectation between

the different assets does not influence the no-trade region.

The size of the no-trade region depends on the importance of the transaction

costs relative to the importance that the weights in the portfolio are close to the

optimal weights, ãA,z,t. By making the no-trade region larger, transactions will be

less frequent and the associated costs go down. However, this also implies that

the weights in the portfolio may be further from the optimal weights. The opti-

mal size of the no-trade region may be difficult to assess, but it is not critical that

we know the exact position since the derivative of the improvement vanishes at
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this point as we will see later in Figure 4.1. Assuming there is only proportional

transaction costs, most of the reduction in transaction costs may be ensured if one

rebalances only to the estimated boundary of the no-trade region, rather than a

full rebalance to the optimal weights. In the case with fixed cost, there is obtained

a similar improvement by rebalancing to an internal surface in the no-trade re-

gion rather than a full rebalance to the optimal weights.
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3 Utility functions

The definitions in this section are motivated by Markowitz (7). An investor wants

high expectation and low variability in the portfolio. Hence, the utility should

increase in E{WT} for some value of T > t and decrease with the variability. Some

authors argue that the utility function also should be decreasing in the expected

deviance from a reference portfolio. If we know that we will end the portfolio at

time T , it may be natural with the utility function

U(Wt) = E{WT} − d(var(WT ))
1

2 (3.1)

or

U(Wt) = E{WT} − d
var(WT )

Wt
. (3.2)

Then the end date is coming closer each day, implying that the no-trade region

is gradually increasing, since the effect of more optimal weights decreases. If we

do not know when the portfolio is ended, it is natural to weight the time with

exp(−βt). Then the relative weights of the different time-points in the future is

always the same and the no-trade region is stationary if the assets have stationary

relative increments. This leads to the following utility function

U(Wt) =

∫ ∞

t

(E{Ws} − d(var(Ws))
1

2 ) exp(−βs)ds (3.3)

for constants d > 0 and β > 0. Other alternatives include value at risk VaRαW =

P (W < α), e.g.,

U(Wt) =

∫ ∞

t

(E{Ws} − dVaRα(Ws)) exp(−βs)ds, (3.4)

or expected shortfall E{Sα(W )} = E{W |W < α}

U(Wt) =

∫ ∞

t

(E{Ws} − dE{Sα(Ws)}) exp(−βs)ds. (3.5)

The threshold α may depend on the time s and the value of the portfolio Ws′ for

s′ < s, e.g.,

αs = 0.8 max
t≤s′≤max{t,s−1}

{Ws′}.

It is possible to increase the investment K(t) > 0 or consume part of the in-

vestment K(t) < 0 by the following equation

Wt+ = Wt− + K(t) − c(Dt). (3.6)
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New investments and consumption are opportunities to rebalance with smaller

additional transaction costs than to transfer between different assets. The proper-

ties of K(T ) for T > t may be known at time t, may be stochastic or may be part

of the optimization.

Merton (8) formulates the following utility function

U(Wt) = E{

∫ T

t

U1(Kc, s)ds + U2(WT , T )} (3.7)

where the two utility functions U1 is strictly concave in −Kc (i.e., consumption)

and U2 is concave in WT . The problem is both to rebalance the portfolio and to find

the consumption Kc ≤ 0 that optimizes U. It is assumed to be one risk-free asset

with no transaction costs. Liu (6) finds the constant thresholds of the no-trade

region for each asset in this model, assuming uncorrelated geometric Brownian

motion. All rebalance is a transfer between the risk-free asset and one of the other

assets.

Leland (5) and Donohue and Yip (4) define ideal weights r̃i and use the utility

function

U(Wt) =
n

∑

i=1

bi

∫ T

t

(ri,s − r̃i)
2ds −

∑

j

c(Dtj ) (3.8)

for constants bi > 0 and where the last sum is over all times tj where there is a

rebalance. Instead of (2.5), it is assumed that transaction costs are paid by addi-

tional contributions. Leland (5) finds an approximation to the corner points in the

no-trade region with this utility function assuming geometric Brownian motion,

proportional transaction costs and one risk-free asset.

Note that the utility functions (3.1), (3.2), (3.3), (3.4), and (3.5) satisfy the as-

sumptions in the theorem. The theorem is also valid for (3.7) if we fix the con-

sumption, and for (3.8) if we set c(Dt) = 0 and include the transaction costs in

the utility function U . Properties (B)–(F) in the theorem depend on the transac-

tion costs, and, in particular, whether the transaction costs (i) are zero, or (ii) is

not identically zero; or (iii) does not contain fixed elements. If there are fixed ele-

ments in the transactions costs, it is optimal to rebalance to a point inside the no-

trade region in order to avoid a new rebalance too soon. But the rebalance should

never be to the optimal value ãA,z,t when the transaction costs have proportional

elements in addition to the fixed elements, since the marginal improvement van-

ishes when the weights approach ãA,z,t.
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4 An explicit example

In this section we illustrate the theorem by an example that is made so simple

that it is possible to estimate the no-trade region mostly by analytic formulas. Let

the utility function be

U(Wt, rt) = (1 −

n
∑

k=1

dk(rk,t − r̃k)
2)Wt. (4.1)

Note that we here have included the relative weights in the list of arguments of

U. The optimal values of the relative weights are obviously r̃ = (r̃1, r̃2, · · · , r̃n),

but in a rebalance we need to consider how much the value of the portfolio Wt is

reduced compared to the improvement due to better relative weights.

We do not know the exact form of the no-trade region. It is natural to rebal-

ance when the relative weights of one asset ri,t is high and the relative weights of

another asset rj,t are low. If a rebalance involves more than two assets, it may be

considered as several independent rebalances only involving two assets, when

we assume there is only proportional transaction costs, i.e., ck,2 = 0 for all val-

ues of k. This makes it natural to assume that we may approximate the no-trade

region by a region given by

H = {r | −Dj,i < ri − rj < Di,j for all i, j where i 6= j, and
n

∑

i=1

ri = 1} (4.2)

when there are only proportional transaction costs. We want to determine the

constants Di,j .

Consider a rebalance from asset i to asset j with i 6= j. Assume furthermore

that before the rebalance we have ri,t−−rj,t− > Di,j, and that we want to rebalance

to

ri,t+ − rj,t+ = Di,j. (4.3)

We will assume the new weights are at+ = at− + b where bi < 0, bj > 0, and

bk = 0, for k 6= i, j. With these restrictions on b equations (2.5) and (2.6) give

Wt+ = Wt− − ci,1|bi|Vi,t − cj,1|bj|Vj,t − ci,2 − cj,2. (4.4)

This equation has the solution, using equations (2.3) and (2.4),

bi =
−η − ci,2

(1 − ci,1)Vi,t
(4.5)
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and

bj =
η − cj,2

(1 + cj,1)Vj,t
(4.6)

for a constant η > cj,2. We find η by combining the above expression with (4.3).

This gives the solution

η =
ai,t−Vi,t − aj,t−Vj,t +

ci,2

1−ci,1
−

cj,2

1+cj,1
− Di,j(Wt− +

ci,2

1−ci,1
+

cj,2

1+cj,1
)

Di,j(
1

1−ci,1
+ 1

1+cj,1
) − 1

1−ci,1
+ 1

1+cj,1

. (4.7)

The above formula is useful when we want to determine the new weights in a

rebalance.

Equation (4.4) combined with the expression for the relative weights (2.2)

gives the following expression for the utility function after a rebalance

U+ = (1 −
n

∑

k=1

dk(rk,t+ − r̃k)
2)

Wt−(1 − ri,t−ci,1 + rj,t−cj,1) − ci,2 − cj,2

1 − ri,t+ci,1 + rj,t+cj,1

. (4.8)

According to Theorem 2.0.2, it is optimal to rebalance whenever the relative

weights are outside the no-trade region, and then it is rebalanced to the boundary

of the no-trade region. We find Di,j for the values of ri,t+ and rj,t+ where

∂U

∂ri,t+
−

∂U

∂rj,t+
= 0. (4.9)

If we neglect higher-order terms in ci,1 and cj,1, we get, using (4.8), that

Di,j =
ci,1 + cj,1

di + dj
+ r̃i − r̃j . (4.10)

Since we are able to find an expression for Di,j that is independent of rk,t for

k 6= i, j, by neglecting higher order terms in ci,j, this indicates that (4.2) is a good

approximation to the no-trade region.

We will then consider the case with also a fixed transaction fee, i.e., ck,2 > 0.

For simplicity we neglect the case where it is optimal to rebalance more than two

assets at the same time. Assume the no-trade region may be approximated by a

region on the form

G = {r | −Ej,i < ri − rj < Ei,j for all i, j where i 6= j and
∑n

i=1 ri = 1 }. (4.11)

In this case it is optimal to rebalance whenever the relative weights are outside G,

and then it should be rebalanced to the border of H since this is the optimal value

when the flat fee is paid. We find Ei,j from the values of ri,t− and rj,t− where the

equation U− = U+ is satisfied. Here U− is defined by (4.1) and U+ is defined by

(4.8) with ri,t+ − rj,t+ defined by (4.3) and (4.9). This gives

Ei,j = 2
( ci,2 + cj,2

(di + dj)Wt−
B +

(ci,1 + cj,1)
2

4(di + dj)2
(1 − B)2

)
1

2

+
ci,1 + cj,1

di + dj
B + r̃i − r̃j (4.12)
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Figure 4.1. The top curve is the utility as a function of r and Wt = 1. This has optimum for

r̃ = 0.2. The two other curves show the utility that may be obtained from a rebalance from

rt− = 0.3. The top one of these has only proportional transaction fee while the lowest

also has flat fee. Notice that both of these curves have optimum for the same value r that
is the upper bound of the no-trade region with only proportional costs. The maximum of

the lowest curves is equal to U(0.3), illustrating that the boundary of the no-trade region

including both proportional and flat transaction costs is 0.3. Since the two curves at the

bottom are quite flat close to the optima, we see that the exact position of the no-trade

region is not critical.
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where

B =
4(di + dj) − (ci,1 + cj,1)

2

4(di + dj)(1 − r̃ici,1 + r̃jcj,1) − 2(ci,1 + cj,1)2
≈ 1.

This expression has the property that Ei,j > Di,j and

lim
ci,2+cj,2→0

Ei,j = Di,j .

Note that ci,2 + cj,2 scales with Wt−. Since the expression for Ei,j is independent of

rk for k 6= i, j, this indicates that (4.11) is a good approximation for the no-trade

region.

If we wanted to include rebalance of three assets at a time, we should define

the set

G3 = {r | − E3
i,k,j < ri − rj − rk < E3

i,j,k (4.13)

for all different i and j > k and
∑n

i=1 ri = 1}.

We could define similar sets for rebalances involving 4, 5, · · · assets at the same

time. The no-trade region would then be defined as the intersection of G and the

Gi sets. Then each set Gi contributes to a reduction of the no-trade region if there

is a corresponding rebalance contribution to an increase in the utility. However,

the computational work increases significantly by including rebalances involving

more than two assets.

This utility function is illustrated in Figure 4.1 with n = 2. The figure shows

three utility curves, the utility as a function of r1,t and two utility curves that may

be obtained with a rebalance from a r1,t− = 0.3 assuming either only proportional

transaction costs or both proportional and flat transaction costs. We have chosen

constants r̃1 = 0.2, ck,1 = 0.04 and ck,2 = 0.0054 for k = 1, 2. This implies the

no-trade regions

H = {r1 | 0.18 < r1 < 0.22}

and

G = {r1 | 0.1 < r1 < 0.3}

when only proportional transaction fee and both proportional and flat transaction

fee.
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5 A numerical example

We will use the utility function

U(Ws|Wt) =

∫ ∞

t

(

E{Ws|Wt} − d
var(Ws|Wt)

Wt

)

exp(−β(s − t))ds. (5.1)

The expression Ws|Wt denotes the conditional distribution for Ws for s > t given

Wt. This utility function is a function of Ws for s > t. When we evaluate it at time

t, then Wt is known and used for scaling the variance. The utility is homogeneous

and hence gives a stationary no-trade region Ωt in the relative weights rt if the

assets have stationary relative increments. Many other utility functions will have

similar properties. In this example, we have chosen to be more precise for this

utility function instead of making the text more genera,l but also more technical.

We assume the portfolio is evaluated once each day, and only then it is decided if

one wants to rebalance.

We will first show how to find the optimal weights for this utility function.

Then we will find an approximation for the utility function that may be used in

order to find an approximate no-trade region. We will show that this approxima-

tion gives good estimates for the no-trade region. However, simulations may give

better estimates.

We will assume all assets are lognormal distributed and find optimal weights

and an approximation for the no-trade region. Let Xt = (Xi,t, X2,t, · · · , Xn,t) where

Xt ∼ N(µXt, ΣXt).

The correlation matrix is ΣX = {σ2
X,i,j}i,j. Let

Vi,t = exp(Xi,t),

and

νi = µX,i + σ2
X,i,i/2.

Then we have the following

E{Vi,t} = exp(νit),

and

Var(Vi,t) = exp(2νit)(exp(σ2
i,it) − 1).

Recall that

Wt =
∑

i

ai,tVi,t.
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Assume we continuously rebalance such that

ri,t =
ai,tVi,t

Wt

is constant in time. Define

λ =
∑

i

ri,tνX,i (5.2)

and

γ = 2
∑

i

ri,tνX,i +
∑

i,j

ri,trj,tσ
2
X,i,j . (5.3)

Then we have

E{Wt} = exp(λt), (5.4)

and

E{W 2
t } = exp(γt). (5.5)

The utility function (5.1) gives

U =
1

β − λ
− d

( 1

β − γ
−

1

β − 2λ

)

. (5.6)

The optimal relative weights r̃i,t are the n variables that optimize (5.6), i.e., where

∂U/∂ri,t = 0 under the constraint that
∑

i ri,t = 1. When there are no transaction

costs it is optimal to rebalance continuously to the optimal relative weights r̃i,t.

When there are transaction costs, there is a no-trade region according to The-

orem 2.0.2. We assume there is only proportional transaction costs and that the

no-trade region has the form (4.2). The optimal values of Di,j may only be found

by CPU intensive simulation. However, we will find an approximation that does

not need simulation. This approximation is described for n = 2 and later it is

shown how to apply it for n > 2. In Section 4 it is described how to rebalance to

the boundary of the no-trade region.

5.0.1 Estimate U when n = 2

For n = 2 it is possible to prove that the no-trade region is

H2 = {r1 | D− < r1 < D+}, (5.7)

only assuming that the utility function is concave and that the transaction costs

has the form (2.6). In a simulation the ratio r1 will vary between the two limits D−

and D+. If the ratio moves outside the interval, it is rebalanced to the boundary.

We will first describe how r varies in this interval. Fix the time t and let V1,∆t and

W∆t represent the change from t to t + ∆t in V1 and W , respectively. We have

V1,t+∆t = V1,tV1,∆t = V1,t exp(X1,∆t)
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and

Wt+∆t = WtW∆t = Wt(r1 exp(X1,∆t) + (1 − r1) exp(X2,∆t))

≈ Wt(exp(r1X1,∆t + (1 − r1)X2,∆t)).

This gives

r1,t+∆t =
V1,t+∆t

Wt+∆t

= r1,t
V1,∆t

W∆t

≈ r1,t(exp((1 − r1,t)(X1,∆t − X2,∆t)).

This implies with ∆r = r1,t − r1,t−∆t that

E{∆r} ≈ r1,t−∆t(E{exp((1 − r1,t−∆t)(X1,∆t − X2,∆t))} − 1), (5.8)

and

E{(∆r)2} ≈ r2
1,t−∆tE{(exp((1 − r1,t−∆t)(X1,∆t − X2,∆t)) − 1)2}. (5.9)

We will approximate the distribution of ∆r with a normal distribution φ(∆r) ∼

N(µ, σ2). Let p(r1) be an approximation to the distribution of r1 in the interval

[D−, D+]. We want a p(r1) that satisfies

p(r1)φ(µ) = p(r1 + µ)φ(−µ), r1, r1 + µ ∈ (D−, D+). (5.10)

The motivation for this is that density at r1 multiplied by the probability to in-

crease r1 to r1 + µ should be equal to the density at r1 + µ multiplied by the prob-

ability to decrease from r1 + µ to r1 since p(r1) is independent of time. Equation

(5.10) has as solution

p1(r1) = d1 exp(4µr1/σ
2)

on the open interval (D−, D+). In addition, there is a positive probability that r1

is equal the endpoints D− and D+. Therefore, we assume p(r1) has the form

p(r1) = d1 exp(4µr1/σ
2) + d2δ(D−) + d3δ(D+), (5.11)

where

d3 = d3P (∆r > 0) + P (r1,t > D+ | r1,t−∆t < D+)

= d3P (∆r > 0) +

∫ D+

D−

∫ ∞

D+−r1

p1(r1)φ(∆r)d(∆r)dr1.

We approximate p1(r1) in the double integral with p1(D+) and get

d3 =
p1(D+)

∫ ∞

0
φ(∆r)∆rd(∆r)

1 − P (∆r > 0)
.

Similarly, we find

d2 =
−p1(D−)

∫ 0

∞
φ(∆r)∆rd(∆r)

1 − P (∆r < 0)
.
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The three constants d1, d2 and d3 are scaled such that
∫

p(r1)dr1 = 1.

Then the transaction costs due to the upper limit are

∫ D+

D−

∫ ∞

D+−r1

p(r1)φ(r∆t)(r1 + r∆t − D+)(c1,1 + c2,1)d(∆r)dr1

= (c1,1 + c2,1)

∫ ∞

0

φ(∆r)

∫ D+

D+−∆r

p(r1)(r1 + ∆r − D+)dr1d(∆r)

≈
1

2
(c1,1 + c2,1)p(D+)

∫ ∞

0

φ(∆r)(∆r)2d(∆r).

Using a similar calculation for the transaction costs due to the lower limit, gives

the following expression for the transaction costs in a time step

C∆t =
1

2
(c1,1 + c2,1)(p(D−) + p(D+))E{r2

∆t}.

The expectation and variance of Wt are calculated as follows, assuming it fol-

lows the properties of lognormal distributions,

E{W q
t } = (E{W q

∆t})
t/∆t = (E{W q

C,∆t(1−C∆t)
q})Ndt = (1−C∆t)

qNdt(E{W q
C,∆t})

Ndt

(5.12)

where q = 1, 2. In this calculation, we have assumed the same relative increase

in Wt in each time step. The variable WC,∆t is the increase in W in one time step

∆t when we neglect the reduction due to transaction costs in this time step. Let

Nd = 1/∆t be number of time steps in a year. Let furthermore

λ̂2 = Nd log(
∑

i

pi(RiE{V1,∆t} + (1 − Ri)E{V2,∆t})) + Nd log(1 − C∆t)

and

γ̂2 = Nd log(
∑

i

piE{(RiV1,∆t + (1 − Ri)V2,∆t)
2)} + 2Nd log(1 − C∆t)

where Ri and pi for i = 1, 2, · · · , m is a discretization of p(r) for r ∈ (D−, D+). Ri

denotes values in the interval and pi the corresponding probability.

The expression exp(λ̂2t) may be used as an estimate for E{Wt} and the expres-

sion exp(γ̂2t) as an estimate for E{W 2
t }. Then we may estimate the utility function

U by

Û2 =
1

β − λ̂2

− d(
1

β − γ̂2
−

1

β − 2λ̂2

). (5.13)

Instead of finding the two parameters D−, D+, it is more stable to find the

parameters for the length of the no-trade region D+ − D− and for the position

relative to the optimal weight r̃, e.g., P = r̃−D−

D+−D−

.

Assume asset 1 has higher expected increase than asset 2. Then µ > 0 and the

function p defined in (5.11) is increasing. Since the object function is quite sym-

metric around the optimal weights, it is more important that the right end point of
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the no-trade region is closer to the optimal weights than the left end point. Hence,

the relative position will satisfy P > 0.5. This implies that when asset 1 has lower

relative weight than the optimal, we are more reluctant to impose a rebalance

than for asset 2, since asset 1 is more likely to increase without a rebalance.

Optimization of the above approximation does not give the optimal no-trade

region for the utility function U. However, experiments show that the above ap-

proximation gives almost as large values of the utility function as when applying

the optimal no-trade region. The approximation may also be used as a first guess

on the no-trade region. Then it is possible to adjust these values based on a simu-

lation if wanted.

5.0.2 Estimate U when n > 2

We approximate the no-trade region by a region on the form (4.2). For n > 2

we use the same technique for each pair ri and rj . The quantity ri − rj varies

between two boundaries −Dj,i < ri − rj < Di,j. If we find an approximation to

the pair of boundaries −Dj,i, Di,j separately from the other Dk,m, we may find

−Dj,i, Di,j similarly as we found D−, D+. The optimal values may only be found

by a simulation of all the boundaries simultaneously.

Let us fix i and j and set ∆r = ri,t−rj,t−ri,t−∆t+rj,t−∆t. Similar to the argument

for n = 2, we have for n > 2

∆r = ri,t−∆t

(Vi,∆t

W∆t
− 1

)

− rj,t−∆t

(Vj,∆t

W∆t
− 1

)

.

This gives

E{(∆r)q} = E{(ri,t−∆t(
Vi,∆t

W∆t
− 1) − rj,t−∆t(

Vj,∆t

W∆t
− 1))q}. (5.14)

We may use the approximation

Vi,∆t

W∆t
≈ exp(Xi,∆t −

n
∑

k=1

rk,tXk,∆t) (5.15)

in order to find expressions for E{(∆r)q}.

For n = 2, we defined discrete values Ri in the interval (D−, D+). Similarly,

we may define

Ri,k =
1

2
(−Dj,i − r̃i + r̃j) +

1

2m
(k −

1

2
)(Di,j + Dj,i)

and Rj,k = −Ri,k + r̃i− r̃j for k = 1, 2, · · · , m. Then Ri,k−Rj,k varies in the interval

(−Dj,i, Di,j). In order to simplify some expressions below we define Rq,k = r̃q for

q 6= i, j and for k = 1, 2, · · · , m. This is a first order approximation to the average

value of rq. Let pk be the probability for the discrete value Ri,k defined using (5.14)
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and an expression similar (5.11) for n > 2. Note that we find pk for each pair i, j.

We then have the following approximations to λ and γ using (5.12)

λ̂ = Nd log(

m
∑

k=1

pk

n
∑

v=1

Rv,kE{Vm,∆t}) + Nd log(1 − C∆t)

and

γ̂ = Nd log(
m

∑

k=1

pk

n
∑

v=1

n
∑

u=1

Rv,kRu,kE{Vv,∆tVu,∆t}) + 2Nd log(1 − C∆t).

We have

E{Vv,∆t} = exp(µ∆X,v + σ2
∆X,v/2)

and

E{Vv,∆Vu,∆t} = exp(µ∆X,v + µ∆X,u + (σ2
∆X,v + σ2

∆X,u)/2 + σ2
∆X,v,u),

where µ∆X,v, σ2
∆X,v and σ2

∆X,v,u correspond to the expectation and variance for

variable v and the correlation between v and u per time step.

The approximation Û to U is calculated from the formula

Û =
1

β − λ̂
− d

( 1

β − γ̂
−

1

β − 2λ̂

)

. (5.16)

This approximation may by used in order to find an approximation to the

optimal boundaries (−Dj,i, Di,j). In this approach we find the boundaries for each

pair i, j separately. Also in this case, it is stable to parameterize the length of the

interval Dj,i + Di,j and the position relative to the difference between the optimal

weights r̃i − r̃j , e.g.,
r̃i−r̃j+Dj,i

Di,j+Dj,i
. Application of the above approximation will not

give the optimal no-trade region for the object function U. Experiments show that

optimizing the approximation gives almost the optimal value. The approximation

may also be used in order to find a first guess on the no-trade region. Then it is

possible to adjust these values based on simulation if wanted.

5.0.3 Simulation of portfolios
In this section we find the no-trade region by simulation using the utility function

(5.1). The value of the assets Vi,t is modeled by logarithmic Brownian motion. In

the simulation it is rebalanced to the boundary of the no-trade region when the

portfolio is outside the region using equation (4.7).

Table 5.1 shows the no-trade region for n = 2 for different values of the pro-

portional transaction costs and with and without correlation between the differ-

ent assets. Note that when adding correlation, it is necessary to change d in order

to have optimum for r̃ = 0.2. Table 5.2 compares the utility of four different strate-

gies. It is shown that optimal rebalance gives highest utility.
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d ci,1 ρ r̃ D− D+

2.72 0.01 0 0.2 0.165 0.212

2.72 0.001 0 0.2 0.186 0.203

2.15 0.01 0.3 0.2 0.167 0.212

Table 5.1. The critical values for n = 2 with proportional transaction. The two assets

are geometric Brownian motion with annual expectation and standard deviation equal to
µV = (1.08, 1.02) and σV = diag(0.2, 0.04), and discounted by β = − log(0.8).

strategy U EW1 U1 Cn Cc

no rebalance 4.8089 1.0325 1.0254 0 0

monthly rebalance 4.9230 1.0307 1.0240 12 0.0019

optimal rebalance (approximate) 4.9457 1.0318 1.0251 12 0.00039

optimal rebalance (simulated) 4.9460 1.0316 1.0254 13 0.00047

Table 5.2. Comparison of four different rebalancing strategies with n = 2. The parameters

are as in the top row of Table 5.1 including the threshold for the optimal rebalance. The

quantity U is an estimate for the utility function, E{W1} is the expected value and U1 =

E{W1} − dvar(W1) is another evaluation of the portfolio after 1 year, Cn and Cc denote

the annual number of transactions and annual transaction costs, respectively.

Referring to Table 5.2, we see that the simulated optimal rebalance has as ex-

pected highest utility function, but using the approximation to the no-trade re-

gion gives only slightly lower utility. The optimal no-trade region, assuming the

form (4.2), is small adjustments of the no-trade region given by approximate for-

mulas and computed by simulation. The case of no rebalance increases the ratio

of the high volatile asset giving higher expected value of portfolio E{W1} but at

a cost of higher variance. The difference in variance increases faster than the dif-

ference in expected value. This is seen by comparing no rebalance and optimal

rebalance after 1 year when we use the same d value as in the utility function.

Optimal rebalance reduces the transaction costs to 1/4 compared to monthly re-

balance.

The second example with n = 5 correlated assets and proportional transaction

costs is shown in Tables 5.3–5.5. Table 5.3 shows the parameters for the five assets

with values that are assumed realistic for the Norwegian stock marked, interna-

tional stock marked, Norwegian real estate, Norwegian bonds, and international

bonds. The table shows the optimal relative weights for the five assets with the

utility function (5.1) and three different values of d. Table 5.4 shows the no-trade

region for d = 2. Note how the length L varies between the different combina-

tions of assets and the position in some cases is far from the symmetric 0.5 value.

Table 5.5 is similar to Table 5.2 but for the example with five assets. The table
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i µi σi ρi,1 ρi,2 ρi,3 ρi,4 ρi,5 r̃i,d=0.5 r̃i,d=1 r̃i,d=2

1 1.1 0.22 1 0.7 0.1 0.3 0.1 0.223 0.152 0.083

2 1.09 0.20 0.7 1 0.05 0.1 0.2 0.175 0.129 0.092

3 1.05 0.12 0.1 0.05 1 0 0 0.255 0.201 0.157

4 1.035 0.04 0.3 0.1 0 1 0.3 0.071 0.193 0.306

5 1.035 0.04 0.1 0.2 0 0.3 1 0.0277 0.325 0.362

Table 5.3. The critical values for n = 5 with proportional transaction costs ci,1 = 0.01 and

three different d values. The parameters are expectation, standard deviation, correlation,
and the optimal values for each asset for the different values of d.

i/j 1 2 3 4 5

1 — 0.094 0.094 0.044 0.041

2 0.69 — 0.069 0.053 0.058

3 0.52 0.59 — 0.12 0.10

4 0.75 0.73 0.67 — 0.14

5 0.50 0.73 0.51 0.67 —

Table 5.4. The optimal no-trade region for the example shown in Table 5.3 with d = 2.

Above the diagonal is the length L of the interval for ri − rj and below the diagonal is

the position P of the interval. The no-trade region is then r̃i − r̃j − LP < ri − rj <

r̃i − r̃j + L(1 − P ).

strategy U E{W1} U1 Cn Cc

no rebalance 5.2745 1.04761 1.04228 0 0

monthly rebalance 5.3692 1.04549 1.04092 12 0.0022

optimal rebalance (approximate) 5.3988 1.04693 1.04239 36 0.00049

optimal rebalance (simulated) 5.4000 1.04696 1.04240 36 0.00050

Table 5.5. The table is exactly as Table 5.2 except that n = 5 and we have used data

as in Table 5.3. It compares the strategies, no rebalance, monthly rebalance, and optimal

rebalance with no-trade region found by approximation and by simulation. The optimal

no-trade region is as in Table 5.4.
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compares four different strategies and shows that the optimal rebalance strategy

gives highest utility. The approximation to the no-trade region gives almost as

good results as the method based on simulation. The no-trade region is slightly

different in the two cases and the result is not sensitive to the exact position. Note

that we also here get a reduction of transaction costs to 1/4 compared to monthly

rebalance. But in this case the expected annual number of rebalances is 36 which

is much larger than in monthly rebalance.

The calculation in both examples is based on 10000 simulations until 10 years

and then estimated tail for t > 10. For n = 5 one such simulation takes about 3

hours using the statistical package R on a standard desk top computer. Finding

the optimal no-trade region by estimating the 20 parameters from a good starting

point, requires at least 100 simulations which gives about 2 weeks of simulation

time. The approach based on approximation took about 20 seconds which is an

improvement compared with simulation of the order 105.
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6 Closing remarks

This paper discusses optimal rebalance of portfolios with transaction costs. We

have shown that for n symmetric assets and a general utility function, there is

a no-trade region. If the transaction costs are proportional, with no flat or fixed

elements, it is optimal to rebalance to the boundary of the no-trade region when-

ever the portfolio is outside the no-trade region. If the transactions costs have flat

elements, it is optimal to rebalance to an internal surface in the no-trade region

whenever the portfolio is outside the no-trade region. It is never optimal to have

a full rebalance or a calendar-based rebalance.

The theory is illustrated on two examples; one using analytic calculations and

approximations and one using simulations. The last example is simulated for n =

2 and n = 5. Three different rebalance strategies, namely, no rebalance, monthly

rebalance, and optimal rebalance are tested using simulations. Both for n = 2

and n = 5 the transaction costs are reduced by a factor 4 compared to monthly

rebalance. These figures are slightly better than other papers on optimal rebalance

for a particular utility function. The reduction in transaction costs is probably

mainly due to the fact that we rebalance to the boundary of the no-trade region

instead of a full rebalance. The reduction in transaction costs is probably not very

critical to the exact position of the boundary of the no-trade region. But in order to

optimize the utility, it is critical to have an optimal no-trade region. The example

shows that the size of the no-trade region depends heavily on the properties of

the stochastic processes, not only the size of the transaction costs.
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