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SUMMARY
Seismic inversion is usually treated as a deterministic problem. However, since the seismic 
amplitude  data  contains  noise  and  the  frequency  resolution  is  limited,  high  and  low 
frequencies will be uncertain. For a consistent treatment of these uncertainties, a geostatistical 
inversion method can be used.

We have used a Bayesian linearised AVO inversion method for a turbiditic channel system 
reservoir containing two offset stacks. In this Bayesian approach, the earth model parameters 
Vp, Vs, and ρ are given by a multi-normal distribution where spatial coupling is imposed by 
correlation functions. A linearised relationship between the model parameters and the AVO 
data, allows us to obtain the posterior distribution for the earth model parameters analytically.

The  posterior  distribution  represents  a  laterally  consistent  seismic  inversion  where  the 
solution in  each location depends on the solutions  in all  other  locations.  The distribution 
contains the best estimate of the model parameters as well as their associated uncertainties. 
Using kriging, full frequency information from well data are spread in a volume around the 
wells; and from the posterior uncertainty, we generate full frequency solutions for the entire 
volume.

The Bayesian approach is fast and the inversion gave good match with well log data.
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INTRODUCTION

Seismic inversion has traditionally been treated as a deterministic problem. However, there 
are several uncertain aspects. There is noise in the seismic amplitude data, and the frequency 
resolution is limited so neither high nor low frequencies can be resolved from the seismic data 
alone. Using a geostatistical approach to the problem of seismic inversion, the uncertainty 
may be treated in a consistent and robust way. We have used the Bayesian linearised AVO 
inversion method of Buland et al. (2003) to take the uncertainty in seismic data into account. 
In this method, the logarithm of the earth model parameters  Vp,  Vs, and ρ defines a multi-
normal distribution in which spatial coupling is imposed by correlation functions. A linearised 
relationship  between  the  model  parameters  and  the  AVO  data,  allows  us  to  obtain  the 
posterior distribution for the earth model parameters analytically.

The  posterior  distribution  represents  a  laterally  consistent  seismic  inversion.  The  lateral 
correlation follows the stratigraphy of  the  reservoir  by following the  top and base of  the 
inversion volume. As a consequence of the spatial  coupling,  the solution in each location 
depends  on  the  solutions  in  all  other  locations.  From  the  posterior  distribution  the  best 
estimate of the model parameters and a corresponding uncertainty can be extracted. Also, 
since the distribution is multi-normal, kriging can be used to match the well data. This spreads 
full  frequency information in a volume around the wells.  Full  frequency solutions can be 
generated by sampling from the posterior distribution. A set of such solutions represents the 
uncertainty of the inversion.

We have applied this approach to a turbiditic channel system located in a deepwater reservoir. 
Two seismic volumes having 15 and 40 degrees offset stacks were used for the inversion. 
Both volumes were sampled every 4ms.

THEORY

An isotropic, elastic medium is completely described by three material parameters {Vp(x, t), 
Vs(x, t),  ρ(x, t)}, where  Vp is  the  P-wave velocity,  Vs is the  S-wave velocity, and  ρ is the 
density. The elastic parameters depend on the lateral position  x and on the vertical seismic 
travel time  t. If we model the elastic parameters as log-Gaussian random fields, the vector 
field m(x, t) = [lnVp(x, t), lnVs(x, t), lnρ(x, t)], becomes Gaussian. That is

(1) m(x, t) = N (μm(x, t), Σm),

where μm(x, t) contains the expectations of the logarithm of the elastic parameters for all x and 
t,  and  Σm defines  the  covariance  structure.  The  covariance  function  is  assumed  to  be 
translationally invariant (i.e. stationary and homogeneous).

If we use a weak contrast approximation to the seismic reflectivity function  c(x, t,  θ) (see 
Stolt and Weglein (1985)), and use a constant value for the ratio Vp/Vs in the expressions, we 
get  a  linear  relationship  between  the  elastic  parameters  and  the  reflectivity  function. 
Moreover, if we let the seismic data be represented by a convolutional model, and model the 
data as the seismic response of the earth model plus an error term, where the error is assumed 
zero mean coloured Gaussian noise, the seismic data dobs are also multi-normal.

In a Bayesian setting, prior models for the earth and error terms are set up based on prior 
knowledge  obtained  from well  logs,  and  the  seismic  inversion  is  equivalent  to  finding  a 
posterior distribution for the earth given the seismic data. The linear relationship between the 
earth model parameters and seismic data implies that the simultaneous distribution for m and 
dobs is also multi-normal. The posterior distribution, that is, the distribution for  m given dobs 

can therefore be obtained using standard theory:

(2) μm|dobs = μm + ΣT
d,m Σ-1

d (dobs − μd),
(3) Σm|dobs = Σm − ΣT

d,m Σ-1
d Σd,m,
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Figure 1: Cross sections of the background model volumes for Vs and ρ. In the prior model, the natural 
logarithms of these volumes are used. The background model for Vp is similar to that of Vs.

where  μd is  the expected  observation,  that  is,  the  seismic  response  of  μm,  and  Σd,m is  the 
covariance matrix between logarithmic parameters and observations. For more details on how 
to compute these, see Buland et al. (2003).

The computations given in equations (2) and (3) involves the inverse of Σ-1
d. Given nθ offset 

stacks and inversion volumes with  n cells, this matrix has  nθ
2  n2 elements, making a direct 

inversion impossible for real cases. However, the covariance function for a homogeneously 
correlated spatial variable is diagonalised by a 3D Fourier transform (see Christakos (1992)), 
allowing the inversion problem to be solved independently for each frequency component. 
This  reduces  the  complexity  of  the  computations  dramatically,  and  the  calculation  time 
becomes O(n logn). Details can again be found in Buland et al. (2003). 

DEEPWATER RESERVOIR CASE

The prior model for the Bayesian inversion consists of the expectation value μm and the spatial 
correlation Σm. Both of these must be assigned values before the inversion. 

The  expectation  μm  is  the  background  model  for  the  inversion,  and  is  needed  to  set  the 
appropriate levels for Vp, Vs, and ρ in the inversion volume. As seen in equation (2), the signal 
response of the background, μd, is subtracted from the seismic data in the inversion process, 
and after the inversion,  the background is added. To generate the background model,  low 
frequencies were extracted from well logs for Vp, Vs, and ρ by filtering raw logs to 6 Hz. 
These filtered logs were aligned according to stratigraphic depth, and an arithmetic mean was 
estimated for each elastic parameter. This mean was used as a global depth trend throughout 
the volume. To also account for local information contained in wells, the difference between 
the 6 Hz log and the global trend was interpolated into the volume using kriging. In Figure 1 
we have shown cross sections of the final background volumes.

The parameter variances and covariances and the temporal correlation which constitute parts 
of  the  covariance  matrix  Σm,  were  estimated  directly  from well  data,  while  a  parametric 
correlation functions with ranges 1500m and 500m were used for the lateral correlation. This 
lateral correlation was also used in the error model, while the temporal error correlation was 
partly  computed  from the  wavelet  and  partly  white  noise.  The  noise  at  40  degrees  was 
assumed to be uncorrelated with the noise at 15 degrees.

INVERSION RESULTS

The inversion interval  was set  to include 100ms over  and under the structure depicted in 
Figure 3. The inversion was run with a 25m×25m  lateral resolution and a sampling density of 
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Figure 2: Well logs showing density, acoustic impedance, and μρ for the two wells. Each well log shows a 
6 Hz high cut filtered well log (white), a 40 Hz high cut filtered well log (green), and the inversion (red).  
Also outlined is the interval of reservoir interest (orange).  

Figure 3: Cross sections which pass through well 2 and show predicted and simulated murho (μρ). 

1ms. This resulted in a 446×221×300 grid containing some 30,000,000 grid cells. Using a 
standard 64 bits Linux PC, a simulation run conditioned to wells completed in 15 minutes.

In Figure 2, we show well logs for the two wells and the inversion results. Since well 1 is 
deviating, the best estimates are obtained in well 2. Moreover, the parameter estimated best is 
the  μρ, but the acoustic impedance (AI) is also fairly good. For the density the deviations 
from the background model is too small. This is possibly because the density contrast has 
much less variability than Vp and Vs, hence most of the variability in the reflection coefficients 
is explained by the latter contrasts. The μρ was later used for facies modelling.

In Figure 3, four different inversion results are presented: predicted μρ (top left), predicted μρ 
conditioned  to well data  (top right)  and two different  simulations of  μρ  also conditioned to 
well data. For the prediction we have plotted the 40 Hz filtered well data for comparison. The 
cross section shows good match between predicted μρ and well log data. The prediction is 
frequency limited with the maximum  frequency  of  around 40-50 Hz, while  the  simulations
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Figure 4: Uncertainties (spectral densities) for Vs (left) and Rho (right) for each frequency. The prior 
uncertainty is shown as black and the posterior uncertainty as red. Also shown are the spectral densities 
of the near wavelet (blue) and the far wavelet (green).

shown in Figures 3 contain the same frequency range as the well logs.

In addition  to  updating  the  expected  values  for  the  elastic  parameters,  the  inversion  also 
reduces the uncertainty, as seen in equation (3). The variance is reduced by 45%, 35%, and 
5% for the parameters Vp,  Vs,  and ρ respectively. The largest reduction is for frequencies 
between  5Hz  and  55Hz,  consistent  with  the  frequency  content  of  the  seismic  data.  The 
uncertainty reduction for each frequency is illustrated by the spectral densities (the Fourier 
transform of the temporal correlation) shown in Figure 4. 

CONCLUSIONS

The inversion approach used for this case study has the following main advantages:
1) The method is fast compared with traditional inversions.
2) Spatial coupling both in parameters and noise is handled correctly. Spatial correlation 

between traces creates realistic spatial continuity.
3) In addition to the prediction (expected value), simulations conditioned to well logs 

are generated. This gives an uncertainty assessment in the inversion parameters. 
4) It  is  possible  to  use  stochastic  simulation  to  create  realizations  of  high-resolution 

seismic inversions by drawing from the posterior probability distribution.

Four assumptions are made, two of which are common: The weak contrast approximation and 
the convolution model. In addition, the elastic parameters are assumed log-Gaussian fields, 
second-order  stationary around the background model.  Finally, it  is  also assumed that  the 
seismic residuals are second-order stationary Gaussian fields. The stationarity is needed to 
achieve the diagonalisation through the Fourier transform, and is the most limiting aspect of 
the approach. For the current case, the stationarity assumptions seems to be justified.
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