
1 Introduction

The introduction of well tests combined with ordinary core and log measurements in
petrophysical reservoir modelling gives data on very di�erent scales. Well tests informs
about the e�ective permeability averaged over a volumetric region, while the core or log
data gives direct or indirect information on a small scale. In the geostatistical modelling
(prediction and/or simulation) the conditioning on both types of data should be satis�ed.
This is in the present paper achieved by looking at the well test variable as a spatial
average of the small scale variable and an appropriate �lter. This convolved variable
is included in the kriging equation. The covariances used in the kriging are then not
only between cell values, but between regions consisting of a potentially high number
of cells. This is previously addressed in e.g. Holden et.al.(1995) and Srinivasan and
Journel (1998). With the number of grid cells involved in a realistic model, reduction of
computation time is a crucial matter. Using Fast Fourier Transform on the covariances
in place of straightforward calculations is highly e�cient. In addition to presenting the
methodology, a simple case study is included.

2 Well test variable

The petrophysical property of interest (absolute permeability) in a location u in the 3D
simulation box, is represented by a random function P (u). In addition well tests give rise
to another random function P̄ (u) de�ned as an average value of P taken over a region
with center in u.

The averaging relationship between P and P̄ is de�ned as a convolution:

P̄ (u) =
∫

f(u − v)P (v)dv ≡ f(u) ? P (u), (1)

for some appropriate �lter function f .

The �lter function is used to de�ne the region of in�uence for the well test and
compute the weights relative to position inside the region. The physics from well tests
suggests a cylinder as a reasonable representation of the well test region. Figure 1
describes this region with R as the radius and H the distance from the center to the top
or bottom. The contributions from the lateral and the vertical dimensions are assumed
independent. We write this as

f(u) = C · flateral(u) · fvertical(u), (2)

where C is a normalization constant assuring that
∫

f(u) = 1. With |r| being the radial
distance from u to the center of the cylinder and |h| the vertical distance from u to the
centerplane of the cylinder, we have:

flateral(u) = 1 − r

R
for |r| < R

fvertical(u) = 1 − 3
2

(
|h|
H

)
+

1
2

(
|h|
H

)3

for |h| < H,

and zero elsewhere. This choice of f gives a damped and smooth behaviour towards the
edges of the cylinder to ensure numerical stability in the Fourier transform.
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Figuur 1: The cylindrical shape of the region in�uenced by a well test.

3 Inverse block kriging

Suppose the observed values of P are p = {p(u1), . . . , p(un)}T and the observed values of
P̄ are p̄ = {p̄(un+1), . . . , p̄(un+m)}T. The expected values of P in the observation points
are represented by the vector m and the expected values of P̄ in the observation points
by m̄. These values along with the mean value m(u) are estimated using generalized
least squares methods.

The kriging equation for the prediction of P (u) is

P ∗(u) = m(u) + [c(u) c̄(u)]
[

C C̄
C̄T ¯̄C

]−1 [
p−m
p̄− m̄

]
, (3)

where c(u) is the vector of the covariances between P (u) and the log observation points
and c̄(u) is the vector of the covariances between P (u) and the well test observation
points. C is the n × n matrix of covariances of the log observations, C̄ is the n × m
matrix of covariances between log and well test observations and ¯̄C is the m×m matrix
of covariances of the well test observations. Equation (3) is an inverse block kriging
problem where a point value is predicted from average values.

To solve equation (3) we need to evaluate the covariances

C(u, u′) = Cov{P (u), P (u′)}
C̄(u, u′) = Cov{P (u), P̄ (u′)} = Cov{P̄ (u), P (u′)}
¯̄C(u, u′) = Cov{P̄ (u), P̄ (u′)}.

Recalling the convolution and �lter function f in (1) we can write

C̄(ui, uj) =
∫

f(uj − u)C(ui, u)du

= σ2 · [f(uj) ? ρ(|ui − uj |)], (4)

where σ is the standard deviation of P (u), and ρ(|ui − uj |) is the correlation coe�cient
between P (ui) and P (uj) only depending on the distance between the two locations.
Similarily for the double convolved covariance we have

¯̄C(ui, uj) =
∫

f(ui − uj)C̄(u, uj)du

= σ2 · [f(ui) ? f(uj) ? ρ(|ui − uj |)]. (5)
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Computing the correlations involving well test observations directly, might typically in-
crease the number of calculations signi�cantly depending on the size of the well test region
and the grid resolution. Using Fast Fourier Transform is a highly e�cient approach for
reducing the computational e�ort.

4 Calculating the covariances using Fast Fourier Transform

If F denotes the Fourier transform, using the convolution theorem (i.e. F (f ? g) =
F (f) ·F (g)) gives that

C̄(ui, uj) = σ2 ·F−1[F (f(uj)) ·F (ρ(|ui − uj |))] (6)

¯̄C(ui, uj) = σ2 ·F−1[F (f(ui)) ·F (f(uj)) ·F (ρ(|ui − uj |))]. (7)

These calculations can be performed using the Fast Fourier Transform (FFT). The
FFTW package from MIT described in Frigo and Johnson (2005) has been used. The
algorithm to �nd the covariances in (6) and (7) is as follows:

1. Decide the size of the FFT-grids. This has to be (i) big enough to avoid
cyclicity and (ii) designed for execution speed. Since we use the same grid for both
the single and the double convolution, the minimum size is twice the range of P
plus twice the radius R of the well test region.

2. Fill the grids. The �lter grid is �lled with weights given by f(u′) in (2) and the
correlation grid is �lled with values of the correlation function ρ(|u − u′|).

3. Perform FFT on each of the two grids from the above step.

4. Multiply the two transformed grids cell by cell. This gives a new grid which has
been convolved once.

5. Perform Inverse FFT on the multiplied grid from the step above.

The resulting grid now contains the covariances in (6). To produce a grid containing the
covariances in (7) step 5. is substituted by:

5. Multiply the single convolved grid once more with the transformed �lter grid cell
by cell. This gives a new grid which has been convolved twice.

6. Perform Inverse FFT on the multiplied grid from the above step.

The advantage with this method is that the convolutions in (4) and (5), which on a
discrete grid would involve big triple sums, is substituted by the far more rapid operations
of FFT and cell by cell multiplications.

5 Example

Figure (2) shows the method used in a synthetic reservoir with one well containing
both log and well test observations. The �gures shows the same vertical cross section
penetrated by the well. To the left is the permeability conditioned on the log observations
only, showing the range of the variogram. In the middle the conditioning is on well test
observations only. The radius of in�uence is 50% longer than the horizontal range. To
the right conditioning on both log and well test observations is performed showing that
low or high point values forces the method to compensate over the region of in�uence to
condition exact on the regional average value.
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Figuur 2: Cross section of well test in�uence in well. Left: Only well logs. Middle: Only
well tests. Right: Both well logs and well tests

6 Conclusion

Since well tests give information of e�ective permeabilities in a region around the wells
on a scale appropriate for the actual well rates, they provide important information
that should be accounted for when doing predictions or simulations of the absolute
permeability �eld of a reservoir. Inverse block kriging ensures that these data can be
included among the conditioning data. Using Fast Fourier Transform on the convolution
de�ning the well test variable makes it possible to produce software that performs rapidly
even with a great number of data points and on large grids.
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