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1 Introduction

Traditionally, geostatistical methods were developed for the purpose of prediction. Kriging was
the optimal unbiased linear predictor, see Matheron (1963). Later it was acknowledged that the
optimality was linked to an implicit assumption of jointly Gaussian distributions. This lead to
approaches such as Disjunctive Kriging, see Matheron (1976), and indicator Kriging, see Jour-
nel (1983). These two approaches are more general than the the bias correction found in Trans-
Gaussian Kriging, see e.g. Cressie (1993). In Trans-Gaussian Kriging the transform to Gaussian
distribution is accounted for, the model is however still assumed Gaussian after transforming the
marginal distributions. This means that spatial correlations are linear in the transformed Gaussian
domain. In Disjunctive Kriging and indicator Kriging it is possible to include other types of spa-
tial dependencies such as the mosaic model. In these models the bivariate distribution between
pairs of random variables are required.

Target functions that have a nonlinear relation to the spatial parameters, e.g. flow response,
and the increasing computer power have the last decades driven the use of stochastic simulations
to find the optimal predictors in geostatistics. Stochastic simulation requires the full joint distribu-
tion for all random variables. Simulations of continuous random fields is frequently based on the
Gaussian distribution. Point by point transformations, such as the normal score transform, see
Cressie (1993), and the cloud transform, see Bashore et al. (1994), account for the non-gaussian
marginal distributions. The spatial dependency is however linear in the Gaussian domain. The
approach of direct sequential simulation, see Journel (1994), tries to resolve this issue by introdu-
cing non-Gaussian distributions in the sampling, but this approach frequently result in Gaussian
looking distributions since the linear structure is imposed trough kriging relations.

In our approach we use a pair-copula construction to create non-linear spatial dependencies
in a Markov mesh model. In particular we propose to use the pair-copula construction that is
denoted D-vines. The resulting model is estimated using nonparametric estimation techniques. A
pair-copula construction uses bivariate functions to describe a class of multi dimensional distri-
butions. The pioneer work in this area is Joe (1996), Joe (1997) Bedford and Cooke (2002), and Aas
et al. (2008). In this report we present how this density is constructed using pair-copulas and the
marginals, giving a very compact representation of a general class of high dimensional distribu-
tions. We have used a vine decomposition called the D-vine Kurowicka and Cooke (2004), which
is a symmetric decomposition that on a one dimensional grid can be formulated as a Markov
random field. Sampling a D-vine requires non-linear transformations of the variables, both un-
conditional and conditional. The transformations are defined trough the hierarchical structure of
the vine. Estimation is based on non-parametric kernel methods, both in one and two dimensions.
The pair-copulas estimates the dependency between transformed variables from a given training
image, and takes advantage of the hierarchial structure.

The work presented in this report has also resulted in a paper presented at Geostat 2008,
Kolbjørnsen and Stien (2008). The report is organized as follows; Section 2 introduces continuous
Markov random fields. In Section 3 the steps involved in a D-vine model is explained, and a
detailed illustration of the simulation is given. Section 4 describes kernel estimation methods,
followed by the application of these methods for D-vines in Section 5. Then two examples are
displayed and discussed in Section 6, and some concluding remarks are given in Section 7.
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Figure 1. Unilateral path and sequential neighborhood. The grey nodes denotes all previously simulated cells
in the unilateral path going top-down left-right. The sequential neighborhood is indicated by a thick black line.
The conditional distribution of the random variable in the position of the question mark given cells in the past,
is only dependent on the cells inside the sequential neighborhood.

2 Continuous Markov mesh model

A Markov mesh model on a regular grid is defined by first selecting a unilateral path that scans
systematically through the cells, and then to model the distribution of a variable conditioned to
all previously simulated variables. This gives a sequential decomposition of the distribution. Let
the nodes be numerated according to the position in the systematic scan, and denote the random
variable in location i by Xi. The sequential decomposition of the joint distribution is then written
as,

f(x1, ..., xn) = f(x1) · f(x2|x1) · · · f(xi|x1, . . . , xi−1) · · · f(xn|x1, . . . , xn−1), (1)

with f being a generic notation for density where the relevant variable is indicated by the argu-
ment passed to the density. Figure 1 illustrate the situation in 2D, where cell i is marked with a
question mark. The distribution of Xi is defined conditioned to all cells that are previously simu-
lated, i.e. the cells that are colored. To further constrain the dependencies, the distribution for the
current cell, i.e. Xi, is assumed to only depend on those cells that are contained in a sequential
neighborhood around cell i. The sequential neighborhood is denoted Γi, and indicated by a thick
black line in the Figure 1. The decomposition of the joint distribution in the Markov mesh setting
is then defined by the relation,

f(x1, ..., xn) = f(x1) · f(x2|x1) · · · f(xi|xΓi) · · · f(xn|xΓn), (2)

where xΓi is the set of random variables in the sequential neighborhood. The Markov mesh model
is thus defined through the transition probability f(xi|xΓi). In our approach this is built up using
pair copulas.

3 Vines and pair-copulas

A vine is a graphical model with a density made up by a number of pair-copulas and the marginal
densities, and in this section we show how such a density function is constructed. Then we, more
graphically, show how variables are hierachically transformed and combined in order to get a D-
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vine decomposition. Simulation from a vine is illustrated using an example from the multivariate
normal distribution, before a more general algorithm is presented.

3.1 Notation and pair-copula decomposition
The vine model represents the distribution of the sequential neighborhood {X1, ..., Xn−1} joint
with the node we want to sample, Xn. Each of these continuous variables are associated with a
marginal density function fi(xi) and the marginal cumulative function Fi(xi). Their joint density
function is f(x1, ..., xn) with the corresponding cumulative function F (x1, ..., xn).

Any joint density function can be factorized as which is unique up to the permutation of the
variables. This joint distribution implicitly contains information about the marginal distribution
of each variable and their dependency structure. Sklar’s theorem decomposes a general distribu-
tion into the marginal distribution of the variables and a multivariate copula,

F (x1, ..., xn) = C{F1(x1), ..., Fn(xn)}. (3)

A copula is a multivariate distribution defined on the unit hyper cube with uniform variables. It
gives a full measure of dependence and couples random variables such that their marginals are
preserved. Using the chain rule, the density function in (3) becomes

f(x1, ..., xn) = c1...n{F1(x1), ..., Fn(xn)} · f1(x1) . . . fn(xn)

for some n-variate copula density.
Next, we will express the factorization in (1) in terms of unconditional and conditional bivari-

ate copula densities. We start with the second factor f(x2|x1) which can be written

f(x2|x1) =
f(x1, x2)
f1(x1)

.

Replacing the numerator with

f(x1, x2) = c12{F1(x1), F2(x2)} · f1(x1) · f2(x2),

yields the conditional probability

f(x2|x1) = c12{F1(x1), F2(x2)} · f2(x2). (4)

The next factor in (1) is f(x3|x2, x1) and involves the conditioning nodes x1 and x2. We write

f(x3|x2, x1) =
f(x3, x2|x1)
f(x2|x1)

= c23|1{F (x3|x1), F (x2|x1)} · f(x3|x1), (5)

where f(x3|x1) is again given by a pair-copula and the marginal as in (4). Note that it could just as
well have been x3|x2 and x1|x2 that was coupled, however, that is a question of the permutation
of the variables. Equation (5) enforces a structure on the probability distribution. In general the
first term in expression (5) should be c23|1{F (x3|x1), F (x2|x1), F (x1)} , but the dependency on
F (x1) is dropped to simplify the model.

For two and higher number of conditioning variables, the conditional probabilities are recurs-
ively decomposed into (conditional) pair-copulas and marginals. We introduce the two sets xν
which is a subset of the variables and xν−j which is a set same set excluding xj . In general terms
we get the recursive expression

f(xi|xν) = cij|ν−j{F (xi|xν−j ), F (xj |xν−j )} · f(xi|xν−j ).

Where the function cij|ν−j{F (xi|xν−j ), F (xj |xν−j )} in general could depend on xν−j , but this de-
pendency is dropped to simplify the model. Constructing the pair-copulas involve the compu-
tation of various cumulative conditional distributions F (xi|xν−j ) and F (xj |xν−j ). With the hier-
archical construction of the vine, these can be computed from pair-copulas at lower levels. The
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meaning of level will be clear when we introduce the vine graphically, but in mathematical terms
it corresponds to the number of conditioning nodes. We let xν−k be the set xν−j where xk is ex-
cluded. The conditional cumulative probabilities can then be computed by

F (xi|xν−j ) =
∫ xi|xν−j

− inf

f(y|xν−j ) dy =
∫ xi|xν−k

− inf

cik|ν−k(F (y), F (xk|xν−k)) · f(y) dy

=
∫ F (xi|xν−k )

0

cik|ν−k(u, F (xk|xν−k)) du,

and

F (xj |xν−j ) =
∫ F (xj |xν−k )

0

cjk|ν−k(u, F (xk|xν−k)) du,

and we see how the F (·|·) are computed by summing over the corresponding copula density. For
notational ease we denote the various F (·|·) in terms of u·|· for instance

F (xi|xν−j ) = ui|ν−j .

The inverse xi = F−1(y|xν−j ), is found by solving for xi in

y =
∫ F (xi|xν−k )

0

cik|ν−k(u, F (xk|xν−k)) du.

We clearly see that the joint density function f(x1, ..., xn) can been expressed as a product of
pair-copulas, acting on several conditional probability distributions. The construction is iterat-
ive, and can be built using several different groupings of the variables. Next, we show one such
possible permutation and hierarchical coupling called a D-vine.

3.2 D-vine decomposition
A vine is a graphical model that together with the pair-copulas specifies the dependence struc-
ture of a high-dimensional distributions. Unlike the Markov field model and the bayesian belief
nets that are based on conditional independence, a vine model easily incorporates conditional
dependence. The constraints of the vine models, therefore, does not lie in the independence but
rather in how the variables are hierarchically paired.

Bedford and Cooke(2001b,2002) introduces a class of regular vines, which embraces a large
number of possible pair-copula decompositions. The D-vine is one such decomposition (Kur-
owicka and Cooke,2004). Figure 2 displays the D-vine decomposition for a four dimensional dis-
tribution f(x1, x2, x3, x4).

The interpretation of the graphical model is as follows; The horizontal solid lines represent
the various pair-copula decompositions, i.e. they link the two transformed variables that form
the corresponding copula. For instance the edge between u1|2 and u3|2 represents the copula
c13|2(u1|2, u3|2). The dotted vertical lines represent the various transformations both unconditional
and conditional. By transformation we mean the computation of the ui’s and ui|ν−j ’s. Note that
the graphical model is generalized for higher dimensions than four, and that the vine is generic
in the sense that the order of the variables in the first row determines the vine completely.

The graphical model is an aid for constructing the joint expression f(x1, ..., xn). The building
blocks consist of the pair-copulas that correspond to the solid edges and the marginal distribu-
tions. Recall the factorization expression in (1), it can be shown that with a {X1, ..., Xn} permuta-
tion we get the general D-vines expression

n∏
k=1

f(xk)
n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1{F (xi|xi+1, ..., xi+j−1), F (xi+j |xi+1, ..., xi+j−1)}.
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Figure 2. Illustration of a four dimensional D-vine decomposition. The solid line represents the copula
between the various transformed variables and the dotted lines represent the variable transformations.

In our four dimensional example we get the following joint distributions,

f(x1, x2, x3, x4) = f1(x1)·
c12{F1(x1), F2(x2)} · f2(x2) ·
c13|2{F (x1|x2), F (x3|x2)} · c23{F2(x2), F3(x3)} · f3(x3) ·
c14|23{F (x1|x2, x3), F (x4|x2, x3)} · c24|3{F (x2|x3), F (x4|x3) · c34{F3(x3), F4(x4)} · f4(x4).

3.3 D-vine simulation
A joint distribution has now been established according to the D-vine decomposition. This section
describes the hierarchical sampling routine for the D-vine, first with a three dimensional example
followed by a generalization to higher dimensions. However, we start with an example based
on a multi-normal distribution where the transformations are linear and easy to interpret and
understand.

We let the variables X1, X2, and X3 be gaussian distributed with mean µ and covariance
structure Σ, i.e.  X1

X2

X3

 ∼ N

 µ1

µ2

µ3

 ,
 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


 .

First, the variables are transformed to the standard normal domain

n1 =
−µ1

σ11
+

1
σ11

x1 = T (x1)

n2 =
−µ2

σ22
+

1
σ22

x2 = T (x2)

n3 =
−µ3

σ33
+

1
σ33

x3 = T (x3),

where T (·) represents the linear transform. These variables are sampled sequentially starting with
n1, which is straight forward drawn from the standard normal distribution.

Next, we sample n2|n1. The conditional probability can easily be computed by gauss elim-
ination of the covariance structure, i.e. we obtain transformed variables such that n2 and n3 are
algebraically independent from n1. These transformed variables are given by

n2|1 = n2|n1 = n2 −
σ12

σ11
n1

n3|1 = n3|n1 = n3 −
σ13

σ11
n1,

D-vine Creation of Non-Gaussian Random Fields 11



Figure 3. Visualization of the vine simulation of X3 for a three dimensional normal distribution.

having the covariance matrix [
σ22 − σ2

12
σ11

σ23 − σ13σ12
σ11

σ23 − σ13σ12
σ11

σ33 − σ2
13
σ11

]
.

The space is now reduced with one dimension, and again, we sample the first variable which now
is n2|1.

The variables n2 and n3 is thus expressed in terms of the linear transformations

n2 = n2|1 +
σ12

σ11
n1 = T2(n1, n2|1)

n3 = n3|1 +
σ13

σ11
n1 = T3(n1, n2|1),

where n3|1 is computed by yet another linear transform

n3|1 = T3|1(n2|1, n3|2,1).

Now, n3|2,1 is sampled and a full sample of x1, x2 and x3 is obtained by the linear transformations.
Figure 3 visualizes the above simulation of the trivariate gaussian distribution. The trans-

formed values of the covariance matrix are analogous to the more common term; partial correl-
ations. For non-gaussian variables these are called conditional dependencies and are non-linear
transformations. Vines is a generic way of creating non-linear transforms.

When sampling a non-gaussian variable we work in the uniform domain, i.e. the conditional
dependency structure is computed from the cumulative transform of the variables. Thus, to sample
a three dimensional D-vine distribution we start by sampling a uniform (0,1) variables u1, and x1

is computed from the inverse cumulative marginal transform, x1 = F−1
1 (u1). Next, we draw a

uniform(0,1) value for u2|1, and u2 is computed from the relation

u2|1 =
∫ u2

0

c12(u2|u1).

Finally, we draw a value for u3|1,2 and solve for u3|1 in

u3|1,2 =
∫ u3|1

0

c23|1(u3|1|u2|1),

and for u3 in u3|1 =
∫ u3

0
c1|3(u3|u1). Now, with the marginal inverse functions we easily obtain

the sample {x1, x2, x3}. These steps are all visualized in Figure 4.
We note that in our application of the vine model the variables x1, ..., xn−1 are known and

only xn needs to be sampled. This still involves the hierarchical computations of the conditional
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Figure 4. Visualization of the vine simulation of X3 for a three dimensional general distribution.

variables, however, only one uniform(0,1) variable has to be drawn at the top of the hierarchy.
From the illustration in Figure 4 this corresponds to the rightmost computations.

Algorithm 1 gives the procedure for sampling the variable xn in an n dimensional distribution.
First, all the variables are transformed by the cumulative densities to the uniform domain. Next,
the outer loop runs over the levels from 1 to the top level n − 2, and the inner loop computes all
the transformed variables that do not involve the nth and unknown variable. Once the top level is
reached, only one of the two transformed variables are known. A random number is drawn, such
that the unknown variable can be computed with the inverse transform. A new loop runs from
the top level to the bottom level in order to compute all the transformed variables that involve xn.
Once we get the value for un, the marginal inverse is applied and we get the xn sample.

1: for i← 1, n− 1 do
2: Compute ui = F−1(xi)
3: end for
4: for level← 1, n− 2 do
5: for i← 1, n− level − 2 do
6: Compute ui|i+1,...,i+level

7: Compute ui+level+1|i+1,...,i+level

8: end for
9: end for

10: Draw u ∼ unif(0, 1)
11: for level← n− 2, 1 do
12: u = F−1(u|un−level−1|n−level,...,n−1)
13: end for
14: Sample xn = F−1

n (u)

Algorithm 1. Simulation algorithm for D-vine. Generates the n-th sample variable in an n-dimensional distri-
bution

4 Non-parametric estimation

Estimation of the copulas can be achieved fully parametrically by assuming parametric models
for both the copula and the marginals, followed by a parametric estimation procedure like the
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maximum likelihood estimator. However, unlike the joint and marginal distributions which are
directly observable, the copula has a hidden dependence structure. Finding a suitable parametric
model is thus very often intractable. In risk management parametric copulas are useful when
there is a joint tail behavior. Data for this kind of behavior is limited, and a parametric model
helps prevent underestimation in these areas.

We get our data from training images with highly repetitive characteristics. Thus, the amount
of data is assumed to be sufficient and a non-parametric estimation method is considered to give
a good estimate of the dependency structure. This way we do not give any prior assumption on
the data and the dependency structure, yielding a very general approach where training images
with very different features can be used. We use a non-parametric estimation method for both
that marginals and the pair-copulas, with a kernel based approach. This way we get a smooth
and differentiable estimate of the distributions.

In this section we describe how the one dimensional distribution of the marginals and the two
dimensional copula densities are estimated. We base our estimators on theory of kernel density
estimation as presented in Silverman (1986). Both methods are based on computation of histo-
grams. In one dimension we denote the histogram by H1(i) where i represents the bin number,
and H2(i, j) in two dimensions where (i, j) represents the bin.

4.1 One-dimensional kernel smoothing
We use the one dimensional gauss kernel given by

K1

( r

nh

)
∝ exp

{
−0.5

r2

(nh)2

}
,

where r is an integer, n is the number of histogram bins and h is a smoothing parameter. The ker-
nel is applied to the histogram where it in each histogram bin works as a weighted sum over the
neighboring bins. The smoothing parameter determines the range of the set of neighboring bins.
We get a binned estimate f with the same number of bins as the input histogram. The estimate is
given by

f̂(i) =
1
nh

l∑
r=−l

H1(i− r)K1

( r

nh

)
, (6)

where l is an integer which truncates the gauss kernel. We set the l value approximately equal
to three standard deviations.

The choice of smoothing parameter is of crucial importance in the density estimation. The
mean integrated square error is a measure of discrepancy of the density estimator f̂ from the true
density f ,

MISE = E

[∫
{f̂(x)− f(x)}2

]
=
∫

bias(f̂(x))2 dx+
∫

Var(f̂(x)) dx

≈ 1
4
h4k1

∫
f ′′(x)2 dx+

1
nh

∫
K1(t)2 dt,

where k1 is a constant and is dependent of the kernel.
The two components of the mean integrated square error, bias and variance, both have contri-

butions based on the smoothing h. The attempt to eliminate the bias requires a very small value of
h, however, that results in a very large variance, and vice versa. Thus, there is a trade-off between
random and systematic error and the smoothing parameter must be chosen carefully. Simple de-
rivation give the optimal h that minimizes the expression,

hopt ≈ k−2/5
1

{∫
K(t)2 dt

}1/5{∫
f ′′(x)2 dx

}−1/5

n−1/5. (7)
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Figure 5. One dimensional kernel smoothing estimates.

We see that h slowly converge to zero as the sample size increases. Also, smaller values of h is
appropriate when the data is highly fluctuating.

To assign the value of f ′′(x) we turn to the standard normal distribution, this yields

hopt =
4
3

1/5

σn−1/5,

where n is the number of observations and σ is the standard deviation of the data. This parameter
will work well if the data really is normally distributed, otherwise it may oversmooth. In many
applications a subjective choice of smoothing parameter is satisfactory. We, however, want an
automatic computation of the smoothed parameter, but since the data can have any distribution
we add a tuning parameter a1 such that h = a1 · hopt. This way we can adjust for some of the
possible discrepancy from the normal distribution. Figure 5 shows the histogram h in blue and
the smoothed estimates f̂ in red as an example.

4.2 Two-dimensional kernel smoothing
In two dimensions we get the expression

f̂(i, j) =
l∑

r=−l

l∑
s=−l

H(i− r, j − s) ·K2

(
r

hx ·N2
,

s

hy ·N2

)
, (8)

where f̂(i, j) is a two-dimensional matrix of the same size asH . The optimal smoothing parameter
hopt is given by

hopt ≈ 2 · k2
−2/6

{∫
K(t)2 dt

}1/6{∫
(∇f(x))2 dx

}−1/6

n−1/6. (9)

The data in the bivariate density are uniform(0,1). Figure 6(a) show the scatter plot of two such
variables. We see the changes in the mass have different scales in different areas, especially in the
corners and in the middle. A straight forward approach calls for boundary corrections since the
domain of definition is finite, see Gijbels and Mielniczuk (1990). We avoid the problem of bound-
ary effects by transforming the uniform variables into a standard normal domain. Figure 6(b)
shows the normal quantiles for the data in Figure 6(a).
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(a) (b)

(c) (d)

Figure 6. Two dimensional kernel smoothing estimates.

Estimating the bivariate density based on the normal transformed data is done using a 2D-
gaussian kernel. This gives us a general and very simple approach, and we get the nested sum

f̂(i, j) =
l∑

r=−l

K1

(
r

h ·N2

)
·

l∑
s=−l

H(i− r, j − s) ·K1

(
s

h ·N2

)
,

where h is set equal in both directions since we have the same marginal distributions. The stand-
ard deviation is 1, yielding

h = a2 · 0.7 · n−1/6,

where a2 is similar to a1 in the one-dimensional case, it is an adjustment factor for multi modality.
The kernel estimated distribution f̂ is transformed back to their respective uniform margin-

als. In Figures 6 (a)-(d) below we display some results for a two dimensional kernel smoothing,
(a) scatter of two uniform variables (b) their standard normal quantiles (c) the kernel smoothed
bivariate estimate of the standard normal data, and (d) the estimated copula, i.e. the copula of the
estimated density.

5 Non-parametric estimation of the D-vine

Up to now, we have established how each marginal and pair-copula are estimated using a non-
parametric approach. In this section we describe in a similar way as with the simulation proced-
ure, how the full distribution is hierarchically estimated by sequentially transforming the vari-
ables to estimate the pair-copulas.

First of all the marginals are estimated with the one dimensional kernel method. The data is
then transformed to the uniform domain. Starting at the first level, the unconditional pair-copulas
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are estimated according to the given bivariate constraints, i.e. the variables that are connected by a
solid line are paired. Then the uniform data are transformed according to the dotted lines to a new
set of uniform data by applying (6) on the estimated pair-copulas. This process is continued until
the highest level is reached and all of the involved pair-copulas are estimated. This estimation
procedure is more formally written in Algorithm 2.

for i← 1, n− 1 do
2: for j ← 1,#data do

Compute uji = F−1(xji )
4: end for

end for
6: for level← 1, n− 2 do

for i← 1, n− level − 2 do
8: for j ← 1,#data do

Compute uji|i+1,...,i+level

10: Compute uji+level+1|i+1,...,i+level

end for
12: Estimate ci,i+level+1|i+1,...,i+level(ui|i+1,...,i+level,ui+level+1|i+1,...,i+level)

end for
14: end for

Algorithm 2. Estimation algorithm for an n-dimensional D-vine distribution.

6 Results

In this section we show two examples of usage of the methodology. The first example is generated
using a D-vine random field, next the model is estimated back using both a 3D kernel estimator
and the hierarchical estimation procedure from Section 5. Markov Mesh realizations are generated
from both the vine model and the 3D kernel estimator, and these are compared to the true model
visually based on realizations and the resulting 2D densities. The next example is a mosaic model
generated on a hexagonal grid, the results are evaluated visually based on realizations and 2D
scatter plots.

6.1 Example 1
As a test case we have generated a D-vine random field displayed in Figure 7. The sequential
neighborhood is illustrated in Figure 8. When sampling X3 given the past, only the values of the
field directly above and to the left are taken into account.

The joint density of (X1, X2, X3) is estimated non parametrically by the use of 3D kernel es-
timates and and the vines model described in Section 5. For comparison of the kernel estimates
we display the marginal distribution for the three variables in Figure 9, and the distribution of
pairs of variables on a grid ranging from −6 to 6 in each direction in Figure 10. In both figures
the rows of images represent respectively the distribution of the true model, the vine model and
the 3D kernel estimator. Both models yields a satisfactory result. For an application in reservoir
characterization it is the resulting picture that is generated from the model that is important. Fig-
ure 11 shows the realizations for the two estimated models. Realization from the vine model to
the left and from the 3D kernel model to the right. Also for this case we see that both models
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Figure 7. Training image example 1.

Figure 8. Neighborhood example 1. Illustration of the neighbors X1, X2, and the sampling node X3.

preform equally well, but the vines model is represented in a more compact manner. The vines
model use using 3 2D tables whereas the 3D smoother use one 3D table. In this case this storage
for the D-vine model is just 3% of what is needed for the 3D kernel case.

6.2 Example 2
We define a mosaic random field on a hexagonal grid to test the approach. In a Mosaic random
field the field value in two cells are either identical or independent. The structure of the hexagonal
grid is displayed to the left in Figure 12. Note that each column in the grid is shifted 1

2 cell this
gives horizontal features in the grid rather than skewed as is displayed in previous example. In
the grid we do a unilateral scan moving left-right, top-down. For each cell D to be simulated we
draw the value according to the following rule:

f(x(D)|past) = p0δx(A) + p0δx(B) + (1− 2p0)N(0, 1).

This means that with probability (1 − 2p0) the value of x(D) is sampled from a Gaussian distri-
bution independent of everything in sight, otherwise x(D) is randomly selected to be equal to
x(A) or x(B). In the simulation displayed to the right in Figure 12, we have used p0 = 0.45. We
use a training image of size 1000 × 1000 to estimate the model. The smoothing parameter was
fit manually to get an reasonable smoothness in the copulas. In the estimation procedure we use
the nodes A,B,C, and D. These are translated into the D-vine displayed in Figure 2 using the re-
lations x1 = x(A), x2 = x(B), x3 = x(C), and x4 = x(D). The estimated copulas are displayed
in Figure 13. Note that copulas in layers below the first displays non-trivial features. A simula-
tion based on the estimated model is shown in Figure 14. The simulation is similar to the original
model displayed on the right hand side of Figure 12. In Figure 15 we display scatter plots of the
original mosaic model in the upper row and the estimated model in the lower row. We see that
the method reproduce the mosaic nature in all 2D distributions, but the delta nature of the central
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Figure 9. The marginal distribution for the variables. The rows of plots represent the true model, the vine
model and the 3D kernel estimator, respectively.

Figure 10. Pair-wise distribution of the variables. The rows of images represent the true model, the vine
model and the 3D kernel estimator, respectively.
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(a) (b)

Figure 11. Realization from the vine model to the left and from the 3D kernel model to the right.

Figure 12. Input for example 2.The simulation grid, and neighborhood is displayed on the left side. Each
column is shifted 1

2
cell relative to to the previous column. A sample from the mosaic model is displayed on

the right side.
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Figure 13. Estimated pair copula densities. In the left column is the copula densities from the first level.
The top two in the right column is from the second level, the bottom right is from the third level. Dark color
indicates low likelihood.
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Figure 14. Simulation from a D-vine random field which approximate the mosaic model.

part is smoothed out due to the scatter plot smoothing.

7 Discussion and conclusions

We have described how D-vines can be used to create Random fields that contain non-linear
features such as the mosaic model. In our examples the model reproduce non-linear features
present in the training image.

There are, however, still unresolved issues. One issue is the question of ordering of explanat-
ory variables that goes into the D-vine. A change in the ordering will generally result in a different
multi-dimensional model. This calls for special considerations when the ordering is selected. It
could also be that a model is better explained by using a pair-copula decomposition that is not in
the class of D-vines. For this a detailed investigation of the structure in the problem is required.

The approach described is limited to sequences of bivariate interactions. It is however also
possible to include quasi-multipoint interactions by regarding bivariate interactions between the
target variable and a multipoint statistics, e.g. the sum of the variables in the sequential neighbor-
hood. A further generalization of the approach is to investigate if it is possible to include higher
order interactions by defining a triple-copula decomposition.

On the theoretical side a major challenge is to relate the transition probabilities in our model
to the limiting distribution for the same variables. With respect to non parametric estimation it
will be interesting to investigate sampling properties of the kernel estimators. In particular how
the error propagates when copulas on one level is used to transform data onto the next level.
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Figure 15. Comparison of scatterplots. Scatterplots for the original model is shown in the upper row, the
corresponding plots for the approximate model is in the lower row.
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