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1 Introduction

In many applications, the tail of a probability distribution is of particular interest, e.g.
prediction of floods or estimation of financial reserves in insurance. Because extreme
data are rare, it is difficult to fit tail models and to support parametric model choices
convincingly. Most papers study this problem in one dimension assuming a heavy tail.
The approach presented in this paper mix different distributions that describes differ-
ent parts of a new joint distribution. The joint distribution may have heavier or lighter
tail(s) compared to the tail(s) of the distribution that is used in the central part of the joint
distribution. Moreover, it is possible to generalise to Rn.

Common practice in extreme value modelling is to fix a threshold u and to fit a dis-
tribution, e.g. a generalized Pareto Distribution (GPD), to the data exceeding u. There is
a number of methods to estimate the parameters once u is fixed, see for instance (21),
(7) and references therein. As is well known, the estimates depend significantly on the
choice of the threshold, see for instance (10), Figure 6.2.8. In order to reduce model bias,
the threshold u should be chosen large, but this often leaves very few data points for the
estimation of the parameters. Hence, the resulting parameter estimates will have large
variances. Moreover, the selection of an appropriate threshold is a difficult task in prac-
tice, see for instance (8), (22), (10), and (18). Often a supervised analysis is performed,
selectively and off-line as part of a monitoring scheme. For practitioners, who usually
need to perform their data analyses regularly, it would be convenient to have automatic
and robust approaches that do not require an a priori tuning of a threshold. Such an
unsupervised approach to tail estimation would be of particular relevance in automatic
real-time monitoring of financial, industrial and environmental quantities, for instance
for warning purposes.

Recently, (9) and (12) have proposed two new ways of addressing this question. The
paper (9) suggests a robust model validation mechanism to guide the threshold selection.
The procedure assigns weights between zero and one to each data point, where a high
weight means that the point should be retained since a GPD model is fitting it well. The
author suggests to start with a low threshold u and increase it, thus reducing the number
of data points, until all data left have weights close to 1. This is a promising method, but
thresholding is still needed at the level of the weights.

The paper (12) was the first to suggest a fully unsupervised approach to tail estima-
tion. Their approach has three key ingredients. First, the model consists of two compon-
ents, one representing the central part of the distribution and the other the tail. Second,
all data are modelled in one mixture model, and finally, the parameters in the two distri-
butions and the mixing parameters are simultaneously estimated.

Our method is based on the same ideas as those in (12), but we mix the cumulat-
ive distribution functions (cdfs) instead of densities. This makes our approach computa-
tionally more efficient, which in turn makes it easier to generalise to higher dimensions.
Threshold estimation is more complicated in higher dimensions, since the threshold is a
surface. However, in our approach, this is handled efficiently. We also show how to use
several different distributions for different parts of the tail(s). Also the method presented
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in (3) uses cdfs in the mixing. But our method gives a continuous density in contrast to
the method presented in (3).

The proposed model is compared with a model based on a univariate transforma-
tion. The properties of the two models are quite similar. But when generalizing to several
dimensions there are important differences. The model based on cdfs may combine dif-
ferent multivariate densities, but needs to calculate the cdfs and not only the densities in
the evaluation. The model based on univariate transformation does not need to calculate
the multivariate cdfs, but the properties are dominated by the properties of the chosen
multivariate distribution. If we want to change the multivariate properties, the method
may be combined with a copula approach.

In many applications it is needed to describe the entire distribution, not only the
tail(s). In our methods, the user selects densities that he/she believes fits the different
parts of the data. However, in some cases the density that is used for describing the tail
also describes the central part of the distribution better than the density that is supposed
to describe the central part of the density. Then the tail density may end up modelling
most of the density leading to better overall match with data, but with poorer description
of the tail. This is easy to identify from the estimated threshold and may for example be
corrected by putting a prior on the threshold.

Assessments of the probabilities of multivariate extreme events are sought in a di-
versity of applications, see e.g. (23), (16), (20), (14), and (13). Our method differs from the
mentioned papers in that we only mix different densities, with or without heavy tails.
We define a mixing zone where the density changes smoothly from one density to an-
other density. This is particularly relevant for densities with heavy tails where the tail is
modelled by a different density than the rest of the distribution.

We first describe the models in one dimension in Sections 2 - 4, and then generalize
to several dimensions in Sections 5 - 6. Then, in Section 7, the models are tested with
synthetic one-dimensional and three-dimensional data and applied to real univariate and
three-dimensional financial data. The ambition of the paper is not to suggest the best
modelling of these data, only to illustrate the new methods on relevant data. Finally,
Section 8 contains some concluding remarks.

2 The cdf-model in one dimension

In this section we start with two one-dimensional components in the mixture, and then
we show how the model may be generalised to several components.

2.1 Two components
Let x ∈ R and let G(x; θG) and F (x; θF ) be two cdfs that we want to combine to a cdf
denoted L. Define a threshold u and a mixing zone (u − ε, u + ε) for ε ≥ 0, and let the
cdfs G and F determine the properties of L below and above the mixing zone, respect-
ively. Further, let both cdfs influence L in the mixing zone. We will often mix truncated
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distributions. Hence, we define the truncated densities where

gt(x; θG) =

{
g(x; θG) if x < u

0 if x ≥ u

and

ft(x; θF ) =

{
0 if x < u

f(x; θF ) if x ≥ u.

The corresponding truncated cdfs are defined as

Gt(x; θG) =
∫ x

−∞
gt(t; θG)dt

and
Ft(x; θF ) =

∫ x

−∞
Ft(t; θF )dt

where we do not require thatGt(∞; θG) = 1 and Ft(∞; θF ) = 1. We then define the mixed
cdf by

L(x; θL) = κ(Gt(q(x; θq); θG) + Ft(p(x; θp); θF )) (1)

where κ is defined such that L(∞; θL) = 1 and q(x; θq) and p(x; θq) are two monotone
increasing mixing functions described below. The parameters of L(x; θL) include all the
other parameters i.e. θL = (θG, θF , θq, θp). Equation (1) is a well-defined cdf when the
truncated cdfs Gt and Ft and the mixing functions q and p satisfy the criteria specified
below. The corresponding density l(x; θL) is given by

l(x; θL) =


κ g(x; θG) if x < u− ε
κ (g(q(x; θq); θG) q′(x; θq)+

f(p(x; θp); θF ) p′(x; θp)) if x ∈ (u− ε, u+ ε)
κ f(x; θF ) if x > u+ ε

(2)

This requires that q(x; θq) = p(x; θq) = x where it is applied for x outside the mixing
zone. The mixing functions q and p determine how G and F influence L in the mixing
zone. They are monotonously increasing functions defined on R and with range equal
to R. If we set ε = 0 and the two mixing functions equal to the identity function i.e.
q(x; θq) = p(x; θq) = x, then we get the standard approach where only data above the
threshold is used in the tail estimation and the joint distribution is discontinuous. In our
approach, we want all data to be used in the estimation of a continuous density l(x; θL).
Then we set ε > 0 and the function q maps the interval (−∞, u + ε) onto (−∞, u) and
p maps the interval (u − ε,∞) onto (u,∞) as illustrated in Figure 1. In order to get the
derivative of l(x; θL) to be continuous, we need to have q′(u + ε; θq) = q′′(u + ε; θq) = 0
and p′(u−ε; θq) = p′′(u−ε; θq) = 0. Further properties of the mixing function is discussed
in Section 2.2. We have found that the two mixing functions p(x; θp) and q(x; θq) defined
below work well. Define

q(x; θq) =


x x < u− ε

1
2(x+ u− ε) + ε

π cos(π(x−u)
2ε ) u− ε ≤ x < u+ ε

x− ε u+ ε ≤ x,
(3)
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p(x; θp) =


x+ ε x < u− ε

1
2(x+ u+ ε)− ε

π cos(π(x−u)
2ε ) u− ε ≤ x < u+ ε

x u+ ε ≤ x.
, (4)

where θq = θp = (u, ε). Note that the properties of q and p imply that gt = g and ft = f .
Figure 2 shows an example where two Gaussian densities are mixed.

Figure 1. The mixing functions p(x; θp) (dotted line) and q(x; θq) (solid line) for u = −1 and ε = 0.5.
The vertical bars correspond to u− ε, u and u+ ε, respectively.

2.2 Several components
Equation (1) may easily be generalised to a mixture of several truncated cdfs G1, . . . , Gk

with parameters θG1 , . . . , θGk . Define a threshold ui and a mixing zone (ui−1−εi−1, ui+εi),
where εi ≥ 0 and the truncated density gi(x; θG) > 0 only if ui−1 < x < ui for each
component i. We assume that u0 = −∞ and uk =∞. The resulting cdf is given by

L(x; θL) = κ

k∑
i=1

Gi(qi(x; θqi); θGi), (5)

where κ is defined such that L(∞; θL) = 1. Let Gi(ui−1; θGi) = 0 and

Gi(x; θGi) =
∫ x

ui−1

gi(t; θG)dt

for i = 1, · · · , k.
The density l(x; θL) corresponding to the cdf L(x; θL) in Equation (5) is given by

l(x; θL) =


κ gi(x; θGi) if x < ui − εi
κ (gi(qi(x; θqi); θGi) q

′
i(x; θqi)+

gi+1(qi+1(x; θqi+1); θGi+1) q
′
i+1(x; θqi+1)) if x ≥ ui − εi

(6)

assuming we have x ∈ (ui−1 + εi−1, ui + εi) for a value of i. The first expression denotes
the density between two consecutive mixing zones, and the other within a mixing zone.
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Each mixing function qi, with parameters θqi = (ui−1, εi−1, ui, εi), maps the inter-
val (ui−1 − εi−1, ui + εi) onto (ui−1, ui). The mixing functions must be continuous and
monotonously increasing. Moreover, in order to ensure a smooth transition between the
densities, we should have

q′i(x; θqi) + q′i+1(x; θqi+1) = 1, (7)

in the mixing zone, and each qi, i = 1, · · · , k should satisfy

q′i(ui−1 − εi−1; θqi) = 0, q′i(ui−1 + εi−1; θqi) = 1, (8)

q′i(ui − εi; θqi) = 1 and q′i(ui + εi; θqi) = 0. (9)

We avoid breakpoints in the density corresponding to the cdf L in Equation (5) by also
requiring

q′′i (ui−1 − εi−1; θqi) = 0, q′′i (ui−1 + εi−1; θqi) = 0, (10)

q′′i (ui − εi; θqi) = 0 and q′′i (ui + εi; θqi) = 0. (11)

One of the major problems in extreme value theory is to estimate the threshold u. We
reduce this problem by defining the threshold ui from the equation

gi(ui; θGi) = gi+1(ui; θGi+1). (12)

If there are several values of ui that satisfies the equation, we may select the supremum or
infinum of these values. Equation (12) ensures that there are not large changes in l(x; θL)
in the mixing zones. Letting the threshold be a function of the other parameters instead
of a separate parameter, reduces the number of parameters. In Section 7.1 we also show
that this makes the estimation of the parameters in the model more stable. Equations (8)
- (9) ensure that l(x; θL) has continuous derivative without requiring Equation (12). If
gi, gi+1, · · · , gk have heavier and heavier tails or lighter and lighter tails, Equation (12) is
particularly natural. If the tails are heavier, then κ is slightly less than 1 and if the tails are
lighter, then κ is slightly larger than 1.

There are several possible definitions for qi that satisfy the requirements given in
Equations (7)-(9). We use

qi(x; θqi) =



x+ εi−1 x < ui−1 − εi−1

1
2(x+ ui−1 + εi−1)− εi−1

π cos(π(x−ui−1)
2εi−1

) ui−1 − εi−1 ≤ x < ui−1 + εi−1

x ui−1 + εi−1 ≤ x < ui − εi
1
2(x+ ui − εi) + εi

π cos(π(x−ui)
2εi

) ui − εi ≤ x < ui + εi

x− εi ui + εi ≤ x.
(13)

Figure 3 shows the qi-function.

3 The transformation model in one dimension

An alternative to the model described in the previous section is to transform data to a
known density like what is done in a normal score transform. We will present a method
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Figure 2. The two normal densities g(x; θG) ∼ N(0, 1) and f(x; θF ) ∼ N(0, 4) are mixed with the
mixing zone (0.4, 2.4) The resulting mixture density l(x; θL) is given by the solid black line.

of this type where we focus on the tail behaviour and make it quite similar to the method
presented in the previous section. Since we focus on the tails where there are few data
points, we use a parametric transformation instead of an empiric transformation. The au-
thors are well aware that the main argument for this model is that it is mathematically
convenient and not that it is based on classical statistical principles. There are many sim-
ilarities between this approach and the method described in the previous section, and the
results are as good as for the other method.

Let x ∈ R and let G(x; θG) be a cdf where we want to change the tail behaviour. Let
q(x; θq) be a monotone increasing function and define the new cdf by the function

L(x; θL) = G(q(x; θq); θG) (14)

which is a valid cdf. The density is obviously

l(x; θL) = g(q(x; θq); θG)q′(x; θq) (15)

where g and q′ denote the derivative of G and q respectively. We get heavier tail if
|q(x; θq)| < |x| and lighter tail if |q(x; θq)| > |x| for x in the tail of g. There is a large
variety of alternatives for the function q. Using the same notation as in the previous sec-
tion we define a mixing zone (u − ε, u + ε) where we let q(x) = x in the central part of
the distribution and q(x) = f(x) on the tail side (outside) of the mixing zone. We have
found that f(x) = u(x/u)β gives good results. If we let G be the normal distribution, we
see from Equation (15) that l(x, θL) get the asymptotic behaviour

|u|1−β|x|β−1β exp(−|u|2−2β|x|2β).

We want q′(x; θq) continuously differentiable in order to get l(x; θL) continuous dif-
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ferentiable. Therefore, we propose the following function

q(x; θq) =


x x < u− ε

c(x−u−ε)k1
k1(k1−1) + d(x−u−ε)k2

k2(k2−1) + x u− ε ≤ x < u+ ε

u(x/u)β u+ ε ≤ x
(16)

where ε is a fixed constant determining the length of the transition zone and c, d, k1 and
k2 are chosen in order to get l(x; θL) smooth. We have the following equations

d =
f ′(u+ ε)− 1− 2ε

k1−1f
′′(u+ ε)

( 1
k2−1 −

1
k1−1)(2ε)k2−1

(17)

c =
f ′′(u+ ε)− d(2ε)k2−2

(2ε)k1−2
(18)

in order to get q(x; θq) twice continuously differentiable where the constants satisfy k1 > 3
and k2 > 2. The function q is smooth with k1 = 4 and k2 = 3. See Figure 4 for an
illustration of a q(x; θq) function and the corresponding density. The parameters in the
model, θG, β and u should be found from data. The length of the mixing zone should be
set as a constant or connected to the variance of G(x) since it is difficult to estimate this
from data. Similarly to combine several components in (5), we may have several mixing
zones in (16).

Figure 3. The transition function qi(x; θqi
) with ui−1 = −1, ui = 1, and εi−1 = εi = 0.5. The

thresholds are given by vertical solid lines and the mixing zones are delimited by the vertical
dotted lines. Note that the transition function maps the interval (ui−1−εi−1, ui+εi) onto (ui−1, ui).

4 Comparison with other one dimensional models

The traditional method in extreme value modelling is to fix one or two thresholds, and
use only values further out in the tails than these thresholds for parameter estimation. By
using Equation (5) with three components, fixing the ui’s in advance, and letting εi = 0
for all components, the cdf-method proposed is identical with the traditional one.

Equation (1) bears resemblance with the mixed model

l2(x; θl) =
1

Z(θl)
(p(x; θp)g(x; θG) + (1− p(x; θp))f(x; θF )), (19)

A multidimensial mixture model for unsupervised tail estimation 11



proposed by (12). Here f and g are the densities of F and G respectively, and Z(θl) is
an integrational constant. The integrational constant is generally found by numerical in-
tegration, which is likely to make the maximum likelihood estimation unstable and com-
putationally expensive. By mixing the cdfs instead of the densities, we often get analytic
expressions for the integrational constant, and the parameter estimation becomes more
stable. Otherwise, it makes little difference whether the mixing is based on the densities
or the cdfs. However, the increased efficiency of our model as compared to Equation (19)
makes it more manageable to use in several dimensions.

In (3) it is proposed to use the cdf

L(x; θL) =

{
G(x; θG) x < u

G(u; θG) + (1−G(u; θG))F (x; θF ) x ≥ u
(20)

This is identical with the mixing model (1) if we assume there is no mixing zone, i.e. ε = 0
and f(x) is replaced with cf(x) for a constant c such that κ = 1. By introducing a mixing
zone we obtain a continuous density. As shown in the example, this does not imply an
increase in the number of parameters that need to be estimated. It only makes the result
more plausible and offers more stable estimation of the parameters since the density is
smooth.

In the recent preprint (5) 1 another model of the same type is proposed in the context
of neural networks. It is proposed to mix a normal distribution with a GPD distribu-
tion with the restriction on the parameters such that the density and the derivative of
the density are the same on both sides of the thresholds. This gives a smooth density
without a mixing zone. Their model has one parameter less than the GPD-normal model
presented in this paper since the requirement of a continuous derivative of the density
eliminates the scaling parameter in the GPD density. This implies that variance of the
normal distribution is connected to the scaling of the tail in the mixed model. It is not
easy to generalize their model to other densities than GPD or several dimensions.

5 The cdf-model in several dimensions

This Section shows how to generalise the cdf-mixing model to higher dimensions. Let
x ∈ Rn. We assume the state space is divided into disjoint regions Ai; i = 1, . . . k, with
corresponding truncated cdfs and densities, Gi and gi, respectively. We further assume
that gi(x; θGi) = 0, except for x ∈ Ai. We define a mixing zone Mi at the border between
Ai and Ai+1, and require that the corresponding transition function qi is monotonously
increasing and maps Ai ∪Mi−1 ∪Mi onto Ai. We define the multivariate cdf as

L(x; θL) = κ
k∑
i=1

Gi(qi(x; θqi); θGi), (21)

1. Added in the referee process
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where κ is defined such that L(x; θL) is a valid cdf. The density l(x; θL) corresponding to
the cdf in Equation (21) is

l(x; θL) =


κ gi(x; θGi) if x ∈ Ai \ (Mi−1 ∪Mi)

κ(∂
nGi(qi(x;θqi );θGi )

∂x1···∂xn +
∂nGi+1(qi+1(x;θqi+1 );θGi+1

)

∂x1···∂xn ) if x ∈Mi.

(22)

The regions Ai, mixing zones Mi and transition functions qi(x; θqi) may be chosen
in several different ways. We present two different alternatives. In Section 5.1 we mix
densities along one axis only and in Section 5.2 we mix distributions radially.

5.1 Mixing along one axis
First, we mix densities along one axis only. We let the density gi vanish except between
two parallel planes that we for simplicity assume are normal to the x1-axis. A vector x
is said to be inside a mixing zone if ui − εi < x1 < ui + εi, and between two mixing
zones if ui−1 + εi−1 < x1 < ui − εi. Figure 5 illustrates this alternative for R2 with three
components. For the general case Rn, assume we mix in the direction of the vector e1 =
(1, 0, 0, · · · , 0). Define the transition function qMi as

qMi (x; θqi) = x+ (qi(x1; θqi)− x1) e1, (23)

where qi is defined in Equation (13).
In this case, the density l(x; θL) is equal to

l(x; θL) =


κ gi(x; θGi) if x ∈ Ai \ (Mi−1 ∪Mi)

κ (gi(qi(x; θqi); θGi)
∂qi(x;θqi )

∂x1
+

gi+1(qi+1(x; θqi+1); θGi+1)
∂qi+1(x;θqi+1 )

∂x1
) if x ∈Mi.

(24)
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Figure 4. The density in the transformed normal model with g(x; θG) ∼ N(0, 1). The figure also
shows q(x, θq)/10 with mixing zone (0.3, 1.3) and q(x, θq) = (x/u)0.5
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5.2 Mixing radially
If we have only two components, and want to have one distribution in the centre and
another distribution for more rare observations, the following approach may seem more
natural. This example is developed further in Section 7.3. Assume that we have two dis-
tributions G and F , and that G(x; θG) has positive density for

r(x) = (x− µ)
′
Σ(x− µ) < u,

for a constant µ and F (x; θF ) has positive density for r(x) > u.
Figure 6 shows an example of the case with two dimensions, µ equal to the zero

vector and Σ diagonal. The overall cdf L is determined by G only for r(x) < u − ε (the
area AG \M ), by F for r(x) > u + ε (the area AF \M ), and by both distributions in the
mixing zone u− ε ≤ r(x) < u+ ε (the area M ).

For this mixing problem, the cdf in Equation (21) can be simplified to

L(x; θL) = κ(G(qR(x; θq); θG) + F (pR(x; θp); θF )). (25)

In this case, the following choices of qR and pR seem appropriate;

qR(x; θq) = (x− µ)
q(r(x); θq)
r(x)

+ µ (26)

and
pR(x; θp) = (x− µ)

p(r(x); θp)
r(x)

+ µ, (27)

where the functions p and q are given by Equations (3) and (4), respectively. The function
qR maps the set AG ∪M = {x; r(x) < u+ ε} onto AG = {x; r(x) < u} and pR maps the
set AF ∪M = {x; r(x) > u− ε} onto AF = {x; r(x) > u}.

In this case, the density l(x; θL) is equal to

l(x; θL) =


κ g(x; θG) if x ∈ AG \M
κ(∂

nG(qR(x;θq);θG)
∂x1···∂xn + ∂nF (pR(x;θp);θF )

∂x1···∂xn ) if x ∈M
κf(x; θF ) if x ∈ AF \M

(28)

The density in the mixing zone is quite complicated to derive. However, if g(x; θG) ≈
f(x; θF ) when r(x; θq) = u, and the mixing zone is not too wide, we may use the approx-
imation

l(x; θL) ≈ κ (g(qR(x; θq); θG) q′(r(x); θq) + f(pR(x; θp); θF )p′(r(x); θp)).

If we want G and F to be truncated multivariate Gaussian distributions, the trunca-
tion becomes much easier if both distributions have the same expectation vector and the
covariance matrices only differ by a scaling factor.

6 The transformation model in several dimensions

It is easy to combine the univariate transformation (16) with multivariate distributions.
The disadvantage is that the same multivariate distribution dominates in the entire do-
main. It may therefore be needed to combine this approach with a Copula, see (11). It is
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Figure 5. The cdf L is determined by only Gi in region Ai \ (Mi−1 ∪Mi), and by both Gi and Gi+1

in the mixing zones Mi. The threshold ui is in the center of the mixing zone Mi.

possible to have other transformations than univariate. But this leads to very complex
formulas for the density.

The asymptotic properties in multivariate distributions are much more complex than
in one dimension, see (13). It is possible, however, to obtain the different asymptotic prop-
erties by an appropriate choice of univariate transformation.

7 Numerical applications

We illustrate the proposed models on both synthetic data and real financial data. All
parameter estimation is performed by maximizing the log-likelihood. The maximisation
is done numerically using the routine nlminb in R. This seems to work very well in all
tests performed.

7.1 Synthetic data, 1D
In this section, we test three different models. We generate synthetic data from one of
the models and then estimate parameters and quantiles in all the proposed models. The
first two models are mixtures of the form defined by Equation (5) with k = 3 and the
normal distribution as the central distribution. The first model has the generalized Pareto
Distribution (GPD) distribution in both tails and the second has the Weibull distribution
in both tails. The GPD cdf is

G(x; ξ, σ) = 1− (1 +
ξx

σ
)−

1
ξ

assuming ξ > 0, σ > 0 and x > 0, and the cdf in the Weibull distribution is

G(x;β, λ) = 1− exp(−(xλ)β)

for β > 0, λ > 0 and x > 0. This gives 10 parameters in the model described by Equation
(5), 2 in each of the three distributions in addition to u1, u2, ε1 and ε2. The thresholds
u1 and u2 are determined from Equation (12). This reduces the number of parameters
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outside this circle, respectively. The cdf L is determined by G only in the area AG \M , by F only
in the area AF \M , and by both G and F in the area M .

and also gives smoother distributions. The length of the transition intervals, 2εi, are not
critical in the estimation and not easy to estimate. Hence, we set εi = σ2 for i = 1 and
i = 2 where σ2 is the standard deviation of the central normal distribution. In all the tests
we set the expectation in the central density equal to 0 leaving 5 unknown parameters.

The third model we test is the transformation model described in Equation (14) with
the polynomial function for q given in Equation (16). Also here we set εi = σ2 for i = 1
and i = 2 in order to make the same choice as in the previous model. We denote σ2 as the
standard deviation of the normal distribution in order to use the same symbol with the
corresponding parameter in the other models. Also here there are 5 unknown parameters.

In the tests we simulate m = 1000 samples from each of the models in turn and
then estimate parameters in all the models. In addition, we also test with 10m = 10.000
samples with the same model as is used in the simulation. This is repeated k = 500 where
we estimate the parameters in each of the three models, the corresponding 0.001, 0.01, 0.99
and 0.999 quantiles, the difference in L1 norm, and the log-likelihood value. The tables
give the average and the standard deviation of the estimated parameters/quantiles/values.
The difference in L1 norm is estimated by dividing the state space into 100 intervals. The
difference in L1 norm is half the sum of the absolute value of the difference in probability
between the estimated and the original density in each interval. Simulation from a distri-
bution where the density differs in the L1 norm by 0.01 compared to the correct density,
implies that 0.01 of the samples are from a wrong distribution.

The parameters are estimated by maximizing the log-likelihood. The model with GPD
distributions in the tails is left with the following 5 parameters: ξ1, σ1, σ2, ξ3, σ3 and
the model with Weibull distribution in the tails has the parameters β1, λ1, σ2, β3, λ3. In
these two models the thresholds u1 and u2 are found from Equation (12) based on the
other parameters. The model with transformations has the parameters u1, u2, β1, σ2, β3.
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Table 1. Average of estimated parameters and standard deviation of the estimates when simu-
lated using a GPD-Normal-GPD distribution. 10m indicates the use of 10.000 data points in the
sample.

θ1 θ2 σ2 θ4 θ5 u1 u2

Simulation GPD-N-GPD 0.300 0.400 1.000 0.200 0.400 -2.166 2.415
Est. GPD-N-GPD 10m 0.299 0.401 1.000 0.200 0.400 -2.165 2.417
St.dev. GPD-N-GPD 10m 0.019 0.017 0.010 0.021 0.020 0.067 0.081
Est. GPD-N-GPD 0.295 0.404 0.996 0.195 0.403 -2.131 2.390
St. dev. GPD-N-GPD 0.068 0.058 0.035 0.063 0.061 0.260 0.311
Est. Weibull-N-Weibull 0.511 0.211 1.000 0.606 0.253 -2.391 2.513
St.dev. Weibull-N-Weibull 0.058 0.061 0.031 0.061 0.059 0.170 0.315
Est. transf. N - 0.410 1.060 - 0.489 -1.755 1.914
St.dev. transf. N - 0.069 0.031 - 0.104 0.190 0.251

Table 2. Quantiles, L1-error and log-likelihood using GPD-N-GPD.

q0.001 q0.01 q0.99 q0.999 L1 loglikeh.
Simulation GPD-N-GPD -9.15 -3.92 3.00 5.91 - -1583.5
Est. GPD-N-GPD 10m -9.14 -3.92 3.00 5.91 0.005 -15833.0
St.dev. GPD-N-GPD 10m 0.54 0.12 0.08 0.31 0.002 99.5
Est. GPD-N-GPD -9.20 -3.90 2.99 5.88 0.016 -1581.2
St. dev. GPD-N-GPD 1.96 0.41 0.24 0.96 0.007 30.5
Est. Weibull-N-Weibull -9.34 -4.12 3.10 6.15 0.015 -1583.6
St.dev. Weibull-N-Weibull 1.70 0.49 0.28 0.85 0.008 33.2
Est. transf. N -8.41 -4.08 3.22 5.95 0.025 -1583.8
St.dev. transf. N 1.66 0.50 0.32 1.01 0.006 33.4

Table 3. Average of estimated parameters and standard deviation of the estimates when simu-
lated using a Weibull-Normal-Weibull distribution.

θ1 θ2 σ2 θ4 θ5 u1 u2

Simulation Weibull-N-Weibull 0.500 0.200 1.000 0.600 0.250 -2.394 2.487
Est. Weibull-N-Weibull 10m 0.502 0.202 0.999 0.600 0.251 -2.388 2.483
St.dev. Weibull-N-Weibull 10m 0.019 0.021 0.010 0.021 0.021 0.052 0.063
Est. Weibull-N-Weibull 0.511 0.211 1.000 0.606 0.253 -2.390 2.514
St.dev. Weibull-N-Weibull 0.058 0.061 0.031 0.061 0.059 0.170 0.315
Est. GPD-N-GPD 0.383 0.331 1.000 0.333 0.298 -2.314 2.590
St.dev. GPD-N-GPD 0.091 0.071 0.035 0.125 0.111 0.265 0.440
Est. transf. N - 0.410 1.060 - 0.489 1.755 1.914
St.dev. transf. N - 0.069 0.031 - 0.104 0.190 0.251
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Table 4. Quantiles, L1-error and log-likelihood using Weibull-Normal-Weibull.

q0.001 q0.01 q0.99 q0.999 L1 loglikeh.
Simulation Weibull-N-Weibull -9.45 -4.18 3.12 6.21 - -1585.7
Est. Weibull-N-Weibull 10m -9.45 -4.18 3.13 6.22 0.005 - 15874.9
St.dev. Weibull-N-Weibull 10m 0.51 0.14 0.08 0.28 0.002 99.4
Est. Weibull-N-Weibull -9.34 -4.12 3.10 6.15 0.015 -1583.6
St.dev. Weibull-N-Weibull 1.70 0.49 0.278 0.848 0.008 33.2
Est. GPD-N-GPD -11.41 -4.08 3.11 7.82 0.017 -1584.7
St.dev. GPD-N-GPD 3.02 0.51 0.34 2.18 0.008 33.4
Est. transf. N -8.41 -4.08 3.22 5.95 0.025 -1583.8
St.dev. transf. N 1.66 0.50 0.32 1.01 0.006 33.4

Table 5. Average of estimated parameters and standard deviation of the estimates when simu-
lated using a transformed normal distribution. The transformed distribution uses ui as one of the
five estimated parameters (instead of θ1 and θ4) while ui depend on the other parameters in the
other models.

θ1 θ2 σ2 θ4 θ5 u1 u2

Simulation transf. N - 0.450 1.000 - 0.600 -1.500 1.500
Est. transf. N 10m - 0.450 1.000 - 0.600 -1.498 1.500
St.dev. transf. N 10m - 0.015 0.008 - 0.021 0.034 0.052
Est. transf. N - 0.458 0.996 - 0.605 1.484 1.489
St.dev. transf. N - 0.056 0.028 - 0.075 0.118 0.198
Est. GPD-N-GPD 0.343 0.360 0.928 0.241 0.387 -1.985 2.001
St.dev. GPD-N-GPD 0.075 0.056 0.038 0.116 0.106 0.221 0.467
Est. Weibull-N-Weibull 0.554 0.256 0.926 0.685 0.339 -2.074 2.028
St.dev. Weibull-N-Weibull 0.055 0.059 0.033 0.078 0.080 0.159 0.298
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In Tables 1, 3, and 5, the parameters are denoted θ1, θ2, σ2, θ3, θ4, u1, and u2 where
θ1, θ2, θ3, θ4, have a different interpretation in the different models. The results of the sim-
ulations are shown in Tables 1 - 6. We see that there are quite good estimates for all the
parameters. The standard deviation is comparable with estimation of σ in the normal dis-
tribution with the same sample size. Only 1-4% of them = 1000 samples are from the tails
and in the mixing zone these are mixed with data points from the central distribution.
The standard deviations for the different parameters have about the same size including
σ2, the standard deviation in the central distribution. The estimates for the thresholds ui
have a larger standard deviation than the other parameters, indicating that the threshold
should be determined implicitly by the other parameters. We have also tried to estimate
these simultaneously with the other parameters. Then all parameters have larger uncer-
tainty. Also the quantiles and the density measured in the L1 error are quite close to the
quantiles and density that were used in the simulation. The uncertainty in the q0.001 and
q0.999 quantiles in the GPD distribution is larger than for the other distributions since this
has heavier tails than the two other distributions. As expected, we always get better es-
timates when we fit the same model as is used in the simulation and when we increase
the number of samples to 10m = 10.000.

7.2 Financial data, 1D
We want to illustrate the use of the models on real data and have selected three stock
market indices; the European, the American and the Japanese. It is not the ambition to
make the best possible model for these data. That would require a more complex model
including for example handling of stochastic volatility which is outside the topic of this
paper. We first study each of the stock markets independently using the methods from
Sections 2 and 3, and then we model the portfolio using the methods described in Section
5 and 6. The results from the multivariate tests are given in Section 7.4.

We assume that the three stock markets can be represented by the corresponding Mor-
gan Stanley (MSCI) price indices in local currency neglecting the currency risk in the port-
folio. We use index data from the period 01.01.1987 to 28.05.2002 for model estimation.
This period corresponds to m = 4065 observations. The return series are shown in Figure
7. Let xi,t denote the original indices, i = 1, 2, 3. We use the data ri,t = log(xi+1,t/xi,t)−µi
where µi is determined such that

∑
i ri,t = 0.

Figure 8 shows normal QQ-plots for the standardised logarithmic residuals ri,t/σi for
each of the three markets where σi is the standard deviation of ri,t. As can be seen from
the figure, all distributions are doubly heavy-tailed. Moreover, they are clearly skewed,
having one tail heavier than the other. This motivates for the use of a mixture distribution
with three components, one for the left tail, one for the centre of the distribution, and one
for the right tail, respectively. Hence, we use the distribution given in Equation (5) with
three components. Exactly as in Section 7.1 we test with the GPD and the Weibull density
in both tails and with the normal distribution in the centre. In addition, we test with the
transformed normal distribution given in Equation (14).

In all cases we have the same 5 parameters as described in Section 7.1 that are estim-
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Table 6. Quantiles, L1-error and log-likelihood using a transformed normal distribution.

q0.001 q0.01 q0.99 q0.999 L1 loglikeh.
Simulation transf. N -7.51 -4.00 3.13 5.02 - -1548.2
Est. transf. N 10m -7.51 -4.00 3.13 5.02 0.005 -15483.9
St.dev. transf. N 10m 0.33 0.11 0.07 0.17 0.002 95.8
Est. transf. N -7.52 -3.99 3.11 5.02 0.018 -1545.7
St.dev. transf. N 1.17 0.38 0.20 0.54 0.008 31.1
Est. GPD-N-GPD -10.2 -3.94 3.12 6.79 0.028 - 1550.2
St.dev. GPD-N-GPD 2.31 0.42 0.29 1.76 0.007 31.5
Est. Weibull-N-Weibull -8.44 -3.98 3.10 5.71 0.025 1548.0
St.dev. Weibull-N-Weibull 1.27 0.40 0.24 0.63 0.006 31.3
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Figure 7. European, American and Japanese geometric return series for the period 01.01.1987
– 28.05.2002.
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Table 7. Parameter estimates for the GPD-N-GPD mixture model using residuals. We have εi =
σ2.

Parameter Europe USA Japan
ξ1 0.266 0.156 0.432
σ1 0.00395 0.00564 0.00831
σ2 0.00409 0.00320 0.00377
ξ3 0.0735 0.198 0.0724
σ3 0.00498 0.00680 0.00801
log-likelihood 13609 13227 12339

ated by maximizing the likelihood

m∏
t=1

l(ri,t; θL), (29)

where l(r; θL) is given by Equations (6) and (15) respectively. The results are shown
for each of the models in Tables 7 - 9. For the transformed normal model, three of the
threshold values ended up equal to the limit ±0.005. This indicates that we get best fit
with using the transformation for all negative/positive values. The parameter σ2 is then
only used to set the density for x = 0 and influences the joint density in the mixing zones
(−0.01, 0) and (0, 0.01). We get best fit using GPD-N-GPD, then Weibull-N-Weibull and
then transformed normal density. The estimated quantiles are given in Table 17 together
with the corresponding results from the multivariate distributions.

Quantiles of Standard Normal

Q
ua

nt
ile

s 
of

 s
t. 

re
sid

ua
ls

-2 0 2

-1
0

-5
0

5

Europe

Quantiles of Standard Normal

Q
ua

nt
ile

s 
of

 s
t. 

re
sid

ua
ls

-2 0 2

-1
0

-5
0

USA

Quantiles of Standard Normal

Q
ua

nt
ile

s 
of

 s
t. 

re
sid

ua
ls

-2 0 2

-1
0

-5
0

5

Japan

Figure 8. QQ-plots of the standardized residuals fitted against the normal distribution.
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Table 8. Parameter estimates for the Weibull-N-Weibull mixture model using residuals. We have
εi = σ2.

Parameter Europe USA Japan
β1 0.686 0.801 0.987
λ1 0.00357 0.00546 0.00873
σ2 0.00454 0.00344 0.00368
β3 0.885 0.977 0.948
λ3 0.00464 0.00664 0.00845
log-likelihood 13612 13223 12334

7.2.1 Parameter estimates for NIG distribution
We have chosen to compare the results using the mixture model with the ones obtained
using the Normal Inverse Gaussian (NIG) distribution. This distribution has been used
for financial applications, both as the conditional distribution of a GARCH-model, see (2),
and as the unconditional return distribution, see (4). The paper (24) compares different
probability distributions for the innovations in one-dimensional processes. The authors
consider a NIG distribution, a skewed Student’s t-distribution and a non-parametric ker-
nel approximation. They report that the NIG distribution provides the best fit overall for
the models considered.

The normal inverse Gaussian (NIG) distribution is a generalised hyperbolic distribu-
tion with λ = −1

2 . Its density is

fx(x) =
δ α exp

(
δ
√
α2 − β2

)
K1

(
α
√
δ2 + (x− µ)2

)
exp (β (x− µ))

π
√
δ2 + (x− µ)2

,

where δ > 0 and 0 < |β| ≤ α. In the above expression, K1 is the modified Bessel function
of the third kind of order 1, see (1). The parameters µ and δ determine the location and
scale, respectively, while α and β control the shape of the density. In particular, β = 0
corresponds to a symmetric distribution.

The parameters of the NIG distribution are estimated using the EM-algorithm de-
scribed in (15), with the moment estimates as starting values. The parameter estimates
are shown in Table 10.

7.2.2 Comparing the models in the tails
We have used graphical logarithmic left and right hand tail tests to examine the fit in the
tails. The graphical tests were performed as follows. Let (X(1), ..., X(N)) denote the order
statistic of the historical data, and F̂ (x) the estimated cumulative distribution function of
the fitted distribution. For the NIG distribution this is calculated using the method de-
scribed in (19). A plot of log(F̂ (X(t))) againstX(t) superimposed on a plot of log (t/(N + 1))
against X(t) shows the left tail fit for the fitted distribution, and a plot of log(1− F̂ (X(t)))
against X(t), superimposed on a plot of log ((N + 1− t)/(N + 1)), the right tail fit.

Figure 9 shows the plots. All the models give quite similar results but the mixture

A multidimensial mixture model for unsupervised tail estimation 22



Table 9. Parameter estimates for the transformed normal model using residuals. We have εi =
0.005.

Parameter Europe USA Japan
u1 -0.007 -0.006 - 0.005
u2 0.0085 0.005 0.005
β1 0.550 0.565 0.665
σ2 0.00674 0.00659 0.00778
β3 0.583 0.665 0.655
log-likelihood 13591 13188 12300

Table 10. Parameter estimates for NIG distributions for logarithmic residuals.

Parameter Europe USA Japan
µ 0.00134 0.000746 -0.000308
δ 0.00678 0.00733 0.00945
α 78.3 67.2 57.0
β -12.6 -3.85 1.17

distribution with GPD tails followed by the NIG distribution seems slightly better than
the others.

7.3 Synthetic data, 3D
Also in 3D we simulate data from a multivariate distribution and then estimate the para-
meters from the simulated data. We test mixing five multivariate normal distributions,
and the multivariate normal distribution of univariate transformed variables. In both
tests we assume that the expectation is zero.

The mixture of five multivariate normal distributions is a further development of the
model described in Section 5.2. See Figure 10 for an illustration in 2D. All the multivariate
normal distributions have the same parameters except a scaling of the correlation matrix.
The multivariate normal distributions are truncated by two ellipsoids that are outside
each other and a plane that is normal to the largest axis of the ellipsoid. At the ellipsoid
all the multivariate normal distributions have constant density and the densities are sym-
metric at both sides of the plane. In the centre there is a multivariate normal distribution
truncated by the inner ellipsoid. Between the two ellipsoids there are two multivariate
normal distributions, one on each side of the plane. Outside the outer ellipsoid there are
two multivariate normal distributions, also one on each side of the plane. Since the ellips-
oids are determined by the correlation matrix of the multivariate normal distributions, it
is possible to make exact truncation by the use of the Chi-square distribution. In the mix-
ing zone around each ellipsoid it is possible to compensate for the volume effect of the
transformation making it possible to calculate the mixed density exactly.

In this mixing model we are able to handle heavier tails than the normal distribution
and different properties for extreme values in the positive and negative direction determ-
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Figure 9. Plot of the tail behaviour in the five models. The circles correspond to the empirical
data, the light-blue line to the mixture distribution with Weibull tails, the black line to the mixture
distribution with GPD tail, the red to the NIG distribution and the blue line to the transformed
normal. For reference, a normal fit is also included shown in green.
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ined by the plane normal to the main axis of the correlation ellipsoid. The two truncation
values are determined from an equation similar to (12). The size of the ellipsoids are de-
scribed by the parameters u1 and u2, which is the intersection between the positive x1

axis and the two ellipsoids. The inner truncation values u1 is at the ellipsoid where the
value of the estimated normal distribution in the centre is equal to average of the values
of the estimated densities outside this ellipsoid. The outer truncation value u2 are de-
termined where the average of the values of the estimated densities inside and outside
this ellipsoid are equal. The integrational constant κ is set such that the mixed density is
a proper density with integral equal to 1. In model we have the following parameters:

· the standard deviations in the normal distribution, σi, 3 variables.

· the correlation between the three variables, ρi, 3 variables.

· the parameters Fi,−, Fi,+ for i = 1, 2 scaling the correlation matrix between the two
ellipsoids and outside the outer ellipsoid, on both sides of the truncation plane giv-
ing 4 parameters.

In total there are 10 parameters that are estimated by maximum likelihood. In addition,
we have the length of the mixing zones that is not as critical as the above parameters. The
mixing zone is (1− ε, 1 + ε) relative to the distance to the ellipsoid from the origin where
ε = 0.06. The 3D simulated data gives the result in Table 11 based on 100 samples with
1000 data points in each sample. The estimated values are close to the values used in the
simulation and the standard deviations are reasonable.

Figure 10. The areas of the five multinormal densities; inside inner ellipsoid, between the ellipsoid
on each side of plane and outside outer ellipsoid on both side of plane.

We have combined the multivariate normal model with the same univariate trans-
formations as we used in 1D in Section 7.1. The method is described in Sections 3 and 6.
We have the following parameters

· the standard deviations in the normal distribution σi, 3 variables.

· the correlation between the three variables, ρi, 3 variables.
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Table 11. The parameter in the mixture of five multivariate normal distributions. The correlation
is listed in the order (1,2), (2,3) and (1,3). We first show the parameters that are used in the
simulation and then the average of the estimation based on 100 realizations with 1000 samples.
The standard deviation of the estimated parameters are shown in parenthesis.

i σi ρi Fi,− Fi,+ likelihood
Simulation
1 1.00 0.71 1.40 1.40 -6071
2 1.00 0.82 3.00 3.00 -
3 1.00 0.58 - - -
Estimation
1 0.99 (.04) 0.70 (.02) 1.40 (.07) 1.40 (.07) - 6063
2 0.99 (.04) 0.81 (.02) 2.99 (.05) 2.99 (.05) -
3 0.99 (.04) 0.57 (.03) - - -

· the thresholds u1 and u2 where the univariate transformation is not the identity for
xi < u1 and xi > u2 for i = 1, 2, 3, giving 2 variables

· the transformation parameters βi,j for both tails in each of the three variables, 6 para-
meters.

In total this gives 14 parameters that are estimated by maximum likelihood. Also here
the length of the mixing zones is not as critical as the above parameters. The length of the
mixing zones is set to ε = 0.5. The 3D simulated data gives the result in Table 12 based
on 100 samples with 1000 data points in each sample. The estimated values are close to
the values used in the simulation and the standard deviation is reasonable.

7.4 Finance data, 3D
Also in the multivariate example, we use the data set described in Section 7.2 with n = 3
variables and the two models described in the previous section in addition to the mul-
tivariate normal density. We first show some multivariate analyses of the data.

The estimated parameters in the multivariate normal density with the finance data
are shown in Table 13. If we exclude the 0.5% of the data where the value of the mul-
tivariate normal density with the estimated parameters is smallest, the correlation in the
remaining data set is, except for a slight reduction between Europe and Japan, almost
identical with the correlation in the entire data set. This is shown in the lower line of
Table 13. Hence, the extreme values have the same correlation as the rest of the data set.
Excluding the 0.5% most extreme data points corresponds to xΣx < 0.001 where Σ is the
estimated correlation matrix from the full data set. Using the Chi-square distribution this
corresponds to 8.4e-6 of the probability mass in the estimated distribution. The difference
between the empirical truncation and the truncation in the multivariate normal model is
much larger by excluding 0.5% instead of for example 1% of the data. This shows that
about 0.5% of the data has extreme values according to the estimated multivariate nor-
mal distribution. Note that the standard deviations are smaller without the extreme data
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Table 12. The parameter in the multivariate normal of transformed variables. The correlation
is listed in the order (1,2), (2,3) and (1,3). We first show the parameters that are used in the
simulation and then the average of the estimation based on 100 realizations with 1000 samples.
The standard deviation of the estimated parameters are shown in parenthesis.

i σi ρi ui βi,1 βi,3 likelihood
Simulation
1 1.00 0.71 1.00 0.50 0.50 -3669
2 1.00 0.82 1.00 0.70 0.70
3 1.00 0.58 - 0.50 0.70
Estimation
1 1.00 (.02) 0.72 (.02) 0.98 (.09) 0.50 (.05) 0.50 (.05) -3663
2 1.00 (.02) 0.82 (.01) 0.99 (.10) 0.71 (.05) 0.71 (.06)
3 1.00 (.03) 0.58 (.02) - 0.51 (.04) 0.71 (.07)

Table 13. The parameters in the multivariate normal. The correlations are listed in the order (1,2),
(2,3) and (1,3). The upper line is with all the data. In the lower line 0.5% of the most extreme data
is excluded.

Data σ1 σ2 σ3 ρ1 ρ2 ρ3

Full data set 0.00962 0.01090 0.01298 0.425 0.120 0.326
Excluded 0.5% of data 0.00905 0.00974 0.01233 0.425 0.128 0.300

points. This corresponds to increasing the density at the origin by a factor 1.53. We have
also checked the simultaneous extreme values, see Table 14. The table shows much higher
frequencies in the two corners where all three variables have the same sign.

We test the two multivariate models described in the previous section; mixing of
five multivariate normal distributions, and multivariate normal distribution of univariate
transformed variables, in addition to the multivariate normal distribution. In all the tests
we assume that the expectation is zero. In the mixture of the five multivariate normal dis-
tributions we are able to get heavier tails than in the multivariate normal distribution. We
utilize that the correlations for the entire data set and the data set excluding the extreme
values are the same. The estimated parameters are shown in Table 15. In the multivariate
normal distribution of univariate transformed variables we get the parameters shown in
Table 16.

Table 14. The number of observations in the corners where all three dimensions have values
larger than L times the standard deviation in the multivariate normal distribution. The + and - sign
indicate the corners.

L + + + + + - + - + + - - - + + - + - - - + - - - sum
1 37 12 6 4 0 12 12 61 144

1.5 14 4 0 1 0 4 2 21 46
2 6 0 0 1 0 2 0 7 16
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Table 15. The parameter in the mixture of five multivariate normal distributions from the 3D finance
data. The correlation is listed in the order (1,2), (2,3) and (1,3). The log-likelihood is 39341

i σi ρi Fi,− Fi,+

1 0.00471 0.358 1.471 1.449
2 0.00539 0.111 1.975 1.836
3 0.00650 .286 - -

Table 16. The parameter in the multivariate normal of transformed variables from the 3D finance
data. The correlation is listed in the order (1,2), (2,3) and (1,3).

i σi ρi ui βi,1 βi,3

1 0.00662 0.395 -0.0066 0.573 0.645
2 0.00711 0.123 0.0070 0.588 0.636
3 0.00853 0.298 - 0.664 0.637

The three methods are compared in Table 17 where we estimate the quantiles qα,0.01,
qα,0.99 for each region α = E(urope), U(SA)and J(apan) and multivariate quantiles qA,0.01,
qA,0.99 where xi > qA,0.01 for all the variables i = 1, 2, 3. The Table also shows the number
of parameters and the log-likelihood from the estimation. The multivariate normal dis-
tribution of univariate transformed variables gave the highest likelihood but has more
parameters than the mixture of five multivariate normal distributions.

Table 18 gives a summary of a comparison between the empiric quantiles and the
quantiles estimated by the different models. The multivariate normal of the transformed
variables gives the best estimates for the 0.01/0.99 quantiles and the two new models are
equally good on the 0.001/0.999 quantiles. It is possible to improve the quantile estimates
by other transformations or a mixture of more normal distributions in the other model.

Table ?? shows the densities of the three different multivariate models at the origin
and the most extreme data points for the estimated multinormal distribution. Notice that
the multivariate normal density has very small values at some data points. The two other
models gives higher densities for these extreme data points. In the mixing of 5 multivari-
ate normal densities and the multivariate normal of the transformed variables, we do not
see such extreme densities. When there are such extreme data points the maximum like-
lihood estimation makes a trade off between densities in the extreme data points and the
densities in the many data points in the middle of the distribution. The trade off implies
that the model is neither satisfactory in the middle, nor for the extreme data points. It is
possible to influence this trade off by putting a prior on the threshold.

8 Summary and conclusions

In this paper we present a new method to mix densities from different models. The
method is inspired by (12). But we mix cdfs instead of densities since this is much more
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Table 17. Comparing the quantiles and likelihood between the different models and the data.
The first four lines are the empirical data. The models are multivariate normal (MN), mixing of
multivariate normal densities (MMN), multivariate normal of transformed variables (MNT) and the
univariate models using GPD, Weibull and univariate transformation that assumes independence
between the three variables. NOP is number of parameters, qα,p the quantiles and loglik. the
log-likelihood of the estimated variables.

Model NOP p qE,p qU,p qJ,p qA,p loglik.
Data 0.01 -0.0293 -0.0273 -0.0345 -0.0114

0.99 0.0235 0.0272 0.0359 0.0110
0.001 -0.0645 -0.0688 -0.0585 -0.0171
0.999 0.0504 0.0506 0.0721 0.0285

MN 6 0.01 -0.0223 -0.0253 -0.0302 -0.0093 38235
0.99 0.0223 0.0253 0.0302 0.0093

0.001 -0.0282 -0.0309 -0.0389 -0.0166
0.999 0.0282 0.0309 0.0389 0.0166

MMN 10 0.01 -0.0280 -0.0319 -0.0389 -0.00836 39342
0.99 0.0261 0.0300 0.0358 0.00858

0.001 -0.0391 -0.0448 -0.0543 -0.0215
0.999 0.0361 0.0417 0.0499 0.0202

MNT 14 0.01 -0.0296 -0.0320 -0.0350 -0.0101 39649
0.99 0.0240 0.0273 0.0361 0.0108

0.001 -0.0484 -0.0517 -0.0536 -0.0123
0.999 0.0371 0.0425 0.0563 0.0132

U.GPD-N-GPD 3x5 0.01 -0.0302 -0.0310 -0.0357 - 0.00580 39178
0.99 0.0244 0.0280 0.0365 0.00626

0.001 -0.0683 -0.0600 -0.0595 -0.0113
0.999 0.0413 0.0454 0.0632 -0.0115

U. W-N-W 3x5 0.01 -0.0299 -0.0311 -0.0349 -0.000569 39168
0.99 0.0241 0.0276 0.0358 0.00511

0.001 -0.0558 -0.0547 -0.0557 -0.0115
0.999 0.0391 0.0439 0.0582 0.0117

U. NT 3x5 0.01 -0.0306 -0.0325 -0.0350 -0.00875 39079
0.99 0.0244 0.0273 0.0360 0.00895

0.001 -0.0512 -0.0535 -0.0535 -0.0105
0.999 0.0397 0.0418 0.0553 0.0111
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Table 18. The table gives the arithmetic average absolute distance between the empirical
quantiles and the quantiles estimated by the different models. The models are multivariate nor-
mal (MN), mixing of multivariate normal densities (MMN), and multivariate normal of transformed
variables (MNT).

Quantiles MN MMN MNT
0.01 and 0.99 0.0030 0.0026 0.0012

0.001 and 0.999 0.0255 0.0166 0.0163

computationally stable and efficient making it possible to extend to several dimensions
in contrast to the method described in (12). The paper (3) also combines cdfs but by in-
troducing a mixing zone we obtain continuous densities. We also show how univariate
transformations may be used in order to represent tail behaviour.

The different models are tested by simulation from one model and then estimate para-
meters and quantiles from all the models. The suitability of each model depend on the
data in each case. We compare the different models on a 3D financial data set, evaluating
likelihood and tail behaviours, both univariate and multivariate. In the univariate test the
different models seem to behave quite similarly. Three different multidimensional mod-
els are compared on the data set. The multivariate normal model of transformed variables
gave the highest likelihood, but the mixture of 5 multivariate normal distributions also
gave satisfactory results with a smaller number of parameters.

Before we select a model we should analyse the data and then find a model with suit-
able tail behaviour. In the multivariate case we need to find the univariate tail behaviour
and the correlation in the tails in the data.
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