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Facts about NR

►
 

Applied research

►
 

Financed by
▪

 
domestic private companies

▪
 

public sector
▪

 
the Research Council of Norway 

▪
 

EU
▪

 
international companies

►
 

Established in 1952

►
 

65 research scientists

►
 

Turnover: 75 MNOK, 8.7 M EURO
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Customers
ABB
Aktiv kapital
Astra Zeneca
Avinor
Bankorg. (BBS og BSK)
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Academic partners in Norway
►

 
University of Oslo
▪

 
Dep. of Mathematics

▪
 

Dep. of Informatics
▪

 
Dep. of Educational Res.

▪
 

Norwegian Research 
Center for Computers and 
Law

►
 

University of Bergen
▪
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►
 

Norwegian University of 
Science and Technology 
(NTNU)

►
 

SINTEF
►

 
NORUT Group

►
 

Nansen Environmental and 
Remote Sensing Center

►
 

Institute of Marine Research
►

 
Norwegian Institute of Fisheries and 
Aquaculture

►
 

The Institute of Transport Economics
►

 
Norwegian Institute for Air Research

►
 

Norwegian Meteorological Institute
►

 
Norwegian Geotechnical Inst.

►
 

NORSAR
►
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►
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►
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Statistics for innovation
►

 
One of

 
14 Norwegian Centres for 

Research-based
 

Innovation

►
 

Funding
 

10 MNOK/y 2007-2014

►
 

Academic
 

partners: UiO, NTNU

►
 

Application
 

areas and partners:
▪

 
Petroleum: Statoil

▪
 

Finance: DnBNOR, Gjensidige, 
Hydro

▪
 

Marine: IMR
▪

 
Health: Biomolex, PubGene, 
Riks-Rad.hosp.,Sencel, Smerud

►
 

Long term research, innovation
 focus, PhD, international

 collaboration
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What do I do at NR?

►
 

Model geology and nature
▪

 
Partly systematic (geological

 process)
▪▪

 
Partly random (weather and Partly random (weather and 
climate changes)climate changes)

►
 

Spatial statistics

►
 

High dimensional distributions
▪

 
E.g. 200 x 200 x 200 = 8 000 000 cells

►
 

Data integration –
 

conditional simulation
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Why do we simulate?

►
 

Non-Gaussian distributions –
 

math can be very 
difficult

►
 

High dimension

►
 

Non-linear relationships:
 E[f(X)] ≠

 
f(E[X]), etc.

►
 

Very flexible approach
 –

 
can use any 

transformation f

►
 

Often easy and intuitive
 to simulate –

 
easy to 

communicate results

Properties ... + Faults ... + Horizons

Simulated cumulative production for proposed well
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Example – oil in place

►
 

Volume of oil reservoir

►
 

Volume = ∫D max(0,Z(x) –
 

OWC(x)) dx

►
 

Assume 
▪

 
OWC ~ Known or e.g. Gaussian

▪
 

Z(x) is a Gaussian random field

►
 

When will Volume be Gaussian?

Water in the rockWater in the rock

Oil in the rockOil in the rock
Oil water contact (OWC)Oil water contact (OWC)

Cap rock (tight)Cap rock (tight)

Uncertain 
cap rock Z(x)

Uncertain 
OWC

Poro
u

Poro
us r

ock
 (2

0%
 flu

id)

s r
ock

 (2
0%

 flu
id)
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Expected OWC and cap rock
Cap rock (tight)Cap rock (tight)Oil water contact Oil water contact 

(OWC)(OWC)
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Why simulation? 

►
 

Simulation is necessary to get 
non-linear properties correct:
▪

 
Volume above oil water contact

▪
 

Drainable area

P
re

di
ct

io
n

S
im

ul
at

io
ns

OWC = 1080
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Simulated cap rock 

RMS
Software used worldwide

Partially developed by NR

One licence on PC: 100 000$



www.nr.no
1414

Simulation vs. conditional simulation

►
 

Want to draw from P(x|data) not from P(x)
▪

 
(Often a Bayesian formulation)

►
 

Rejection sampling:
▪

 
Draw from P(x)

▪
 

Reject if x in conflict with data
▪

 
Usually extremely inefficient

►
 

MCMC methods
▪

 
Time consuming in high dimensional cases

▪
 

Simulated annealing to obtain conditioning

►
 

Direct sampling from P(x|data)
▪

 
Requires partly analytical solution and efficient 
approximations
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Consistency experiment
►

 
Model behaviour independent of data
▪

 
E.g. connectivity independent of 
well conditioning

▪
 

Non-drilled areas have the same 
connectivity properties

►
 

9km x 16km

►
 

20 vertical wells

►
 

Channel width: 
▪

 
~ N(700m,5002m2)

▪
 

> 200m

►
 

40 -
 

60 channels in each
 realisation 

►
 

NG: 36% -
 

40%

N
um

be
r o

f c
ha

nn
el

s

Channel observed in # of wells

No well data

Synthetic well data

Experiment:
 1. Simulate channels

 2. Drill 20 synthetic wells
 3. Simulate new channels
 given synthetic well

 
obs.

 4. Repeat steps 1-3 100 times
 5. Count results

Conclusion:
 Well correlation independent 

of well conditioning.

Double expectation correct:
 E[f(X)] = E[E[f(X|Data)]]
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Example: Using spill-point 
information

►
 

Illustrated by case-study 
from Norskehavet



www.nr.no
1717

The Alvheim decision

►
 

Big or small boat?
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BREAK
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Sampling Gaussian RF

►
 

Consider X(s) ~ GRF, s ∈
 

Rn
 E[X(s)] = μ(s), Cov(X1

 

| X2
 

) = Σ12, 

►
 

Want to draw X1
 

| X2
 

=x2
 

,  (X1
 

typically a large
 lattice/grid)

►
 

Recall: 
1. X1

 

| X2
 

=x2
 

~ N(μ1
 

+ Σ12 Σ22
-1

 
(x2 -

 
μ1

 

), Σ11 -
 

Σ12 Σ22
-1

 
Σ21

 

)
2. X = μ

 
+

 
Σ1/2

 
ε, ε

 
~ N(0,I) 

►
 

Typical dimensions: 
dim(X1

 

) = 100 000 –
 

10 000 000
 

(huge grid)
 dim(X2

 

) = 10 –
 

10 000 (observations)
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GRF simulation – possible strategies:

►
 

Two step approach
1.

 
Unconditional simulation: x1

s

2.
 

Conditioning:
 

x1
s – Σ12 Σ22

-1
 

(x2
s – x2 )

▪
 

So how do we get x1
s?

►
 

Sequential simulation:
1.

 
Draw x(s1

 

)| X2
 

=x2

2.
 

Draw x(s2
 

)| X2
 

=x2
 

, x(s1
 

)

n.
 

Draw x(sn
 

)| X2
 

=x2
 

, x(s1
 

),…, x(sn-1
 

)

▪
 

How do we cope with all that conditioning data?
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Simulation method: Two step 
approach in several steps…

►
 

Mean value

1.
 

Simulate residual (using e.g. FFT algorithm)

2.
 

Add mean and residual

3.
 

Find difference between data and simulated field

4.
 

Use simple kriging to interpolate this difference

5.
 

Add interpolated difference to simulated field

FFT

Do we need any approximations?
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CPU usage

Performance comparison - Subgrid with 2M cells

0:00:00

1:00:00

2:00:00

3:00:00

4:00:00

0 5000 10000 15000 20000 25000

No. of well observations

Ti
m

e 

7.0

7.1
Using all data

Using data in 
neighbourhood 
~ 200

►
 

FFT part is irrelevant –
 

conditioning to data is the 
challenge
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This is what it looks like:

Spherical
variogram

General exponential
variogram
exp = 1.8
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Sequential simulation
►

 
Exact since

 
P(x1

 

,…,xn
 

) = P(x1
 

)·P(x2
 

|x1
 

)·P(x3
 

|x1
 

,x2
 

)·P(x4
 

|x1
 

,x2
 

,x3
 

)···P(xn
 

|x1
 

,…xn-1
 

) 
►

 
Necessary approximation: Only consider x’s

 
in a (small) 

neighborhood:
P(xk

 

|x1
 

,…xk-1
 

) ≈
 

P(xk
 

|∂(xk
 

)) 
►

 
Random path through grid follows a refinement scheme:

►
 

Ensures good large-scale behavior
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Categorical random variables

►
 

We use it for classification of rock types

Porosity logs (percentage of open space)

D
ep

th

Sand rich (porous)

Clay rich (tight–no flow)



www.nr.no
2626

Discrete random variables

►
 

Here we see sand rich channels with high porosity

Channel Channel

non  channelnon  channel non  channelnon  channel
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How do we simulate discrete patterns

►
 

Object models (marked point processes)

►
 

Truncated Gaussian random fields

►
 

Indicator kriging

►
 

Markov random fields

►
 

Multipoint algorithms
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Object models

►
 

Distinct geometries
▪

 
Shape, size, etc.

►
 

Challenge to condition to data
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Truncated Gaussian random field

►
 

Generate
 

a 3D Gaussian
 

field: X(s)

►
 

Assign
 

type ”i”
 

according
 

to thresholds:
▪

 
ti

 

(s) <
 

X(s) < ti+1
 

(s)Ö type “i” at s

►
 

Strict ordering
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Indicator kriging

►
 

Tries to calculate a probability for a type

►
 

Uses kriging to interpolate probabilities

►
 

Sequential simulation algorithm



www.nr.no
3131

3D azimut
 

trend

3D volume trend

Indicators parameter

Sand fraction map

► In use on fields with 10 000 - 17 000 wells in Russia
► Robust volume fraction steering
► 1D/2D/3D or combined volume trends
► 3D trends on azimuth and variogram ranges
► Maintains continuous sand-layers or barriers if desired

Indicator kriging

1 realization1 realization

Average of 100 Average of 100 
realizationsrealizations
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Markov random field

►
 

Rich but abstract pixel based method

►
 

MCMC algorithm for simulation

►
 

Major problems:
▪

 
Speed –

 
MCMC is to slow

▪
 

Hard to determine model
◦

 
Estimation (only ML will work)

◦
 

Abstract model makes it hard to specify manually
▪

 
Phase transition makes it unstable

►
 

Advantage: Consistent probabilistic model
 (Why is that an advantage?)
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MRF specifications
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Multipoint algorithms

►
 

The Snesim
 

algorithm (Stanford: Srivastava, Strebelle, Caers,…)

►
 

Main idea is to:
1.

 
Capture geometric features in a training image:
►

 
Count pattern frequencies

2.
 

Sequential simulation:
►

 
Probabilities according to pattern frequencies

►
 

Comparison to MRF: 
1.

 
Estimate parameters in potentials
►

 
MLE

2.
 

Iterative MCMC simulation:
►

 
Conditional probabilities according to estimated model
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Counting pattern 
frequencies (Slide from Burc Arpat)

Step 1: Scan the training image using a template ( window ) 
to find all available geological patterns

Training image Patterns
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Counting pattern 
frequencies (Slide from Burc Arpat)

Step 2 : Process the patterns obtained from the training image to 
construct the pattern database 
Note: Only 36(?) patterns out of 29 = 512 possible patterns. 

Only 100 possible patterns in 12 ×
 

12 training image.

Patterns Pattern database

7 2 3
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Sequential simulation
►

 
Exact if

 
P(x1

 

,…,xn
 

) = P(x1
 

)·P(x2
 

|x1
 

)·P(x3
 

|x1
 

,x2
 

)·P(x4
 

|x1
 

,x2
 

,x3
 

)···P(xn
 

|x1
 

,…xn-1
 

) 
►

 
Necessary approximation: Only consider x’s

 
in a (small) 

neighborhood:
P(xk

 

|x1
 

,…xk-1
 

) ≈
 

P(xk
 

|∂(xk
 

)) 
►

 
Random path through grid follows a refinement scheme:

►
 

Ensures good large-scale behavior
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Unfinished simulation

Simulation

Training image

?

Template

?

?

Patterns 
found in TI

12

4

?
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Is there anything wrong with these 
frequencies/probabilities?

►
 

Looks intuitively very nice

►
 

Recall
 

P(x1

 

,…,xn

 

) = P(x1

 

)·P(x2

 

|x1

 

)·P(x3

 

|x1

 

,x2

 

)·P(x4

 

|x1

 

,x2

 

,x3

 

)···P(xn

 

|x1

 

,…,xn-1

 

) 

►
 

The P’s are estimated from training image

►
 

…but we don’t know P(xk
 

|x1
 

,…,xk-1
 

) 

►
 

We would need to marginalize:
 P(xk

 

|x1
 

,…xk-1
 

) = Σxk+1∈I
 

···Σ
 

xn∈I
 

P(xk
 

|x1
 

,…,xk-1
 

,xk+1
 

,…,xn
 

) 

►
 

We are unable to do that
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SNESIM artefacts
Training

 
image

Realization
 

2 Realization
 

3

Realization
 

1
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What goes wrong?

►
 

Sequential methods encounter impossible 
situations since
▪

 
Algorithm can’t detect future inconsistencies.

►
 

Solution:
▪

 
Node dropping: Conditioning data from earlier 
simulations are dropped.
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Unfinished simulation

Node dropping

Training image
?

Template

?

No pattern 
found in TI

?

Dropping 
blue node

!

⇓
Arbitrary choice 
determines colour.

?

Dropping 
white node

⇓

?
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The reason for the conflict 

►
 

Three unfinished channels has started to form.

►
 

Two are blocked by white areas.

Unfinished simulation
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0

0,1

0,2

Configurations

Pr
ob

ab
ili

ty

Frequency (from TI)

Model (MRF, ...)

SNESIM

Conceptual illustration (1D!!)

Too much 
smoothing?

Too much 
random 
configurations?
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Dead end areas have a lot of node 
dropping

S. Strebelle and N. Remy, Geostatisitcs

 

Banff 2004

Realization
Areas with less than 10 
conditioning points
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Possible solution

►
 

Delete previously simulated data that doesn’t fit TI.
▪

 
Only delete if a serious misfit to TI patterns occur. 

►
 

Deletion implies some iteration –
 

previously 
simulated values must be re-simulated.
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Multiple grids

►
 

Refer
 

to Tran(2004)

►
 

Simulate
 

on
 

different
 

scales
 

to capture
 

large scale
 

features 
and do fine scale

 
smoothing

Coarse scale Medium scale Fine scale

? ?
?
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Example 1: Fluvial channels

Number
 

of
 

grids = 3

Grid size: 250 x 250

Template
 

size
 

= 60

1 2 12 26 48  

55  35  16  7  3 8  18  36  54  

47 

53  31 15  5  4  6  20  33  56  
28  11  

38 22  13  9  14  23  42  

57  37  29  25  30  39 

49  45  50  

59  

40  24  19 10 21  44  17  

58  41  32 27  34  43  60  

51  46  52  

Template

?

Training
 

image
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►
 

If
 

conflict, all sampled
 nodes in the

 
template

 
are

 deleted

x
x

x

x
x

x

x x

xxxx
x x

x
x
x
x
x
x

x
x x x

x
xx

x
x

x

x

x

x

x

x

x

x

x
x

x

x

Delete all nodes in template
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Delete nearest / most distant nodes

►
 

Delete
 

either
 

nearest
 

or 
most distant nodes

x
x x

x
x

x

x
x

x

x x

xxxx

Nearest Most distant

x

x
x x

x

x
xx

x

x

x

x
x

x

x
x

x

x

x
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Visual comparison
Node dropping

Delete
 

near/farDelete
 

all

Training
 

image
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Statistical analysis SNESIM and 
modified SNESIM

Node dropping Strategy 4: Nearest / Most distant
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Simulation in practice

►
 

Large variety
▪

 
5 realizations –

 
5000 realizations

▪
 

The more the better ☺
►

 
Approximations
▪

 
Nothing is perfect –

 
but it can still be very useful

►
 

Consider the objectives
▪

 
Stupid way of calculating π

▪
 

Use it when easy, efficient, or the only way
►

 
Used for complex problems
▪

 
High dimension

▪
 

Complicated and important dependencies
▪

 
Nested dependencies

▪
 

Non-linearity 
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