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Abstract Algorithms for inversion of seismic prestack
AVO data into lithology-fluid classes in a vertical pro-
file are evaluated. The inversion is defined in a Bayesian
setting where the prior model for the lithology-fluid
classes is a Markov chain, and the likelihood model
relates seismic data and elastic material properties to
these classes. The likelihood model is approximated
such that the posterior model can be calculated recur-
sively using the extremely efficient forward–backward
algorithm. The impact of the approximation in the
likelihood model is evaluated empirically by comparing
results from the approximate approach with results
generated from the exact posterior model. The exact
posterior is assessed by sampling using a sophisticated
Markov chain Monte Carlo simulation algorithm. The
simulation algorithm is iterative, and it requires con-
siderable computer resources. Seven realistic evalua-
tion models are defined, from which synthetic seismic
data are generated. Using identical seismic data, the
approximate marginal posterior is calculated and the
exact marginal posterior is assessed. It is concluded that
the approximate likelihood model preserves 50% to
90% of the information content in the exact likelihood
model.
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1 Introduction

Inversion of seismic AVO data into lithology-fluid (LF)
characteristics in a petroleum reservoir is important for
both exploration and production. In a Bayesian set-
ting, prior information about the LF characteristics can
be combined with rock physics and seismic likelihood
models linking the seismic data to these characteristics.
The posterior model contains the complete solution
in the Bayesian setting. For Bayesian LF inversion
approaches, see Eidsvik et al. [5], Avseth et al. [2],
Larsen et al. [8], Hammer and Tjelmeland [7], González
et al. [6], Buland et al. [3], Ulvmoen and Omre [10], and
Ulvmoen et al. [11]. In the current study, we focus on
the approaches in Larsen et al. [8] and Hammer and
Tjelmeland [7].

In Larsen et al. [8], the prior for the LF classes
is defined by a Markov chain model upward through
a vertical profile. The likelihood model is defined by
a rock physics term relating the LF classes to elastic
material properties, and a seismic forward term relating
these properties to seismic AVO data. The likelihood
model is approximated such that the posterior follows
a Markov chain model. With the approximate posterior
on this Markov chain form, it can be calculated exactly
using the recursive forward–backward algorithm, which
is extremely computer-efficient. For the examples in
the study, the marginal approximate posterior is cal-
culated in 1 s, from which independent samples can
be generated every half millisecond. The speed of the
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algorithm is important especially if the methodology
is extended into 3D; see Ulvmoen and Omre [10] and
Ulvmoen et al. [11]. The impact of the approximation
in the likelihood model on the results is unknown.

In Hammer and Tjelmeland [7], the seismic inversion
is defined using the same prior and likelihood models as
in Larsen et al. [8]. The inversion is, however, solved
using the exact posterior model without any approx-
imation. Direct sampling from the posterior model is
infeasible; hence, a sophisticated Markov chain Monte
Carlo (McMC) algorithm is defined where changes for
all the model variables are proposed in each location.
The posterior is assessed by sampling, which requires
considerable computer resources. For the examples in
the study, independent samples are generated every
minute, whereas it takes hours to estimate the mar-
ginal posterior and locationwise most probable LF
prediction. The McMC algorithm is iterative and it
converges in the limit. The convergence rate is such that
the simulation algorithm is feasible but still computer
demanding.

The objective of the study is to evaluate the approxi-
mation within the likelihood model in Larsen et al. [8].
This is done empirically by comparing inversion results
from the methodology in Larsen et al. [8] with results
from the methodology in Hammer and Tjelmeland
[7] using identical seismic data. By comparing results
from the approximate posterior with results from the
exact posterior, the impact of the approximation can be
evaluated.

2 Stochastic model

The LF characteristics along a vertical profile through
a reservoir target zone are of primary interest in the
study. The LF characteristic in location t is denoted
by πt, and it can take one of the L classes πt ∈
{π1, . . . , π L}. The complete set of LF characteristics
in the profile is denoted by π = {π1, . . . , πT} with T
defining the profile length. The inversion is of seismic
prestack AVO data into LF characteristics. We denote
these seismic data along the vertical profile by d, and
they contain seismic samples for a set of n reflection
angles θ = (θ1, . . . , θn).

The term p(·) is used as a generic term for prob-
ability. In particular, p(πt) denotes the probability of
the various LF classes πt ∈ {π1, . . . , π L}, and p(π) is
the multivariate probability of the complete set of
LF classes. Moreover, p(π |d) denotes the conditional
probability of π given d.

The inversion is defined in a Bayesian setting where
the complete solution is the posterior probabilistic
model defined by

p(π |d) = const × p(π) p(d|π) (1)

with p(π) being the prior model for the LF classes and
p(d|π) the likelihood model relating the seismic data
to these classes. The normalizing constant is usually
difficult to calculate directly.

2.1 Prior model

The prior model for the LF characteristics is defined
as a stationary Markov chain model upward through
the vertical profile. The Markov chain model is defined
by an upward transition matrix P and the marginal
probabilities p(π1), with the elements in P being the
transition probabilities p(πt|πt−1) for all combinations
of LF classes. As the Markov chain model is stationary,
the conditional elements p(πt|πt−1) are independent of
the location t; hence, the marginal probabilities p(πt)

are identical in each location. These marginals can then
be calculated from P, which fully specifies the station-
ary Markov chain model. The Markov chain model is
written

p(π) =
∏

t

p(πt|πt−1) (2)

with p(π1) = p(π1|π0) for notational convenience in the
rest of the paper.

2.2 Likelihood model

In order to link the LF classes to the seismic data, a set
of three elastic material properties is introduced. These
properties are P-wave velocity (vp), S-wave velocity
(vs), and density (ρ). Let mt represent the log-transform
of the three elastic material properties in location t, and
let the complete set in the vertical profile be denoted by
m. The likelihood model is defined as the integral over
m like in Larsen et al. [8]

p(d|π) =
∫

p(d|m) p(m|π) dm, (3)

where p(d|m) is a seismic likelihood model and p(m|π)

is a rock physics likelihood model. The integral is over
all configurations of the three elastic variables, which
may be computer-demanding to calculate.

The seismic data are defined by the convolution
model like in Buland and Omre [4], given by

d = WADm + e, (4)
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where W is a block diagonal convolution matrix con-
taining one wavelet for each reflection angle in θ , A is a
matrix of angle-dependent weak contrast Aki-Richards
coefficients, see Aki and Richards [1], D is a differential
matrix giving the contrasts in m, and e is an error term.
We define e as a mixture of wavelet colored and white
noise defined by the relation

e = We1 + e2, (5)

with e1 and e2 being Gaussian white noise given by

ei ∼ N
(
0, σ 2

i I
) ; i = 1, 2, (6)

where I is the identity matrix. It follows from the rela-
tions above that the seismic likelihood model is Gauss-
linear given by

[d|m] ∼ p(d|m) = N
(
WADm, σ 2

1 WW′ + σ 2
2 I

)
(7)

because the noise in e is Gaussian.
The rock physics likelihood model is factorized as

p(m|π) =
∏

t

p(mt|πt), (8)

and the marginals p(mt|πt) are assigned Gaussian
distributions

[mt|πt] ∼ p(mt|πt) = N (μmt|πt
, �mt|πt) (9)

with the expectation vector μmt|πt
and covariance ma-

trix �mt|πt assumed to be known. In Larsen et al. [8], the
rock physics likelihood model is defined locationwise
using an empirical relation between mt and πt. This
empirical relation leads to more general rock physics
likelihood models, such that well observations can be
used directly without imposing a Gaussian distribution.
The inversion approach in Hammer and Tjelmeland
[7] does, however, demand the rock physics likelihood
model to be Gaussian. In order to compare the two
approaches, we consider a Gaussian distribution in this
study. It is unclear how the Gaussian assumption influ-
ences the inversion results. If, for example, one LF class
is bimodal, it will be defined as two separate classes
such that the bimodality is omitted.

2.3 Posterior model

The posterior model is fully defined by the prior and
likelihood models defined above, and given by

p(π |d) = const×
∏

t

p(πt|πt−1)

×
∫

p(d|m)
∏

t

p(mt|πt) dm.

(10)

As both the seismic and rock physics likelihood models
are assigned Gaussian distributions, the integral over
m is analytically obtainable. The normalizing constant
cannot, however, be calculated directly, as it is defined
as the sum over all configurations of the LF classes.

3 Assessment of posterior model

The posterior model is fully defined in expression 10. It
contains a high-dimensional integral and a normalizing
constant, which may be difficult to calculate. In Larsen
et al. [8], an approximation of the seismic likelihood
model is defined. Using this approximation, the di-
mension of the integral is reduced, and the resulting
posterior is a non-stationary Markov chain model. With
the posterior being a Markov chain model, it can be
calculated extremely fast using the forward–backward
algorithm, where the posterior model including the
normalizing constant is calculated recursively.

In Hammer and Tjelmeland [7], no approximation is
made, and samples from the posterior model are gener-
ated using a computer-demanding McMC algorithm. In
the simulation algorithm, direct calculation of the nor-
malizing constant is avoided. The algorithm is iterative,
and it converges in the limit. The two approaches are
discussed below.

3.1 Assessment of approximate posterior model

The seismic convolution model is given as d =
WADm + e in expression 4. In Larsen et al. [8], the
elastic material properties in m are approximated by a
Gaussian distribution p∗(m) given by

m ∼ p∗(m) = N (μm, �m), (11)

where μm and �m can be calculated as the first two
moments of

p(m) =
∑

π

p(π) p(m|π). (12)

The resulting posterior

p∗(m|d) = const × p∗(m) p(d|m) (13)

is then Gaussian with expectation vector and covari-
ance matrix analytically obtainable as the seismic like-
lihood p(d|m) is Gauss-linear; see expression 7. The
seismic likelihood model is rewritten as the ratio of
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the Gaussian posterior and prior models, then approxi-
mated by the product

p̃(d|m) = const ×
∏

t

p∗(mt|d)

p∗(mt)
; (14)

see Larsen et al. [8]. In the approximation, the spatial
dependencies within p∗(m|d) and p∗(m) are removed
such that the corresponding covariance matrices in the
marginals are 3 × 3 block diagonal containing only
the intervariable dependencies. Note, however, that all
the spatial dependencies are included in the calculation
of p∗(m|d) prior to the approximation such that this
posterior is calculated given the full profile of seismic
data. The exact posterior model is given in expression
10, and the corresponding approximate posterior model
is now on product form

p̃(π |d) = const ×
∏

t

p(πt|πt−1)

×
∫

p∗(mt|d)

p∗(mt)
p(mt|πt) dmt

(15)

with the integral being of dimension three, which is nu-
merically tractable. Further, as the rock physics likeli-
hood p(mt|πt) is assigned a Gaussian distribution, these
integrals can be calculated analytically. The approx-
imate posterior now follows a Markov chain model;
hence, the marginal approximate posterior probabil-
ities p̃(πt|d) can be calculated recursively using the
forward–backward algorithm, see, e.g., Scott [9]. Fur-
ther, the locationwise most probable LF profile is given
as the LF class in each location with highest marginal
probability. A thorough description of the recursive
forward–backward algorithm is given in Larsen et al.
[8], and the algorithm is included in the appendix of that
paper.

3.2 Assessment of exact posterior model

The exact solution to the inversion problem is the
posterior model in expression 10. In Hammer and
Tjelmeland [7], McMC simulation is used to generate
samples from the posterior model; hence, direct cal-
culation of the normalizing constant is omitted. Brute
force McMC assessment is not feasible due to the com-
plexity of the posterior model. The McMC simulation
algorithm is implemented by introducing an auxiliary
variable z defined by

z = ADm + e1 (16)

such that the convolution model for the seismic data in
expression 4 is rewritten

d = Wz + e2. (17)

By introducing z, the relations above obtain Gauss-
linear distributions given by

[z|m] ∼ p(z|m) = N
(
ADm, σ 2

1 I
)

(18)

and

[d|z] ∼ p(d|z) = N
(
Wz, σ 2

2 I
)
, (19)

where I is the identity matrix.
The posterior is redefined by introducing the integral

over z

p(π |d) = const ×
∏

t

p(πt|πt−1)

×
∫ (∫

p(d|z) p(z|m) dz
) ∏

t

p(mt|πt) dm

(20)

with all prior and likelihood models defined above.
To simulate from the posterior, an McMC algorithm
consisting of two steps in each iteration is defined.
Firstly, a Gibbs step is used to update m and z jointly
conditioned on π and d. This first step is done effi-
ciently because the resulting distribution is Gaussian.
Secondly, a Metropolis–Hastings step is used. In this
step, new values for π and m are proposed from a
proposal distribution q(π , m|z), which is an approxi-
mation of the corresponding conditional distribution
p(π , m|z). This conditional distribution cannot be cal-
culated directly. The proposed values are accepted with
a Metropolis–Hastings acceptance probability such that
the simulated classes π are realizations from the exact
posterior p(π |d) after convergence. The McMC algo-
rithm converges relatively fast and mixes well; hence,
the results are reliable. The algorithm is, however, still
computer-demanding compared to the approximate ap-
proach. The marginal posterior probabilities p(πt|d)

are estimated by sampling-based inference by counting
the number of each of the LF classes in each location
after convergence of the McMC simulation algorithm.
We term this the exact posterior p(π |d) is spite of
the McMC error. The locationwise most probable LF
profile is further obtained by choosing the LF class in
each location with most frequent occurrences. A thor-
ough description of the simulation algorithm is given in
Hammer and Tjelmeland [7].

4 Empirical evaluation

We evaluate the approximation in the likelihood
model empirically by defining seven realistic evaluation
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models from which we generate synthetic seismic data.
Using the synthetic data, we calculate the approximate
posterior p̃(π |d) and assess the exact posterior p(π |d).
The approximation is then evaluated by a set of evalu-
ation criteria.

4.1 Evaluation models

The evaluation models are selected such that they span
a set of realistic earth models. The transition matrix
defining the Markov chain prior model is defined on the
basis of general reservoir experience, see Larsen et al.
[8], the rock physics models are chosen such that the
variability corresponds with theory, see Avseth et al.
[2], and the observation errors are chosen such that
realistic signal-to-noise ratios are obtained.

We consider test cases of length T = 100. To com-
pensate for this relatively short profile length, we gen-
erate ten independent data sets for each of the seven
models. We consider the four LF classes gas-saturated
sandstone, oil-saturated sandstone, brine-saturated
sandstone, and shale, such that πt ∈ {SG, SO, SB, SH}.
The upward transition probabilities between these
classes in the prior Markov chain model are defined by
the transition matrix

P =

⎛

⎜⎜⎝

0.9441 0 0 0.0559
0.0431 0.9146 0 0.0424
0.0063 0.0230 0.9422 0.0284
0.0201 0.0202 0.1006 0.8591

⎞

⎟⎟⎠

with rows and columns corresponding to SG, SO,
SB, and SH, respectively. The corresponding mar-
ginal probabilities are p(π1) = (0.2419, 0.1552, 0.3830,

0.2199). The elements with zero probability in the tran-
sition matrix correspond to impossible upward transi-
tions, ensuring that SB cannot be directly above SG
or SO, and that SO cannot be directly above SG. We
term this model a geological prior model. We also
evaluate the influence of the geological prior on the
results, and introduce a non-informative prior model
with transition matrix

P =

⎛

⎜⎜⎝

0.91 0.03 0.03 0.03
0.03 0.91 0.03 0.03
0.03 0.03 0.91 0.03
0.03 0.03 0.03 0.91

⎞

⎟⎟⎠

and marginal distribution p(π1) = (0.25, 0.25, 0.25,

0.25). This model is termed a uniform prior model.

The rock physics likelihood model p(mt|πt) is a
function of log(vp), log(vs), and log(ρ). The expectation
vectors and covariance matrices for these are

μmt|SG = (8.0522, 7.4922, 7.6880)

μmt|SO = (8.0707, 7.4716, 7.7295)

μmt|SB = (8.1211, 7.4668, 7.7460)

μmt|SH = (8.1664, 7.5464, 7.8456)

�mt|SG = 10−3 ×
⎛

⎝
0.9610 0.8879 0.1162
0.8879 1.0699 0.1032
0.1162 0.1032 0.1352

⎞

⎠

�mt|SO = 10−3 ×
⎛

⎝
0.7279 0.7796 0.0930
0.7796 1.0513 0.0858
0.0930 0.0858 0.0804

⎞

⎠

�mt|SB = 10−3 ×
⎛

⎝
0.4688 0.6440 0.0783
0.6440 1.0631 0.0819
0.0783 0.0819 0.0637

⎞

⎠

�mt|SH = 10−3 ×
⎛

⎝
1.8981 2.9115 0.6157
2.9115 4.6322 0.9438
0.6157 0.9438 0.2286

⎞

⎠

with rows and columns corresponding to log(vp),
log(vs), and log(ρ), respectively. Figure 1 contains
500 independent samples of vp, vs, and ρ generated
from p(mt|πt). The pattern corresponds with rock
physics theory; see, e.g., Avseth et al. [2]. The rock
physics model with the parametrization above is termed
medium variability. We evaluate the impact of the rock
physics variability on the inversion results by using
one rock physics model with small variability and one
with large variability. For the first case, the covariance
matrices above are divided by two, and for the latter,
the covariance matrices are multiplied by two.

The seismic data are defined by the convolution
model d = WADm + e; see expression 4. The data con-
tain seismic samples for a set of reflection angles, and
we consider the five angles θ = (0, 10, 20, 30, 40). To
construct W, we use a Ricker wavelet sampled every
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Fig. 1 Independent realizations of vp, vs, and ρ simulated from
the rock physics likelihood model p(mt|πt) with SG, SO, SB, and
SH colored red, green, blue, and black, respectively
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Fig. 2 Ricker wavelet sampled every 0.04 s with frequency
27.5 Hz and length 21

0.04 s with frequency 27.5 Hz and length 21 for all the
reflection angles; see Fig. 2.

The observation error is given by the relation e =
We1 + e2; see expression 5. We let σ2 = 0.01σ1 for
all noise levels, such that the colored part is most
influential.

We evaluate the impact of observation error on the
model and consider noise levels chosen such that a wide
range of signal-to-noise (SN) ratios are obtained. The
SN ratios are calculated as the ratio of the variance in
the signal divided by the variance in the noise; hence,
low values indicate a large noise component while high
values indicate a small noise component. We let the
noise term contain the variance in m in addition to
the variance in e, and the signal contain the seismic
convolution without variance in m or e.

By varying the SN ratios and the variability in the
rock physics model, we obtain the six models described
in Table 1. For all these models, the geological prior
model is used. For the uniform prior, we only eval-
uate the base case model, BC, which is the model
with medium variability in the rock physics model and
SN 1.3.

Note that we keep the SN ratio constant in the mod-
els where the impact of the rock physics variability is
evaluated. The rock physics variability is related to each
of the LF classes. When this variability is decreased,
more observation error is added to obtain SN 1.3. The
observation error is independent of the LF classes,
making the classification more difficult. We therefore

Table 1 Evaluation models used in empirical study

Rock physics variability Noise level

No: Small: Medium: Large:
NN NS NM NL
SN 4.2 SN 2.2 SN 1.3 SN 0.53

Small:
VS − − VS −
Medium:
VM NN NS BC NL
Large:
VL − − VL −

expect the prediction to become worse with decreased
rock physics variability.

4.2 Evaluation criteria

The focus of the study is on the approximation in
the likelihood model. We have defined seven realistic
evaluation models, from which we generate synthetic
seismic data. Using these data, we calculate the approx-
imate marginal posterior p̃(πt|d) and assess the exact
marginal posterior p(πt|d), then evaluate the approxi-
mation using criteria defined below.

We generate ten independent reference profiles π R

from the prior model for each of the seven evaluation
models. Synthetic seismic data are then generated for
each reference profile.

It should be kept in mind that focus is on the quality
of the approximation of the exact likelihood model.
The information content about the reference LF profile
in the exact posterior will vary in the different eval-
uation models. The ability of the approximate model
to reflect information content in the exact posterior is
much more important than the ability to reproduce the
reference profile.

For one of the reference profiles in each evaluation
model, the marginal posterior, a set of realizations,
and the locationwise most probable LF prediction are
displayed using both inversion approaches. The mar-
ginal posteriors provide the basis for the prediction and
are associated with the prediction uncertainty. If the
approximation is perfect, the approximate and exact
marginal posteriors have identical shape, and in perfect
inversion, the marginal probabilities have a value of
one for the reference class and zero for the other classes
in each location. The realizations represent the variabil-
ity in the posteriors. Ideally, the variability in the re-
alizations from the approximate and exact approaches
is identical. The locationwise most probable LF predic-
tion is the LF profile with the highest marginal posterior
probability in each location. If the approximation is
perfect, the locationwise most probable LF predictions
are identical for the two approaches, and in perfect in-
version, the most probable LF predictions are identical
to the reference profile.

We define a confusion rate matrix C = [ci, j] with
elements

ci, j =
∑T

t=1 p̃(πt = j|d) I
(
π R

t = i
)

∑T
t=1 p (πt = j|d) I

(
π R

t = i
) , (21)

where I(A) is an indication function taking a value
of one if A is true and zero otherwise, and where
i and j indicate the different LF classes in πt ∈ {SG,
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SO, SB, SH}. Row i in the matrix contains the ratio of
the approximate and the exact posterior probabilities
summed over the locations where i is the true class
in the reference profile π R. Note that p(π |d) is the
exact solution; hence, the elements give the relative
deviation of the approximate model from this exact
solution. If the approximation is perfect, the numerator
and denominator are equal in all elements of the con-
fusion rate matrix such that the approximate posterior
captures all the information in the exact posterior. In
perfect inversion, the numerator and denominator are
both equal to one on the diagonal and zero in the rest
of the matrix.

The probability of correct classification is denoted δ

and defined by

δp = 1
T

T∑

t=1

p
(
πt = π R

t |d)
. (22)

This probability, calculated from the exact posterior
p(π |d), the approximate posterior p̃(π |d), and the prior
p(π), is denoted by δp, δ p̃, and δπ , respectively. If the
approximation is perfect, δ calculated from the two
posterior approaches are equal, and in perfect inver-
sion, they are equal to one. The probability of correct
classification from the prior model, δπ , contains the
marginal prior probabilities weighted by the number of
each of the LF classes in the reference π R. Ideally, δp

and δ p̃ should be much larger than δπ .
The approximation is within the likelihood model;

hence, the amount of information in the exact likeli-
hood captured by the approximation is of interest. The
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Fig. 3 Evaluation model BC: Seismic data d and reference LF
profile π R with SG, SO, SB, and SH colored red, green, blue, and
black, respectively; marginal posterior, 200 independent realiza-
tions, and locationwise most probable LF prediction from exact
posterior model p(π |d), and marginal approximate posterior,
200 independent realizations and locationwise most probable LF
prediction from approximate posterior model p̃(π |d)
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Fig. 4 Evaluation model NN: See caption in Fig. 3

probability of correct classification coming from the
likelihood model only is calculated by the difference
δp − δπ . Then, by the ratio

� = δ p̃ − δπ

δp − δπ

, (23)

the amount of this probability in the exact likelihood
captured by the approximate likelihood is given. If the
approximation is good, the numerator is equal to the
denominator; hence, the ratio equals one.

4.3 Results with discussion

Figures 3, 4, 5, 6, 7, 8, and 9 contain marginal posteriors,
200 independent realizations, and locationwise most
probable LF predictions from the exact and approxi-
mate approach for each of the seven evaluation models.
For each model, one of the ten reference realizations
is shown. The marginal posteriors for the approximate
and exact approaches tend to have similar shapes, often
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Fig. 5 Evaluation model NS: See caption in Fig. 3
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Fig. 6 Evaluation model NL: See caption in Fig. 3

with probabilities close to one for the reference class,
and probabilities close to zero for the rest of the classes.
The probabilities in the approximate posterior p̃(π |d)

are often smoother in the transitions between the layers
than the exact posterior p(π |d), making the transitions
more non-distinct. In the approximation in the likeli-
hood model, the spatial correlations between the elastic
material properties are ignored; hence, the realizations
from the approximate approach are expected to have
more variability than the ones from the exact approach.
This is verified in the realizations, except maybe for
models NL and VS. For both posterior approaches, the
amount of variability increases with increasing noise
levels. The most probable LF predictions from the two
approaches often look similar, but the ones from the
approximate model are more heterogeneous than the
ones from the exact model. The predicted profiles gen-
erated from the exact posterior tend to look more like
the true LF profile than the ones from the approximate
posterior.

Table 2 contains the confusion rate matrix for each
of the evaluation models, calculated based on the ten
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Fig. 7 Evaluation model VS: See caption in Fig. 3
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Fig. 8 Evaluation model VL: See caption in Fig. 3

independent reference realizations for each model. The
diagonal elements contain the probability of correct
prediction for each of the LF classes; hence, these are
of particular interest. The numerator is mostly smaller
than the denominator in the diagonal elements such
that the probability of correct classification is higher
in the exact than the approximate posterior. Note,
however, that this often shifts in the diagonal elements
for SG. The exact posterior is the optimal solution in
the Bayesian approach; hence, ratios larger than one
do not mean that the approximate approach is better
than the exact one. What is important is how much the
numerator and denominator deviate from each other.
For all models with geological prior, SO is the diagonal
class with largest deviation between numerator and
denominator. Note, however, that SO has the smallest
marginal prior probability in the geological prior. In the
approximate approach, regression towards the domi-
nant classes is therefore more common than in the exact
approach. Note also that this is not so in the model
with uniform prior, where each class has equal marginal
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Fig. 9 Evaluation model BC with uniform prior: See caption in
Fig. 3
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Table 2 Confusion rate
matrix with approximate
(numerator) and exact
(denominator) posterior
probabilities for each of the
seven evaluation models

SG SO SB SH

BC
SG 0.8178/0.6696 0.0843/0.3078 0.0819/0.0191 0.0160/0.0034
SO 0.4841/0.3525 0.3632/0.5585 0.1334/0.0867 0.0193/0.0023
SB 0.0962/0.0067 0.2295/0.0733 0.5749/0.8830 0.0994/0.0371
SH 0.0153/0.0006 0.0153/0.0055 0.0537/0.0409 0.9157/0.9530

NN
SG 0.9978/0.9939 0.0021/0.0061 0.0001/0.0000 0.0000/0.0000
SO 0.5673/0.0046 0.3802/0.9898 0.0498/0.0055 0.0026/0.0000
SB 0.0009/0.0000 0.0282/0.0001 0.9671/0.9996 0.0038/0.0003
SH 0.0006/0.0000 0.0060/0.0002 0.0392/0.0031 0.9541/0.9966

NS
SG 0.5592/0.8655 0.4087/0.1342 0.0213/0.0001 0.0109/0.0002
SO 0.2861/0.1939 0.3824/0.8020 0.3213/0.0032 0.0103/0.0009
SB 0.0055/0.0151 0.1171/0.1216 0.7687/0.8172 0.1087/0.0461
SH 0.0024/0.0063 0.0111/0.0085 0.0702/0.0229 0.9162/0.9622

NL
SG 0.6961/0.6545 0.1306/0.2355 0.1471/0.1073 0.0262/0.0027
SO 0.4594/0.2646 0.2811/0.3525 0.2094/0.3668 0.0501/0.0161
SB 0.0703/0.0489 0.0686/0.1245 0.6977/0.7472 0.1634/0.0793
SH 0.0656/0.0147 0.0232/0.0171 0.1871/0.1400 0.7241/0.8282

VS
SG 0.7137/0.7722 0.0812/0.1987 0.1839/0.0283 0.0212/0.0008
SO 0.3689/0.1910 0.1506/0.4881 0.3865/0.3031 0.0939/0.0178
SB 0.0715/0.0059 0.3228/0.0702 0.5046/0.8960 0.1011/0.0279
SH 0.0137/0.0012 0.0331/0.0072 0.1974/0.0654 0.7558/0.9261

VL
SG 0.8730/0.8641 0.0673/0.1143 0.0290/0.0147 0.0306/0.0069
SO 0.3780/0.1365 0.5027/0.7423 0.0981/0.1098 0.0212/0.0113
SB 0.0249/0.0007 0.1976/0.0350 0.6543/0.9221 0.1232/0.0421
SH 0.0209/0.0011 0.0509/0.0061 0.1774/0.0691 0.7508/0.9237

BC, uniform prior
SG 0.5719/0.7204 0.2990/0.2569 0.1060/0.0223 0.0231/0.0005
SO 0.1268/0.3404 0.5347/0.5730 0.2803/0.0858 0.0582/0.0008
SB 0.0849/0.0349 0.2386/0.1383 0.5421/0.7976 0.1344/0.0292
SH 0.0258/0.0009 0.0788/0.0129 0.1228/0.1818 0.7726/0.8044

probability and the numerator and denominator are
almost equal for SO.

Table 3 contains the probabilities of correct clas-
sification, δp, δ p̃, and δπ , for the exact posterior, the
approximate posterior and the prior, respectively, for
the seven models. All δ values are calculated as the

average over the ten reference realizations for each
evaluation model, and the corresponding standard de-
viations are shown in parentheses. We see that the
probability of correct classification is always larger in
the exact than in the approximate posterior, whereas
the standard deviations are larger in the approximate

Table 3 Probability of correct classification, δp, δ p̃, and δπ , with
standard deviations in parentheses for exact posterior, approxi-
mate posterior, and prior, respectively, and relative loss in clas-

sification probability by using the approximate likelihood model,
�, for each of the seven evaluation models

δp δ p̃ δπ �

BC 0.7846 (0.1024) 0.6647 (0.1436) 0.2673 (0.0402) 0.7681
NN 0.9963 (0.0033) 0.8744 (0.1035) 0.2765 (0.0375) 0.8307
NS 0.8573 (0.1973) 0.6842 (0.2606) 0.2781 (0.0486) 0.7010
NL 0.7029 (0.1086) 0.6631 (0.1395) 0.3012 (0.0367) 0.9010
VS 0.7937 (0.1735) 0.5343 (0.1694) 0.2719 (0.0432) 0.5029
VL 0.8771 (0.0697) 0.6775 (0.2185) 0.2829 (0.0388) 0.6473
BC, uniform prior 0.7168 (0.1394) 0.5975 (0.1544) 0.2500 (0.0000) 0.7444
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than in the exact posterior. One exception is model
VS. The final column in Table 3 contains �, being the
relative loss in classification probability by using the
approximate likelihood model. The ratio has the lowest
value for the model with small variability in the rock
physics model; hence, the amount of information in
the true likelihood captured by the approximation is
lowest in this model. This is also the model where δ p̃

has the lowest value, indicating that this is the most
difficult model for the approximate approach. Note
that the noise level in e has to be large in this model
in order to obtain SN 1.3. The consequences of the
approximation are also, however, large for the model
with large variability in the rock physics model. We see
from this that the consequences of the approximation
are large in both models where the variability in the
rock physics model has been altered. In the model with
uniform prior, both approaches are relatively poor, and
the approximate model captures most of the informa-
tion in the exact approach. The zero elements in the
geological prior put constraints on the model, which
generally makes the classification an easier problem
than with a uniform prior. The consequences of the
approximation are smallest in the model with lowest SN
ratio. This is also the model where the exact approach
has lowest probability of correct classification. The ap-
proximate approach does not, however, have especially
low probability of correct classification in this model;
hence, the ratio � has the highest value here. Overall,
the approximate likelihood model preserves between
50% and 90% of the information content in the exact
likelihood model.

5 Closing remarks

The approximation within the likelihood model in
Larsen et al. [8] is evaluated in an empirical study by
comparing inversion results from the methodology in
Larsen et al. [8] with results from the exact approach
in Hammer and Tjelmeland [7]. Seven realistic evalua-
tion models are defined, from which synthetic seismic
data are generated. Using identical seismic data, the
approximate marginal posterior is calculated and the
exact marginal posterior is assessed.

The shapes of the marginal approximate and exact
posteriors are similar for all evaluation models; hence,
the approximation appears reliable. The variability
in the realizations from the approximate approach is
mostly larger than the variability in the correspond-
ing realizations from the exact approach due to the
approximation in the likelihood model, where spatial
correlations between the elastic material properties are

ignored. For both approximate and exact approaches,
the amount of variability increases with increasing
noise levels. Regression towards the dominant classes
is more common in the approximate than the exact
approach. The probability of correct classification is
larger for the exact than the approximate approach in
all the evaluation models, and the consequences of the
approximation are largest for the models where the
variability in the rock physics model has been altered.

The main result of the study is that the approximate
likelihood preserves between 50% and 90% of the
information content in the exact likelihood model. The
approximate approach therefore appears as reliable for
realistic LF inversions, although the exact posterior
provides somewhat better results.

It takes more than a thousand times more computing
time to generate results from the McMC simulation
algorithm than from the recursive forward–backward
algorithm. Extension of the McMC simulation algo-
rithm into large 3D target zones will not be feasible due
to the computer-demanding algorithm. On the other
hand, it is possible to extend to 3D the approximate
methodology in Larsen et al. [8], where an iterative
simulation algorithm must be used to assess the pos-
terior. The algorithm is, however, iterative only in 2D
as the third dimension is calculated recursively by the
forward–backward algorithm; see Ulvmoen and Omre
[10].
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