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1 Introduction

The last decades’ technological revolution have considerably increased the rel-
evance of multivariate modelling. Copulae are now regularly used within fields
such as finance, survival analysis and actuarial sciences. Although the list of para-
metric bivariate copulae is long and varied, the choice is rather limited in higher
dimensions (Genest et al., 2009). Accordingly, a number of hierarchical, copula-
based structures have been proposed, among those the pair-copula construction
(PCC) of Joe (1996), further studied and considered by Bedford and Cooke (2001,
2002), Kurowicka and Cooke (2006) and Aas et al. (2009).

A PCC is a treelike construction, built from pair-copulae with conditional dis-
tributions as their two arguments (see Figure ??). The number of conditioning
variables is zero at the ground, and increases by one for each level, to ensure co-
herence of the structure. Despite its simple structure, the PCC is highly flexible
and covers a wide range of complex dependencies (Hobæk Haff et al., 2010; Joe
et al., 2010). After Aas et al. (2009) set it in an inferential context, it has made
several appearances in the literature (Chollete et al., 2009; Czado and Min, 2010;
Czado et al., 2009; Fischer et al., 2007; Heinen and Valdesogo, 2009; Kolbjørnsen
and Stien, 2008; Schirmacher and Schirmacher, 2008), exhibiting its adequacy for
various applications.

Regardless of its recent popularity, estimation of PCC parameters has so far been
addressed mostly in an applied setting. The aim of this work is to explore the
properties of alternative estimators. As the PCC is a member of the multivariate
copula family, one may exploit the large collection of estimators proposed for that
model class, among which moments type procedures, based on, for instance, the
matrix of pairwise Kendall’s tau coefficients (Clayton, 1978; Genest, 1987; Genest
and Rivest, 1993; Oakes, 1982). Such methods may be well-suited for particular
copula families. We are however interested in more general procedures, allowing
for broader model classes. Moreover, we wish to exploit the specific structure of
the PCC.

More specifically, the number of parameters of a PCC grows quickly with the di-
mension, even if all pair-copulae constituting the structure are from one-parameter
families. In medium to high dimension, the existing copula estimators may sim-
ply become too demanding computationally, and will at least require good start
values in the optimisation procedure. Furthermore, due to the PCC’s tree struc-
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ture, selection of appropriate pair-copulae for a given data set must be done level
by level. Procedures that estimate all parameters simultaneously are therefore
unfit for this task.

In all, we contemplate four estimators. The first is the classical maximum likeli-
hood (ML), followed by the inference functions for margins (IFM) and semipara-
metric estimators, that have been developed specifically for multivariate copu-
lae. These three estimators are treated in Section 2, and are included mostly for
comparison. Section 3 is devoted to the fourth one, the stepwise semiparametric
estimator (SSP). Unlike the others, it is designed for the PCC structure. Although
it has been suggested and used earlier (Aas et al., 2009), it has never been for-
mally presented, nor have its asymptotic properties been explored. In Section 4,
we compare the four estimators in a few examples. Finally, Section 5 presents
some concluding remarks.

The setting is as follows. Consider the observations x1, . . . ,xn of n independent
d-variate stochastic vectors X1, . . . ,Xn, originating from the same pair-copula
construction. Assume further that the joint distribution is absolutely continuous,
with strictly increasing margins. The corresponding copula is then unique (Sklar,
1959). Letting α and θ denote the parameters of the margins and copula, respec-
tively, the joint probability density function (pdf) may then be expressed as (Mc-
Neil et al. (2006), pp. 197)

f1..d(x1, . . . , xd;α,θ) = c1..d(F1(x1;α1), . . . , Fd(xd;αd);θ)
d∏
l=1

fl(xl;αl). (1.1)

Here, Fl and fl, l = 1, . . . , d, are the marginal cumulative distribution functions
and probability density functions, respectively, and c1..d is the corresponding cop-
ula density. Since this is a PCC, the copula density is, in turn, a product of pair-
copulae.

Define the index sets vij = {i+1, . . . , i+j−1}, with vi1 = ∅, andwij = {i, vij, i+j},
for 1 ≤ i ≤ d− j, 1 ≤ j ≤ d− 1. Thus, for a d-dimensional vector a = (a1, . . . , ad),
we write avij

= (ai+1, . . . , ai+j−1) and awij
= (ai, . . . , ai+j). Further, let Fk|l be the

conditional cdf of Xk given X l = xl, and ci,i+j|vij
the copula density correspond-

ing to the conditional distribution Fi,i+j|vij
of (Xi, Xi+j) givenXvij

= xvij
. Finally,

let θi,i+j|vij
be the parameters of the copula density ci,i+j|vij

, and define
θi→i+j = {θs,s+t|vst : (s, s+ t) ∈ wij}, with θi→i = ∅, and
θi = {θs,s+t|vst : |vst| = i− 1}, where | · | denotes the cardinality, (i.e. θi gathers all
parameters at level i of the structure). For a so-called D-vine (Bedford and Cooke,
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2001, 2002), the joint pdf (1.1) can now be re-expressed as (Aas et al., 2009)

f1..d(x1, . . . , xd;α,θ) =
d∏
l=1

fl(xl;αl)

·
d−1∏
j=1

d−j∏
i=1

ci,i+j|vij

(
Fi|vij

(xi|xvij ;αwi,j−1 ,θi→i+j−1) ,

Fi+j|vij
(xi+j |xvij ;αwi+1,j−1 ,θi+1→i+j);θi,i+j|vij

)
.

(1.2)

In four dimensions, this becomes

f1234(x1,x2, x3, x4;α,θ) =

f1(x1;α1) · f2(x2;α2) · f3(x3;α3) · f4(x4;α4)

· c12(F1(x1;α1), F2(x2;α2);θ12) · c23(F2(x2;α2), F3(x3;α3);θ23)

· c34(F3(x3;α3), F4(x4;α4);θ34)

· c13|2(F1|2(x1|x2;α1,α2,θ12), F3|2(x3|x2;α2,α3,θ23);θ13|2)

· c24|3(F2|3(x2|x3;α2,α3,θ23), F4|3(x4|x3;α3,α4,θ34);θ24|3)

· c14|23(F1|23(x1|x2, x3;α1,α2,α3,θ12,θ23,θ13|2),

F4|23(x4|x2, x3;α2,α3,α4,θ23,θ34,θ24|3);θ14|23).

(1.3)

For simplicity, we will start by assuming that the distribution in question is a D-
vine, represented to the left in Figure ?? for d = 5. Similar results can be obtained
for C-vines (Section 3.3) and other regular vines (Bedford and Cooke, 2001, 2002).
We also assume that the PCC is of a simplified form (Hobæk Haff et al., 2010),
i.e. that the parameters θi,i+j|vij

of the copulae Ci,i+j|vij
, combining conditional

distributions, are not functions of the conditioning variables xvij
. Without this

assumption, inference on these models is not doable in practice.
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2 Multivariate copula estimators

Supposing the model is true, the maximum likelihood (ML) estimator is a natural
choice, due to its asymptotic efficiency and other advantageous characteristics.
According to (1.2), the log-likelihood function of a D-vine is given by

l(α,θ;x)

=
n∑
k=1

log(f1..d(x1k, . . . , xdk;α,θ))

=
n∑
k=1

d∑
l=1

log(fl(xlk;αl))+

n∑
k=1

d−1∑
j=1

d−j∑
i=1

log
(
ci,i+j|vij

(
Fi|vij

(xi|xvij ;αwi,j−1 ,θi→i+j−1),

Fi+j|vij
(xi+j |xvij ;αwi+1,j−1 ,θi+1→i+j);θi,i+j|vij

))
= lM (α;x) + lC(α,θ;x). (2.1)

The ML estimator θ̂
ML

is obtained by maximising the above log-likelihood func-
tion over all parameters, α and θ, simultaneously. Under the additional assump-
tions (M1) − (M8) of Lehmann (2004) (pp. 499–501), this corresponds to solving
the set 1

n

∑n
k=1φML

(
X1k, . . . , Xdk; α̂

ML, θ̂
ML
)

= 0 of estimating equations (one
equation per parameter), which is a vector of functions, with elements

φML,l(x1, . . . , xd;α,θ) =
∂ log (f1...d(x1, . . . , xd;α,θ))

∂αl
,

φML,d+(j−1)(d− j
2)+i(x1, . . . , xd;α,θ) =

∂ log (f1...d(x1, . . . , xd;α,θ))
∂θi,i+j|vij

,

l = 1, . . . , d, i = 1, . . . , d− j, j = 1, . . . , d− 1.

(2.2)

Define I as the corresponding Fischer information matrix

I = E

((
∂ log (f1..d(X;α,θ))

∂(α,θ)

)(
∂ log (f1..d(X;α,θ))

∂(α,θ)

)T)

= E
(
−∂

2 log (f1..d(X;α,θ))
∂(α,θ)∂(α,θ)T

)
=

(
Iα Iα,θ

IT
α,θ Iθ

)
.
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In the last expression, it is partitioned according to marginal and dependence
parameters. The corresponding inverse is

I−1 =

 I(α) I(α,θ)(
I(α,θ)

)T
I(θ)

 ,

I(α) =
(
Iα − Iα,θI−1

θ IT
α,θ

)−1

I(α,θ) = −I(α)Iα,θI−1
θ

I(θ) = I−1
θ + I−1

θ IT
α,θI(α)Iα,θI−1

θ .

(2.3)

It is well-known that the estimator θ̂
ML

is consistent for θ and asymptotically
normal, i.e.

√
n
(
θ̂
ML
− θ

)
d−→ N

(
0,V ML

)
,

V ML = I(θ).

In general, ML estimation of PCC parameters will require numerical optimisa-
tion. Even in rather low dimensions, such as four or five, the number of parame-
ters is high, especially if several of the model components have more than one pa-
rameter. For instance, a five-dimensional PCC, consisting of Student’s t-copulae,
has 20 parameters, before one has taken the margins into account. Thus, the op-
timisation becomes numerically challenging and highly time consuming. In fact,
the ML estimator may not be an option in practice. Therefore, one needs faster
and computationally easier estimation procedures.

Moreover, the above results require the chosen model to be the true model, i.e.
the one that produced the data. If the specified model is close to the truth in the
Kullback-Leibler (KL) sense, the ML estimator may behave very well (Claeskens
and Hjort, 2008). However, it is in general non-robust to larger KL-divergences
from the true model.

2.1 Two-step estimators
The next two estimators are not particularly designed for pair-copula construc-
tions, but for multivariate copula models in general. Both consist of two steps,
the first being estimation of the marginal parameters.

2.1.1 Inference function for margins estimator
The inference function for margins (IFM) estimator, introduced by Joe (Joe, 1997,
2005), addresses the computational inefficiency of the ML estimator by perform-
ing the estimation in two steps. First, one estimates the marginal parameters by
maximising the marginal log-likelihood function lM from (2.1). The resulting esti-
mates α̂IFM are plugged into the PCC log-likelihood function lC to obtain θ̂

IFM
.

Under conditions (M1) − (M8) (see above), this corresponds to solving the esti-
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mating equations 1
n

∑n
k=1φIFM

(
X1k, . . . , Xdk; α̂

IFM , θ̂
IFM

)
= 0, with elements

φIFM,l(xl;αl) =
∂ log (fl(xl;αl))

∂αl

φIFM,d+(j−1)(d− j
2)+i(x1, . . . , xd;α,θ) =

∂ log (f1...d(x1, . . . , xd;α,θ))

∂θi,i+j|vij

l = 1, . . . , d, i = 1, . . . , d− j, j = 1, . . . , d− 1.

(2.4)

Compared to the ML equations (2.2), the full log-pdf, log f1...d, is replaced with
the marginal log-pdfs, log fj , for the estimation of α.

Consider a four-dimensional D-vine (1.3), consisting of Student’s t-copulae, each
having their own correlation and degrees of freedom parameter, combined with
Student’s t-margins. The parameter vectors are then α = (ν1, ν2, ν3, ν4) and θ =

(ρ12, ρ23, ρ34, ρ13|2, ρ24|3, ρ14|23, ν12, ν23, ν34, ν13|2, ν24|3, ν14|23). IFM estimation of this
model starts with a separate estimation of νi, i = 1, 2, 3, 4, margin by margin. The
next step is to optimise lC (ν̂1, . . . , ν̂4,θ;x) over θ, where lC is given in (2.1), i.e.
the sum of the log-copulae in line 3 to 8 of (1.3), over all observations.

For the margins, define Kα as the matrix with blocks Kα,i,j =

E
(
φIFM,i(Xi;αi)φIFM,j(Xj;αj)

)
= E

((
∂ log(fi(Xi;αi))

∂αi

)(
∂ log(fj(Xj ;αj))

∂αj

)T)
, i, j = 1, . . . , d,

and J α the block diagonal matrix with the diagonal blocks J α,i,i = E
(
− ∂
∂αT

i
φIFM,i(Xi;αi)

)
= E

(
−∂2 log(fi(Xi;αi))

∂αi∂αT
i

)
= Kα,i,i of the Kα, each block corresponding to one of the

margins. If all margins are one-parameter families, Kα and J α are d×d matrices.
More generally, their dimension depends on the number of parameters of each
margin.

Joe (2005) has shown that under the mentioned conditions, the estimator θ̂
IFM

is
consistent for θ, as well as asymptotically normal:

√
n
(
θ̂
IFM
− θ

)
d−→ N

(
0,V IFM

)
,

with

V IFM = I−1
θ + I−1

θ IT
α,θJ −1

α KαJ −1
α Iα,θI−1

θ . (2.5)

We see that the above covariance matrix is obtained by replacing the marginal
block I(α) in (2.3) with J −1

α KαJ −1
α , which is the asymptotic covariance matrix

of α̂IFM . This shows how one loses asymptotic efficiency by discarding the in-
formation the dependence structure might have on the margins. Several studies,
including Joe (2005) and Kim et al. (2007), have demonstrated that unless the
dependence between the variables is extreme, this efficiency loss is likely to be
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rather small. Moreover, the IFM method is faster than the ML estimator, and can
at least be used to set the start values in ML optimisation. Of course, for high-
dimensional θ, the IFM estimator is still too slow to be used for PCCs.

2.1.2 Semiparametric estimator for copula parameters
The semiparametric (SP) estimator was introduced by Genest et al. (1995) and
generalised by Tsukahara (2005). The censored case was treated by Shih and Louis
(1995). Aas et al. (2009) suggest this method for PCCs. Just like IFM, it is a two-
step estimator, treating the margins separately.

As seen from (1.2), the pair-copula arguments at the ground level of a pair-copula
construction (T1 in Figure ??) are marginal distributions Fi(xi). From the second
level, they are conditional distributions, whose number of conditioning variables
increases by one with each level. As a matter of fact, these conditional distribu-
tions may be written as functions of the margins. Let i, j be distinct indices, i.e.
i 6= j, and v a non-empty set of indices, all from {1, . . . , d}, such that i, j /∈ v. Then,
in a simplified pair-copula construction (Joe, 1997)

Fi|v∪j(xi|xv∪j) =
∂Cij|v(ui, uj)

∂uj

∣∣∣∣
ui=Fi|v(xi|xv),uj=Fj|v(xj |xv)

. (2.6)

Thus, one can express Fi|v∪j as a function of the two conditional distributions Fi|v
and Fj|v with one conditioning variable less, by extracting one of the variables j
from the conditioning set v∪ j. Likewise, Fi|v and Fj|v may be written as bivariate
functions of conditional distributions with a conditioning set reduced by one.
Proceeding in this way, one finally obtains recursive functions of the margins.

The type of pair-copula construction determines the conditional distributions that
are needed. At level j ≥ 2 of a D-vine, these are the pairs
(Fi|vij

(xi|xvij
), Fi+j|vij

(xi+j|xvij
)), i = 1, . . . , d−j. Now, define the functions hi,i+j|vij

and hi+j,i|vij
as

hi,i+j|vij
(ui, ui+j) ≡

∂Ci,i+j|vij
(ui, ui+j)

∂ui+j

hi+j,i|vij
(ui+j , ui) ≡

∂Ci,i+j|vij
(ui, ui+j)

∂ui

, (2.7)

for i = 1, . . . , d− j, j = 1, . . . , d− 1. Using (2.6), one obtains

Fi|vij
(xi|xvij ) =

hi,i+j−1|vi,j−1
(Fi|vi,j−1

(xi|xvi,j−1), Fi+j−1|vi,j−1
(xi+j−1|xvi,j−1))

Fi+j|vij
(xi+j |xvi,j−1) =

hi+j,i+1|vi+1,j−1
(Fi+j|vi+1,j−1

(xi+j |xvi+1,j−1), Fi+1|vi+1,j−1
(xi+1|xvi+1,j−1)),

which are bivariate functions of the conditional distributions constituting the ar-
guments of the copulae at the previous level, j − 1. As one continues this recur-
sion, one achieves, as earlier mentioned, functions of the marginsFi(xi), . . . , Fi+j(xi+j).
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Since these are needed in the asymptotics, we denote them g1
i,i+i and g2

i,i+i, and ex-
plicitly define them below. Note however, that for all practical purposes, such as
in the estimation algorithm (Algorithm 1), one will use the nested h-functions
from (2.7). Define

g1
i,i+j(ui, . . . , ui+j−1) ≡Fi|vij

(F−1
i (ui)|F−1

i+1(ui+1), . . . , F−1
i+j−1(ui+j−1))

g2
i,i+j(ui+1, . . . , ui+j) ≡Fi+j|vij

(F−1
i+j(ui+j)|F

−1
i+1(ui+1), . . . , F−1

i+j−1(ui+j−1))
, (2.8)

for i = 1, . . . , d − j, j = 1, . . . , d − 1. Now, one may rewrite (1.2) in terms of the
these g-functions:

f1..d(x1, . . . , xd;α,θ) =
d∏
l=1

fl(xl;αl)

·
d−1∏
j=1

d−j∏
i=1

ci,i+j|vij

(
g1
i,i+j(Fi(xi;αi), . . . , Fi+j−1(xi+j ;αi+j−1);θi→i+j−1),

g2
i,i+j(Fi+1(xi+1;αi+1), . . . , Fi+j(xi+j ;αi+j);θi+1→i+j);

θi,i+j|vij

)
.

(2.9)

Recall that IFM estimates are obtained by plugging the estimated marginal pa-
rameters α̂ into the PCC log-likelihood function lC , when one estimates θ. Semi-
parametric estimation consists in replacing the parametric marginal cdfs uj =

Fj(xj;αj) in lC with the corresponding empirical ones

ujn = Fjn(xj) =
1

n+ 1

n∑
k=1

I(xjk ≤ xj), I(A) =

1, if A is true

0, otherwise
.

The resulting pseudo log-likelihood function lC,P (θ;x), given by

lC,P (θ;x) =
n∑
k=1

log (c1...d (F1n(x1k), . . . , Fdn(xdk);θ)) =

n∑
k=1

d−1∑
j=1

d−j∑
i=1

log
(
ci,i+j|vij

(
g1
i,i+j(Fi,n(xik), . . . , Fi+j−1,n(xi+j−1,k);θi→i+j−1),

g2
i,i+j(Fi+1,n(xi+1,k), . . . , Fi+j,n(xi+j,k);θi+1→i+j);

θi,i+j|vij

))
,

is just a function of θ. To obtain the semiparametric estimator θ̂
SP

, one simply
maximises lC,P (θ;X) with respect to θ.

Consider again the four-dimensional Student’s t-vine of Section 2.1.1. Using the
SP estimator for this model, one starts with a separate estimation of the marginal
parameters νi, just as with IFM. However, SP estimation also requires a prelim-
inary computation of the so-called pseudo-observations uik,n = Fin(xik), i =
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1, 2, 3, 4, k = 1, . . . , n. The estimate θ̂
SP

is obtained by maximising lC,P (x;θ), in
this case

n∑
k=1

(
log (c12(u1k,n, u2k,n;θ12)) + . . .+ log

(
c14|23(g1

14(u1k,n, . . . , u3k,n;θ1→3),

g2
14(u2k,n, . . . , u4k,n;θ2→4);θ14|23)

))
,

with θ1→3 = (θ12,θ23,θ13|2) and θ2→4 = (θ23,θ34,θ24|3), over θ.

In addition to the assumptions made for the ML estimator (see above), assume
that the copula density c1...d fulfills condition (A.1) from Tsukahara (2005). Then,
the procedure corresponds to solving the estimating equations 1

n

∑n
k=1φSP

(
F1n(X1k), . . . , F1n(Xdk); θ̂

SP
)

=

0, with elements

φSP,(j−1)(d− j
2)+i(u1, . . . , ud;θ) =

∂ log (c1...d(u1, . . . , ud;θ))

∂θi,i+j|vij

,

i = 1, . . . , d− j, j = 1, . . . , d− 1.

(2.10)

The full log-pdf, log f1...d, is now substituted with the copula log-density, log c1...d,
in the estimating equations.

LetU be a d-variate stochastic vector distributed according to the copulaC1...d(u1, . . . , ud;θ),
and define

W SP
j (U ;θ) =

∫
∂2 log c1...d(u1, . . . , ud;θ)

∂θ∂uj
I(Uj ≤ uj)dC1...d(u1, . . . , ud;θ).

Further, define the matrix

BSP
θ = Var

(
d∑
j=1

W SP
j (U ;θ)

)
+

d∑
j=1

Cov
(
φSP (U ;θ),W SP

j (U ;θ)
)

= Var

(
d∑
j=1

W SP
j (U ;θ)

)
+

d∑
j=1

Cov
(
∂ log c1...d(U ;θ)

∂θ
,W SP

j (U ;θ)

)
,

where A = Cov(Y ,Z) for two stochastic vectors Y and Z is the matrix with
elements

Aij = Cov(Yi, Zj) + Cov(Yj, Zi).

The matrix BSP
θ quantifies the effect of replacing the parametric marginal distri-

butions with empirical ones. In two dimensions, the covariance terms ofBSP
θ are

0 (Genest and Werker, 2002). The semiparametric estimator θ̂
SP

has been shown
to be consistent and asymptotically normal (Genest et al., 1995):

√
n
(
θ̂
SP
− θ

)
d−→ N

(
0,V SP

)
,
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with

V SP = I−1
θ + I−1

θ B
SP
θ I−1

θ . (2.11)

Due to the completely separate and independent estimation of marginal and de-
pendence parameters, the semiparametric estimator is more robust to misspeci-
fication of the margins than ML and IFM (Kim et al., 2007), but not to misspec-
ification of the pair-copulae. Computationally, it is comparable to IFM. Hence,
for high-dimensional θ, although better than ML, this procedure may be too de-
manding for PCCs, and will at least require good start values in the optimising
routine.
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3 PCC parameter estimators

If the number of PCC parameters θ is high enough, the estimators considered
so far will be computationally too heavy. In any case, they necessitate appropri-
ate start values. The next estimator, designed especially for pair-copula construc-
tions, addresses this particular issue.

3.1 Stepwise semiparametric estimator (SSP)
As in semiparametric estimation, the marginal parameters are handled separately,
and the parametric margins in the PCC log-likelihood function lC are replaced
with the non-parametric ones. The idea is to estimate the PCC parameters level
by level, conditioning on the parameters from preceding levels of the structure.
Define the functions

ψj(u1, . . . , ud;θ1, . . . ,θj) =

d−j∑
i=1

log
(
ci,i+j|vij

(g1
i,i+j(ui, . . . , ui+j−1;θi→i+j−1),

g2
i,i+j(ui+1, . . . , ui+j;θi+1→i+j);θi,i+j|vij

)
) (3.1)

and the level pseudo log-likelihood functions

lC,P,j(θ1, . . . ,θj;x) =
n∑
k=1

j∑
l=1

ψl(F1n(x1k), . . . , Fdn(xdk);θ1, . . . ,θl),

for j = 1, . . . , d − 1. Hence, lC,P,j is the sum over all log pair-copulae up to, and
including, level j. To obtain the parameter estimates θ̂

SSP

j for a particular level

j, one plugs the estimates θ̂
SSP

1 , . . . , θ̂
SSP

j−1 from preceding levels into lC,P,j and
maximises it with respect to θj . Assuming the standard conditions for the ML
estimator are fulfilled (see Section 2), this corresponds to solving the estimating
equations 1

n

∑n
k=1φSSP

(
F1n(X1k), . . . , Fdn(Xdk); θ̂

SSP
)

= 0, with

φSSP,(j−1)(d− j
2)+i(u1, . . . , ud;θ1, . . . ,θj)

=
∂

∂θi,i+j|vij

j∑
l=1

ψl(u1, . . . , ud;θ1, . . . ,θl)

=
∂

∂θi,i+j|vij

ψj(u1, . . . , ud;θ1, . . . ,θj),

i = 1, . . . ,d− j, j = 1, . . . , d− 1.

(3.2)
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Compared to the SP equations (2.10), the full log copula density log c1...d is now
replaced by the sum of log copula densities up to, and including, the level the
parameter belongs to. The corresponding estimation procedure is presented in
Algorithm 1, where a += b is short for a = a + b. If none of the pair-copulae
constituting the structure share parameters, which will usually be the case, the
estimating equations are reduced to ∂

∂θi,i+j|vij

log(ci,i+j|vij
). This means that the op-

timisation is performed for each copula, individually.

Let us return to the four-dimensional D-vine considered in Section 2.1.2. As in
the SP procedure, one estimates the marginal parameters α in a separate step,
and computes the pseudo-observations uik,n = Fin(xik), i = 1, 2, 3, 4, k = 1, . . . , n.
One proceeds to the level 1 parameters, estimating each of the pairs (ρi,i+1, νi,i+1)

by optimising
∑n

k=1 log(ci,i+1(uik,n, ui+1,k,n; ρi,i+1, νi,i+1)), for i = 1, 2, 3. One subse-
quently computes the copula arguments ui|i+1,k,n = hi,i+1(uik,n, ui+1,k,n; ρ̂i,i+1, ν̂i,i+1))

and ui+2|i+1,k,n =

hi+2,i+1(ui+2,k,n, ui+1,k,n; ρ̂i+1,i+2, ν̂i+1,i+2)), i = 1, 2, 3, k = 1, . . ., n, for level 2, by
plugging the resulting estimates into the adequate h-functions (2.7). At level 2,
one estimates each of the pairs (ρi,i+2|i+1, νi,i+2|i+1), for i = 1, 2, by maximising∑n

k=1 log(ci,i+2|i+1(ui|i+1,k,n, ui+2|i+1,k,n; ρi,i+2|i+1, νi,i+2|i+1)). Next, one computes the
copula arguments u1|23,k,n and u4|23,k,n for level 3 by plugging the estimates from
level 2 into h13|2 and h24|3. Finally, one optimises∑n

k=1 log(c14|23(u1|23,k,n, u4|23,k,n; ρ14|23, ν14|23)) to obtain the estimates
(ρ̂14|23, ν̂14|23).

When some of the copulae share parameters, the procedure is a little different. Let
us for instance replace the previously described D-vine with a four-dimensional
Student’s t-copula with correlations (ρ12, ρ23, ρ34, ρ13, ρ24, ρ14) and ν degrees of free-
dom. This is also a D-vine consisting of Student’s t-copulae. The correlation pa-
rameters of these copulae are now the corresponding partial correlations (ρ12, ρ23, ρ34, ρ13|2, ρ24|3, ρ14|23).
However, the degrees of freedom parameter is shared. More specifically, it is ν for
the three copulae at the ground level, ν + 1 for the two at level 2 and ν + 2 for the
top level copula. The SSP estimation procedure is now as follows. After having
computed the pseudo-observations, one maximises the function

n∑
k=1

ψ1(u1k,n, . . . , u4k,n; ρ12, ρ23, ρ34, ν) =
n∑
k=1

3∑
i=1

(log(ci,i+1(ui,k,n, ui+1,k,n; ρi,i+1, ν))

over (ρ12, ρ23, ρ34, ν). Then, one computes the copula arguments for level 2 by
plugging the resulting estimates into the adequate h-functions, as described above.
At the second level, one estimates the two correlations ρ13 and ρ24, which are not
shared by c13|2 and c24|3. The optimisation can therefore be done separately. More
specifically, one optimises each of∑n

k=1 log(ci,i+2|i+1(ui|i+1,k,n, ui+2|i+1,k,n; ρi,i+2, ρ̂i,i+1, ρ̂i+1,i+2, ν̂)), over ρi,i+2,
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i = 1, 2 (note that ρ̂i,i+1, ρ̂i+1,i+2 are needed to compute the partial correlations
ρi,i+2|i+1). Next, one computes the copula arguments for the top level copula, and
finally, one maximises

∑n
k=1 log(c14|23(u1|23,k,n, u4|23},k,n; ρ14, ρ̂12,

. . . , ρ̂24|3, ν̂)) over ρ14. Note however that although it is possible to estimate the
parameters of a multivariate Student’s t-copula as described above, it is unneces-
sarily complex. In practice, one would typically estimate the correlation param-
eters via the corresponding Kendall’s τ coefficients, and subsequently optimise
the pseudo log-likelihood function lC,P over ν, plugging in the estimated correla-
tions, as described in for instance McNeil et al. (2006). The main purpose of the
PCC is to model pairs that behave differently. If one does not really need that
flexibility, then using a PCC is like using a sledgehammer to crack a nut.

Let us now consider conditions (A.1)− (A.5) from Tsukahara (2005). The last four
of these are covered by the standard conditions for the ML estimator. Further,
define

φ(j−1)(d− j
2)+i(u;θ1, . . . ,θj) =

∂

∂θi,i+j|vij

ψj(u;θj) ≡ ψj,θ(u;θj)

∂

∂uk
φ(j−1)(d− j

2)+i(u;θ1, . . . ,θj) =
∂

∂uk
ψj,θ(u;θj) ≡ ψj,θ,uk

(u;θj).

Let Q and R be the sets of positive, symmetric, inverse square integrable func-
tions on [0, 1] and reproducing u-shaped functions on [0, 1], respectively, as de-
fined in Tsukahara (2005). For the SSP estimator, Condition (A.1) may then be
phrased in the following way.
Condition 1. For each θ, ψj,θ = (ψj,θ,1, . . . , ψj,θ,lij) and
ψj,θ,uk

= (ψj,θ,uk,1, . . . , ψj,θ,uk,lij), j = 1, . . . , d − 1, i = 1, . . . , d − j are continuous,
and there exist functions rij,k, r̃ij,k ∈ R and qij,k ∈ Q, such that

|ψj,θ,m(u;θj)| ≤
∏d

l=1 rij,l(ul)

|ψj,θ,uk,m(u;θj)| ≤ r̃ij,k(uk)
∏

l 6=k rij,l(ul)
,
k, l = 1, . . . , d, j = 1, . . . , d− 1,

i = 1, . . . , d− j, m = 1, . . . , lij,

with ∫ (∏d
l=1 rij,l(ul)

)2

dC1...d(u1, . . . , ud;θ) <∞,∫ (
qij,k(uk)r̃ij,k(uk)

∏
l 6=k rij,l(ul)

)2

dC1...d(u1, . . . , ud;θ) <∞,

where |θij|vij
| = lij is the number of parameters of the pair-copula Ci,i+j|vij

. When
none of the pair-copulae share parameters, Condition 1 becomes a condition on
each of them, individually.

Once more letU be a d-variate stochastic vector distributed according toC1...d(u1, . . . , ud;θ),
and ψ = (ψ1, . . . , ψd−1). Define

W SSP
j (U ;θ) =

∫
∂

∂uj
φSSP (u1, . . . , ud;θ)I(Uj ≤ uj)dC1...d(u1, . . . , ud;θ)

=

∫
∂2

∂θ∂uj
ψ(u1, . . . , ud;θ)I(Uj ≤ uj)dC1...d(u1, . . . , ud;θ)
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1: ψ1(θ1) = 0
2: for j = 1, . . . , d do
3: for k = 1, . . . , n do
4: ujk = xjk.
5: end for
6: end for
7: for i = 1, . . . , d− 1 do
8: for k = 1, . . . , n do
9: ψ1(θ1) += log ci,i+1(ui,k, ui+1,k;θi,i+1)

10: end for
11: end for
12: θ̂1 = argmax

θ1

(ψ1(θ1))

13: for i = 1, . . . , d− 2 do
14: for k = 1, . . . , n do
15: ui|i+1,k = hi,i+1(uik, ui+1,k, θ̂i,i+1)

16: ui+2|i+1,k = hi+2,i+1(ui+2,k, ui+1,k, θ̂i+1,i+2)

17: end for
18: end for
19: for j = 2, . . . , d− 1 do
20: ψj(θ̂1, . . . , θ̂j−1,θj) = 0
21: for i = 1, . . . , d− j do
22: for k = 1, . . . , n do
23: ψj(θ̂1, . . . , θ̂j−1,θj) += log ci,i+j|vij

(ui|vij ,k, ui+j|vij ,k;θi,i+j|vij
)

24: end for
25: end for
26: θ̂j = argmax

θj

(ψj(θ̂1, . . . , θ̂j−1,θj))

27: if j == d− 1 then
28: Stop
29: end if
30: for i = 1, . . . , d− j − 1 do
31: for k = 1, . . . , n do
32: ui|vi,j+1,k = hi,i+j|vij

(ui|vij ,k, ui+j|vij ,k, θ̂i,i+j|vij
)

33: ui+j+1|vi,j+1,k = hi+j+1,i+1|vi+1,j
(ui+j+1|vi+1,j ,k, ui+1|vi+1,j ,k, θ̂i+1,i+j+1|vi+1,j

)

34: end for
35: end for
36: end for

Algorithm 1. SSP for a D-vine
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and the matrix

BSSP
θ = Var

(
d∑
j=1

W SSP
j (U ;θ)

)
+

d∑
j=1

Cov
(
φSSP (U ;θ),W SSP

j (U ;θ)
)

= Var

(
d∑
j=1

W SSP
j (U ;θ)

)
+

d∑
j=1

Cov
(
∂

∂θ
ψ(U ;θ),W SSP

j (U ;θ)

)
.

Moreover, define the two matrices

Kθ = E
(
φSSPφ

T
SSP

)
=


Kθ,1,1 0

. . .
0T Kθ,d−2,d−2 0

0T 0T Iθ,d−1,d−1

 ,

and

J θ = E
(
−∂φSSP

∂θT

)
=



J θ,1,1 0
...
... . . .

J θ,d−2,1 . . . J θ,d−2,d−2 0

Iθ,d−1,1 . . . Iθ,d−1,d−2 Iθ,d−1,d−1


,

where the blocks Kθ,i,j = E
((

∂ψi

∂θi

)(
∂ψj

∂θj

)T)
and J θ,i,j = −E

(
∂2ψi

∂θi∂θ
T
j

)
, i, j =

1, . . . , d−1, correspond to each of the construction’s levels. The block diagonal and
block lower triangular forms of Kθ and J θ, respectively, follow from the structure
of the estimating equations (see Appendix A.1). More specifically, the ψ functions
depend on all the parameters from previous levels but not from following levels.
Further, the estimating equations for the top level copula parameters are based on
the full copula, as for the SP estimator. This accounts for the appearance of blocks
from the Fischer matrix Iθ in the last rows of Kθ and J θ. If all pair-copulae are
from one-parameter families, then Kθ and J θ are d(d−1)/2×d(d−1)/2 matrices.

We now have all the necessary components to establish the asymptotic properties
of the stepwise semiparametric estimator.
Theorem 1. Under Condition 1, as well as Conditions (M1)−(M8) of Lehmann (2004),
the SSP estimator θ̂

SSP
is consistent for θ and asymptotically normal:

√
n
(
θ̂
SSP
− θ

)
d−→ N

(
0,V SSP

)
,

with

V SSP = J −1
θ Kθ

(
J −1

θ

)T
+ J −1

θ B
SSP
θ

(
J −1

θ

)T
. (3.3)
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Proof. Theorem 1 follows directly from Joe (1997) and Theorem 1 of Tsukahara
(2005), with the estimating equations (3.2).

Theorem 2. Under the conditions of Theorem 1, the SSP estimator θ̂
SSP

is asymptoti-
cally semiparametrically efficient for the parameters θ of the Gaussian copula.

The proof is given in Appendix A.2.
Corollary 1. Under the conditions of Theorem 1, the SSP estimator θ̂

SSP
is asymptoti-

cally semiparametrically efficient at independence.

Proof. Corollary 1 follows directly from Theorem 2 with θ = 0.

In general, the stepwise semiparametric estimator θ̂
SSP

has a lower asymptotic
efficiency than θ̂SP , since it at a given level discards all information from fol-
lowing levels. Nonetheless, the levelwise estimation significantly improves the
computational efficiency. The SSP estimator is therefore adequate for medium to
high-dimensional models, and as a start value for the SP estimator. Moreover,
it is inherently suited for determining an appropriate PCC for a data set, which
consists in choosing an ordering of the variables and a set of parametric pair-
copulae in a stepwise manner. Once the ordering is fixed, one finds suitable cop-
ulae for the ground level, based on the pseudo-observations. At the second level,
the necessary pair-copula arguments are obtained by transforming the pseudo-
observations with the adequate h-functions, which depend on the chosen ground
level copulae. This requires ground level parameter estimates, which can be pro-
vided by the SSP estimator. After one has selected copulae for the second level,
one proceeds in the same manner for the remaining levels. Of course, one could
construct a similar, stepwise estimator with a different transformation to uniform
margins. Instead of the empirical margins, one might for instance use the para-
metric margins as in IFM estimation. That particular estimator was in fact pro-
posed by Joe and Xu (1996).

3.2 Robustness
The SSP estimator is a substantial improvement over the three former in terms
of computational speed. However, it presupposes that the specified model is
the true one. If the amount of data available is high enough, it should, in most
cases, be possible to find adequate marginal distributions. For the pair-copulae,
the task is more complex. Using the pseudo-observations, one may obtain a rea-
sonable model for the ground level. Subsequently, however, one must condition
on choices from previous levels, as described above. One would therefore expect
the quality of the model to decrease with the construction level.

SSP estimation consists in replacing the parametric margins in the PCC log-likelihood
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function lC with the non-parametric ones, while keeping the parametric forms of
the conditional distributions, i.e. the g-functions (2.8). The resulting estimator is
robust to misspecification of the margins, but not of the pair-copulae. By replac-
ing also the conditional distributions with non-parametric versions, one would
reduce this sensitivity to chosen pair-copulae preceding in the structure. One pos-
sibility is the empirical conditional distribution proposed by Stute (1986):

Fi|v,n(xi|xv) =
n

n+ 1

∑n
k=1 I(xik ≤ xi)Kh

(
xv−xv,k

hl

)
∑n

k=1Kh

(
xv−xv,k

hl

) , (3.4)

where Kh is a kernel on Rl with bandwidth parameter h, and l is the dimension
of xv. The definition (3.4) is slightly modified here to avoid boundary problems
in 0 and 1. It converges almost surely to the true conditional distribution, though
at a rather slow pace. Provided h→ 0 and nhl →∞ as n→∞, the rate of conver-
gence is of order (nhl)1/2. The quality of the estimates will therefore significantly
decrease with the level number. Alternative definitions of the empirical condi-
tional distribution function, such as the one proposed by Hall and Yao (2005),
share this unfortunate property.

Recall that the conditional distributions of interest can be written as a recursion
of h-functions (2.7), i.e. bivariate functions of transformed variables from the pre-
ceding level. The h-functions are in fact conditional distributions of their first
variable, given the second. They can therefore be estimated non-parametrically
by (3.4) with l = 1. Seemingly, one can exploit this to avoid the curse of di-
mensionality. However, the transformed variables at a given level are obtained
from the transformed variables at the preceding level. Hence, the error propa-
gates from level to level, and as expected, the resulting rate of convergence is of
the same order as for the original variables, that is (nhl)1/2.

Accordingly, the estimator suggested above becomes unreliable already at the
fourth or fifth level of the structure, depending on the amount of data. Since the
intention is to improve the quality of estimates at higher levels, it is in practice
useless, unless the rate of convergence is increased by additional assumptions on
the conditional distributions.

3.3 C-vines
For simplicity, we have only considered D-vines so far. The same results are how-
ever easily obtained for other regular vines, and C-vines, in particular (see Figure
??).

Define the index set zji = {1, . . . , j − 1, j + i}, with z0i = ∅ and z1i = j + i, as
well as θj_i = {θs,s+t|zs−1,0 : (s, s + t) ∈ zji}, with θ1_i = ∅, for 0 ≤ i ≤ d − j,,
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0 ≤ j ≤ d− 1. The joint density of a C-vine is given then by (Aas et al., 2009)

f1..d(x1, . . . , xd;α,θ) =
d∏
l=1

fl(xl;αl)

·
d−1∏
j=1

d−j∏
i=1

cj,j+i|zj−1,0

(
Fj|zj−1,0

(xj |xzj−1,0 ;αzj0 ,θj_0),

Fj+i|zj−1,0
(xj+i|xzj−1,0 ;αzji ,θj_i);θj,j+i|zj−1,0

)
.

(3.5)

Hence, the log-likelihood function of n independent observations from a C-vine
is

l(α,θ;x)

=
n∑
k=1

log(f1..d(x1k, . . . , xdk;α,θ))

=
n∑
k=1

d∑
l=1

log(fl(xlk;αl))+

n∑
k=1

d−1∑
j=1

d−j∑
i=1

log
(
cj,j+i|zj−1,0

(
Fj|zj−1,0

(xj|xzj−1,0
;αzj0

,θj_0),

Fj+i|zj−1,0
(xj+i|xzj−1,0

;αzji
,θj_i);θj,j+i|zj−1,0

))
= lM(α;x) + lC(α,θ;x). (3.6)

Replacing lC for D-vines (from (2.1)) with lC from (3.6), one retrieves the results
from Section 2 for C-vines. To achieve the SSP estimator, one must simply replace
the psi-function (3.1) in the estimating equations (3.2) with

ψj(u1, . . . , ud;θ1, . . . ,θj) =

d−j∑
i=1

log
(
cj,j+i|zj−1,0

(
Fj|zj−1,0

(xj|xzj−1,0
;αzj0

,θj_0),

Fj+i|zj−1,0
(xj+i|xzj−1,0

;αzji
,θj_i);θj,j+i|zj−1,0

))
.

(3.7)

Also, the h-functions (2.7) are redefined as

hj+i,j|zj−1,0
(uj+i, uj) ≡

∂Cj,j+i|zj−1,0
(uj ,uj+i)

∂uj
, (3.8)

for i = 1, . . . , d − j, j = 1, . . . , d − 1. The estimation procedure for a C-vine is
described in Algorithm 2 below.
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1: ψ1(θ1) = 0
2: for j = 1, . . . , d do
3: for k = 1, . . . , n do
4: ujk = xjk.
5: end for
6: end for
7: for i = 1, . . . , d− 1 do
8: for k = 1, . . . , n do
9: ψ1(θ1) += log c1,i+1(u1k, ui+1,k;θ1,i+1)

10: end for
11: end for
12: θ̂1 = argmax

θ1

(ψ1(θ1))

13: for j = 1, . . . , d− 1 do
14: ψj(θ̂1, . . . , θ̂j−1,θj) = 0
15: for i = 1, . . . , d− j do
16: for k = 1, . . . , n do
17: ψj(θ̂1, . . . , θ̂j−1,θj) += log cj,j+i|zj−1,0

(uj|zj−1,0,k, uj+i|zj−1,0,k;θj,j+i|zj−1,0
)

18: end for
19: end for
20: θ̂j = argmax

θj

(ψj(θ̂1, . . . , θ̂j−1,θj))

21: if j == d− 1 then
22: Stop
23: end if
24: for i = 1, . . . , d− j do
25: for k = 1, . . . , n do
26: uj+i|zj,0,k = hj+i,j|zj−1,0

(uj+i|zj−1,0,k, uj|zj−1,0,k, θ̂j,j+i|zj−1,0
)

27: end for
28: end for
29: end for

Algorithm 2. SSP for a C-vine
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4 Examples

To compare the various estimators’ performance, we have carried out asymptotic
computations on a couple of simple three-dimensional examples.
Example 4.0.1. Consider the three-dimensional Gaussian distributionX1

X2

X3

 ∼ N3 (0,SRS) ,S =

σ1 0 0

0 σ2 0

0 0 σ3

 ,R =

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 .

This distribution can be represented by a D-vine consisting of Gaussian pair-
copulae and margins. Among the three possible decompositions, we choose

(1)− (2)− (3).

In practice, there are scarcely any other models for which it is feasible to do all
computations analytically. It is also one of the few distributions the IFM and SP
estimators are asymptotically efficient for, as explained below.

The maximum likelihood estimators αML and θML are of course the empirical
standard deviations and correlations, respectively. It follows immediately that the
IFM estimator αIFM is the same as the ML estimator. Thus, both αIFM and θIFM

are asymptotically efficient. Moreover, the SP estimator θSP is semiparametrically
efficient for the copula parameters θ, as mentioned earlier.

For SSP, we must compute the matrices KC , J C and BSSP
θ , as defined in Sec-

tion 3.1. The chosen D-vine representation consists of the copulae C12, C23 and
C13|2. These are Gaussian copulae with parameters ρ12, ρ23 and the partial cor-
relation ρ13|2 = (ρ13 − ρ12ρ23)/

√
(1− ρ2

12)(1− ρ2
23), respectively. The covariance

matrix V SSP of ρ12, ρ23, and ρ13, in that order (corresponding to the PCC levels),
is shown in Appendix A.3, along with V ML. We see that V SSP = V ML. Hence,
V SSP = V SP . As the SP estimator is asymptotically efficient for θ, so must the
SSP estimator be.
Example 4.0.2. Consider the three-dimensional PCC with exponential margins
and Gumbel pair-copulae:

f123(x1, x2, x3;λ, δ) =

3∏
j=1

fj(xj;λj)c12(u1, u2; δ12)c23(u2, u3; δ12)c13|2(u1|2, u3|2; δ13|2),
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with

fj(xj;λj) =λj exp{−λjxj},
cij(ui, uj; δ) = exp{−(ũδi + ũδj)

1/δ}(uiuj)−1(ũiũj)
δ−1(ũδi + ũδj)

−2+1/δ

· ((ũδi + ũδj)
1/δ + δ − 1),

ui|j =
∂Cij(ui, uj; δ)

∂uj
= exp{−(ũδi + ũδj)

1/δ}u−1
j (ũj)

δ−1(ũδi + ũδj)
1/δ−1,

where uj = 1−exp{−λjxj} and ũj = − log(uj), i, j = 1, 2, 3. For various parameter
sets, we have computed the covariance matrices by numerical derivation and
integration. Since the dependence parameters δ are our primary interest, we let
λ1 = λ3 = λ3 = 1 in all sets. Moreover, we let δ12 = δ23. Table 4.1 shows the
resulting asymptotic relative efficiencies of the ground and top level parameter
estimators, (δ̂12, δ̂23) and δ13|2, respectively, i.e. the ratios between the variances of
ML and the estimators in question. In a Gumbel copula, the dependence increases
with the parameter δ. Kendall’s τ is 0 when δ = 1 and tends to 1 as δ →∞. We see
that all three estimators (IFM, SP and SSP) are rather efficient in general. They all
lose asymptotic efficiency with increasing dependence at the ground level, i.e. for
δ12 and δ23, whereas the two latter gain efficiency at the top level. The asymptotic
variances of all three estimators actually decrease with increasing dependence at
both levels, though not as fast as for ML. Moreover, SSP is overall less efficient
than IFM and SP, as expected. However, the difference is quite small at the top
level.

IFM SP SSP
δ̂12 δ̂13|2 δ̂12 δ̂13|2 δ̂12 δ̂13|2

δ12 = δ23 = 1.2

δ13|2 = 1.2 0.997 0.997 0.921 0.955 0.904 0.953
δ13|2 = 2 0.985 0.996 0.902 0.984 0.891 0.981
δ13|2 = 3 0.971 0.994 0.846 0.990 0.837 0.987

δ12 = δ23 = 2

δ13|2 = 1.2 0.995 0.985 0.913 0.851 0.879 0.843
δ13|2 = 2 0.981 0.983 0.896 0.950 0.850 0.936
δ13|2 = 3 0.956 0.969 0.832 0.976 0.815 0.962

δ12 = δ23 = 3

δ13|2 = 1.2 0.995 0.974 0.912 0.814 0.861 0.808
δ13|2 = 2 0.973 0.954 0.871 0.921 0.843 0.887
δ13|2 = 3 0.944 0.932 0.825 0.951 0.777 0.931

Table 4.1. Asymptotic relative efficiencies of δ̂12 and δ̂13|2 for various parameter sets.
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5 Concluding remarks

There are various estimators for the parameters of a pair-copula construction,
among those the stepwise semiparametric estimator, which is designed for this
particular dependence structure. Although previously suggested, it has never
been formally introduced. In this paper, we have presented its asymptotic proper-
ties, as well as the estimation algorithm for the two most common types of PCCs,
namely D- and C-vines.

Compared to alternatives such as maximum likelihood, inference functions for
margins and semiparametric estimation, SSP is in general asymptotically less ef-
ficient. However, it is semiparametrically efficient for the Gaussian copula and
at independence. A toy example involving a three-dimensional D-vine consisting
of Gumbel copulae, exhibits the SSP estimator’s higher variance relative to the
alternatives. Nonetheless, the loss of efficiency is rather low, and decreases with
the construction level. To truly compare the alternative estimators’ performance,
we plan to perform a large simulation study.

One of the main advantages of the SSP estimator, is that it is computationally
tractable even in high dimensions, as opposed to its competitors. Moreover, it
provides start values required by the other estimators. Finally, determining the
pair-copulae of a PCC is a stepwise procedure, that involves parameter estimates
from previous levels. The SSP estimator lends itself perfectly to this task.

For simplicity, we have only considered C- and D-vines. Equivalent results are,
however, easily obtained for the more general class of regular vines. Moreover,
we have assumed the observations to be independent, identically distributed. In
practice, the estimation often includes a preliminary step to deal with deviations
from these assumptions, for instance GARCH filtration of time series data. The
effect of such an additional step on the SSP estimator is a subject for future work.
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A Appendix

A.1 Matrices Kθ and Jθ
As stated in Section 3.1, the matrices Kθ = E

((
∂ψ
∂θ

) (
∂ψ
∂θ

)T)
and

J θ = E
(
− ∂2ψ

∂θ∂θT

)
are block diagonal and block lower triangular, respectively, i.e.

Kθ,i,j = 0, i 6= j and J θ,i,j = 0, i < j. This follows from the structure of the
ψ-functions, as shown below.

We start with J θ,i,j , where i < j. Then,

J θ,i,j = E

(
−∂

2ψi(u1, . . . , ud;θ1, . . . ,θi)

∂θi∂θ
T
j

)

with

ψi(u1, . . . , ud;θ1, . . . ,θi) =

d−i∑
k=1

log
(
ck,k+i|vki

(g1
k,k+i(uk, . . . , uk+i−1;θk→k+i−1),

g2
k,k+i(uk+1, . . . , uk+i;θk+1→k+i);θk,k+i|vki

)
)
.

Since none of the copulae at level i are functions of the parameters at a following
level j,

∂ψi(u1, . . . , ud;θ1, . . . ,θi)

∂θj
= 0.

Hence, J θ,i,j = 0, i < j.

Assume now that i < j. Moreover, let u = (u1, . . . , ud) = (uwki
,u−wki

). Then,

Kθ,i,j = E

((
∂ψi(u1, . . . , ud;θ1, . . . ,θi)

∂θi

)(
∂ψj(u1, . . . , ud;θ1, . . . ,θj)

∂θj

)T)

=
∫
u

∂

∂θi

d−i∑
k=1

log ck,k+i|vki

∂

∂θTj

d−j∑
l=1

log cl,l+j|vlj
c1...ddu

=
d−i∑
k=1

d−j∑
l=1

∫
u

∂

∂θi
log ck,k+i|vki

1
cl,l+j|vlj

∂

∂θTj
cl,l+j|vlj

c1...ddu

=
d−i∑
k=1

d−j∑
l=1

∫
uwki

∂

∂θi
log ck,k+i|vki

∫
u−wki

1
cl,l+j|vlj

∂

∂θTj
cl,l+j|vlj

c1...ddu−wki
duwki

.
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Under the conditions of Theorem 1, we may exchange the integration and differ-
entiation in the inner integral. Thus,

Kθ,i,j

=
d−i∑
k=1

d−j∑
l=1

∫
uwki

∂

∂θi
log ck,k+i|vki

∂

∂θTj

(∫
u−wki

1

cl,l+j|vlj

cl,l+j|vlj
c1...ddu−wki

)
duwki

=
d−i∑
k=1

d−j∑
l=1

∫
uwki

∂

∂θi
log ck,k+i|vki

∂

∂θTj

(∫
u−wki

c1...ddu−wki

)
duwki

=
d−i∑
k=1

d−j∑
l=1

∫
uwki

∂

∂θi
log ck,k+i|vki

∂

∂θTj
cwki

duwki
.

The pair-copulae composing cwki
, situated in levels 1, . . . , i, are not functions of

parameters from a following level j. Thus, ∂
∂θj
cwki

= 0. Consequently, Kθ,i,j =

0, i < j. The exact same argument can be repeated for i > j. Hence, Kθ,i,j =

0, i 6= j.

A.2 Proof of Theorem 2
Proof. In two dimensions, the SSP estimator is the same as the SP estimator, which
was shown to be semiparametrically efficient by ?. In three dimensions, we have
computed the asymptotic covariance matrices for comparison. As shown in Ex-
ample 4.0.1, the covariance matrices of the SP and SSP estimators, V SP and V SSP ,
respectively, are equal. Thus, the SSP estimator is semiparametrically efficient
also for the three-dimensional Gaussian copula.

Assume now that it is true for the (d − 1)-dimensional Gaussian copula. As the
SP estimator is semiparametrically efficient, the asymptotic covariance matrix of
the ML estimator θ̂

ML
for the Gaussian copula must be the same, regardless of

the margins. Moreover, when all margins are normal, the maximum likelihood
estimator of the copula parameters is simply the empirical correlation matrix.
Adding an extra dimension leaves the remaining estimators unchanged. Hence,
the blocks of the covariance matrix corresponding to the (d − 1) dimensional
sub-model will be the same as for the (d − 1) dimensional Gaussian copula. The
same argument can repeated for all (d− 1) dimensional sub-models, covering all
levels but the top. Due to its levelwise structure, the SSP estimator for a given
sub-model is unaffected when adding an extra dimension, and so must the cor-
responding block of its asymptotic covariance matrix be. Accordingly, we must
have V SSP

1...d−2,1...d−2 = V SP
1...d−2,1...d−2 = V 1...d−2,1...d−2. Hence, it remains to show that

V SSP
1...d−2,d−1 = V SP

1...d−2,d−1 and V SSP
d−1,d−1 = V SP

d−1,d−1, related to the estimators θ̂SP1d|v1d

and θ̂SSP1d|v1d
for the top level copula. According to Theorem 1 of Tsukahara (2005)
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and Theorem 1, respectively,
√
n
(
θ̂SP1d|v1d

− θ1d|v1d

)
d−→ ZSP ∼ N

(
0, V SP

d−1,d−1

)
and √

n
(
θ̂SSP1d|v1d

− θ1d|v1d

)
d−→ ZSSP ∼ N

(
0, V SSP

d−1,d−1

)
,

as n→∞. Now, define Un = (Un1, . . . ,Unn), with Unj =

(F1n(X1j), . . . , Fdn(Xdj)), j = 1, . . . , d, and let

ΨSP (Un; θ̂
SP

) =
1
n

n∑
k=1

φSP

(
Un; θ̂

SP
)

= 0

ΨSSP (Un; θ̂
SSP

) =
1
n

n∑
k=1

φSSP

(
Un; θ̂

SSP
)

= 0,

be the estimating equations of the SP and SSP estimators, respectively. Further,
let

Ψ(Un;θ) = ΨSP
d(d−1)

2

(Un;θ) = ΨSSP
d(d−1)

2

(Un;θ) =
1
n

n∑
k=1

∂

∂θ1d|v1d

log (c1...d(Un;θ)) .

According to Theorem 1 of Tsukahara (2005),

Ψ
(
Un; θ̂

SP
)

=Ψ(Un;θ) +
∂Ψ(Un;θ)
∂θ1d|v1d

(
θ̂SP1d|v1d

− θ1d|v1d

)
+
∂Ψ(Un;θ)
∂θT1→d−2

(
θ̂
SP

1→d−2 − θ1→d−2

)
+ oP

(
1
n

)
= 0.

Likewise, using Theorem 1, one obtains

Ψ
(
Un; θ̂

SSP
)

=Ψ(Un;θ) +
∂Ψ(Un;θ)
∂θ1d|v1d

(
θ̂SSP1d|v1d

− θ1d|v1d

)
+
∂Ψ(Un;θ)
∂θT1→d−2

(
θ̂
SSP

1→d−2 − θ1→d−2

)
+ oP

(
1
n

)
= 0.

Hence,
√
n
(
θ̂SSP1d|v1d

− θ̂SP1d|v1d

)
=
A1

A2

√
n
(
θ̂
SP

1→d−2 − θ̂
SSP

1→d−2

)
+ oP

(
1√
n

)
,

with A1 = ∂Ψ(Un;θ)

∂θT
1→d−2

= 1
n

∑n
k=1

∂2

∂θ1d|v1d
∂θT

1→d−2
log (c1...d(Un;θ)) and A2 = ∂Ψ(Un;θ)

∂θ1d|v1d

=

1
n

∑n
k=1

∂2

∂θ2
1d|v1d

log (c1...d(Un;θ)). Now, according to the assumption,

√
n
(
θ̂
SSP

1→d−2 − θ1→d−2

)
d−→ Y ∼ N d(d−1)

2
−1

(0,V 1...d−2,1...d−2) , n→∞.

Thus,
√
n
(
θ̂
SP

1→d−2 − θ̂
SSP

1→d−2

)
=
√
n
(
θ̂
SP

1→d−2 − θ1→d−2

)
−
√
n
(
θ̂
SSP

1→d−2 − θ1→d−2

)
p−→ 0, n→∞.
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Moreover, under the assumed conditions,

A1
p−→ E

(
∂2

∂θ1d|v1d
∂θT1→d−2

log (c1...d(Un;θ))

)
= −IT

θ,1...d−2,d−1

A2
p−→ E

(
∂2

∂θ2
1d|v1d

log (c1...d(Un;θ))

)
= −Iθ,d−1,d−1,

as n→∞. Hence,
√
n
(
θ̂SSP1d|v1d

− θSP1d|v1d

)
p−→ 0,

which means that ZSP
d
= ZSSP . In other words, V SSP

d−1,d−1 = V SP
d−1,d−1. Moreover,

V SSP
1...d−2,d−1 =− 1

Iθ,d
V 1...d−2,1...d−2Iθ,1...d−2,d−1 +

1
Iθ,d

J −1
θ,1...d−2,d−1B

SSP
1...d−2,d−1

V SSP
d−1,d−1 =

1
Iθ,d

+
BSSP
d−1,d−1

I2
θ,d

+
1
Iθ,d

IT
θ,1...d−2,d−1V 1...d−2,1...d−2Iθ,1...d−2,d−1

− 2
I2
θ,d

IT
θ,1...d−2,d−1J −1

θ,1...d−2,d−1B
SSP
1...d−2,d−1

=
1
Iθ,d

+
BSSP
d−1,d−1

I2
θ,d

− 1
Iθ,d

IT
θ,1...d−2,d−1V 1...d−2,1...d−2Iθ,1...d−2,d−1

− 2IT
θ,1...d−2,d−1V

SSP
1...d−2,d−1.

Correspondingly for SP,

V SP
1...d−2,d−1 =− 1

Iθ,d
V 1...d−2,1...d−2Iθ,1...d−2,d−1

+
1
Iθ,d

I(θ)
1...d−2,1...d−2

(
BSP

1...d−2,d−1 −
BSP
d−1,d−1

Iθ,d
Iθ,1...d−2,d−1

)

V SP
d−1,d−1 =

1
Iθ,d

+
BSP
d−1,d−1

I2
θ,d

+
1
Iθ,d

IT
θ,1...d−2,d−1V 1...d−2,1...d−2Iθ,1...d−2,d−1

− 2
I2
θ,d

IT
θ,1...d−2,d−1I

(θ)
1...d−2,1...d−2

(
BSP

1...d−2,d−1

−
BSP
d−1,d−1

Iθ,d
Iθ,1...d−2,d−1

)

=
1
Iθ,d

+
BSP
d−1,d−1

I2
θ,d

− 1
Iθ,d

IT
θ,1...d−2,d−1V 1...d−2,1...d−2Iθ,1...d−2,d−1

− 2IT
θ,1...d−2,d−1V

SP
1...d−2,d−1.

Since the estimating equation for the top copula parameter is the same for SP and
SSP,BSSP

d−1,d−1 = BSP
d−1,d−1. Moreover, V SSP

d−1,d−1 = V SP
d−1,d−1. Consequently,V SSP

1...d−2,d−1 =

V SP
1...d−2,d−1.
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A.3 Covariance matrices from Example 4.0.1
The asymptotic covariance matrix of the ML estimator is given by

V ML =
1
2

2(1− ρ2
12)2 v1 v2

v1 2(1− ρ2
23)2 v3

v2 v3 2(1− ρ2
13)2

 ,

with

v1 = 2ρ13(1− ρ2
12)(1− ρ2

23)− ρ12ρ23|R|,

v2 = 2ρ23(1− ρ2
12)(1− ρ2

13)− ρ12ρ13|R|,

v3 = 2ρ12(1− ρ2
13)(1− ρ2

23)− ρ13ρ23|R|.

For the SSP estimator, we have

V SSP = J −1
θ Kθ

(
J −1

θ

)T
+ J −1

θ B
SSP
θ

(
J −1

θ

)T
,

with

Kθ =


1+ρ212

(1−ρ212)2
k1

(1−ρ212)(1−ρ223)
0

k1
(1−ρ212)(1−ρ223)

1+ρ223
(1−ρ223)2

0

0 0 |R|+2(ρ13−ρ12ρ23)2

|R|2

 ,

J θ =


1+ρ212

(1−ρ212)2
0 0

0 1+ρ223
(1−ρ223)2

0
j1
|R|2

j2
|R|2

|R|+2(ρ13−ρ12ρ23)2

|R|2

 ,

where

BSSP
θ =


ρ212(1+ρ212)

(1−ρ212)2
b1

2(1−ρ212)(1−ρ223)
(ρ13−ρ12ρ23)b2

2(1−ρ212)|R|
b1

2(1−ρ212)(1−ρ223)

ρ223(1+ρ223)

(1−ρ223)2
(ρ13−ρ12ρ23)b3

2(1−ρ223)|R|
(ρ13−ρ12ρ23)b2

2(1−ρ212)|R|
(ρ13−ρ12ρ23)b3

2(1−ρ223)|R|
(1+ρ213)(ρ13−ρ12ρ23)2

|R|2

 ,

k1 = (ρ13 − ρ12ρ23)(|R|+ ρ2
13 − ρ2

12ρ
2
23),

j1 = −ρ23|R|+ 2(ρ12 − ρ13ρ23)(ρ13 − ρ12ρ23),

j2 = −ρ12|R|+ 2(ρ13 − ρ12ρ23)(ρ23 − ρ12ρ13),
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b1 =ρ12ρ23(1 + ρ2
12 + ρ2

13 + ρ2
23)
(

1− 2
1− ρ2

12

− 2
1− ρ2

23

)
+2ρ23(1 + ρ2

12)
ρ12 + ρ13ρ23

1− ρ2
12

+ 2ρ12(1 + ρ2
23)

ρ23 + ρ12ρ13

1− ρ2
23

,

b2 =ρ12(1 + ρ2
12 + ρ2

13 + ρ2
23)
(

1− 2
1− ρ2

12

)
+ 2(1 + ρ2

12)
ρ12 + ρ13ρ23

1− ρ2
12

,

b3 =ρ23(1 + ρ2
12 + ρ2

13 + ρ2
23)
(

1− 2
1− ρ2

23

)
+ 2(1 + ρ2

23)
ρ23 + ρ12ρ13

1− ρ2
23

.

The resulting covariance matrix is

V SSP =
1
2

2(1− ρ2
12)2 v1 v2

v1 2(1− ρ2
23)2 v3

v2 v3 2(1− ρ2
13)2

 = V ML.
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