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1 Introduction

When working with seismic data and the convolution model, reflections are often consi-
dered to come from a horizontal transition between two layers. When working with 3D
wavelets, this assumption is relaxed to having a locally planar surface as the transition
surfaces. The reflection will then depend on the orientation of the plane, that is, the gra-
dients.

Wavelets are estimated by computing reflections from a well log (using a nearly vertical
well), and find the wavelet that gives a synthetic seismic closest to the observed seismic
at the well location. In order to do this here, we need to know the gradients of the geology
at the different depths in the well. In this note we present how we estimate the gradients
of the reflector surface based on seismic amplitude data.

The extreme values of seismic amplitudes represent a change in the elastic parameters,
and the continuity of these extreme values match the reflector surface. The local gradient
of the reflector surface can therefore be estimated from a set of seismic traces in the neigh-
borhood of the wells.

The gradients are estimated for each log observation in the well. Also, when there are se-
veral angle gathers of seismic amplitudes, the gradients are estimated independently for
each seismic cube. We model the gradients such that the uncertainty in their estimation
and the dependency between the gradients are properly accounted for. Gaussian Markov
random fields (Rue and Held, 2005) are used for this purpose. This class of models fits
our data and has nice computational properties.

2 Algorithm

The algorithm for finding the gradients have three main steps:

1. Find the extreme values of the seismic amplitude in the traces in and around the
well, and match these.

2. Estimate the gradients based on the matched extreme amplitudes.

3. Use the estimated gradients as uncertain data in a Gaussian Markov random field,
to obtain a smooth estimate where reflection planes do not intersect close to the well.

In the following, we look at each of these steps in more detail.

2.1 Detecting extreme values
An extreme value in the seismic traces is the time location, T , where the seismic am-
plitude is higher in absolute value than the amplitude at the two nearest sampled time
locations. We find the extreme values in the neighborhood traces and match them with
extreme values in the well trace. By smoothing the traces we eliminate most of the small
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scale variation and obtain more similarity between the extreme values. Figure 1 displays
a seismic trace before and after smoothing, where we have applied a gaussian kernel
smoother.

An extreme value in a neighboring trace is assumed to match an extreme value in the
well trace when; they are no more than 5 times the sampling density apart, the difference
in seismic amplitude between the two does not exceed half their sum, and finally that
they peak in the same direction.

2.2 Computing gradients
The gradient at time location T (k) is represented by the x- and y-component {a(k), b(k)}.
To estimate these, we use a neighborhood Ω0 of traces around the well with size n0. The
well observations are given at nobs locations {(x0(k), y0(k)} for all k = 1, ..., nobs. Figure 2
visualizes a cross-section of the x-component a(k).

The gradient is computed at each of the nobs locations, based on the displacement of the
extreme values between the trace in the well location and the n0 traces in the neighbo-
rhood. The displacement is computed by interpolating between the two nearest extreme
values within the trace.

Let T0(k)− and T0(k)+ be the time for the two nearest extreme values to T0(k) in the
well location. The corresponding extreme values in trace (xij(k), yij(k)) are Tij(k)− and
Tij(k)+, where (i, j) represent the lateral indices of the trace location. The relative position
of T0(k) between the nearest extreme values is

ω =
T0(k)− T0(k)−

T0(k)+ − T0(k)−
.

We apply this weight on each trace (i, j) to find the correspond time to T0(k),

Tij(k) = Tij(k)− + ω ·
(
Tij(k)+ − Tij(k)−

)
.

The time displacement at k in trace (i, j) is then

∆Tij(k) = T0(k)− Tij(k).

Figure 3 displays a section of the well trace and the (i, j)-trace. The drawing locates the
time expressions above, where the red dots represent the extreme values in both traces
for position k.

A plane ∆Tij(k) = a(k)xij(k) + b(k)yij(k) + c(k) is fitted to the n0 displacement values
for every k = 1, ..., nobs, where a(k) and b(k) is the x- and y-gradient, respectively. We use
standard multivariate regression with least square estimation. This procedure returns the
estimated coefficients

(
â(k), b̂(k), ĉ(k)

)
and the error from the estimation Σεk .

When there are more than one seismic cube available we estimate the gradients similarly
for each cube. Let P be the number of available cubes. This yields a set of P × nobs es-
timated gradients and P error matrices Σp

epsilon for p = 1, ..., P . We want to compute an
average of the P estimates, accounting for the error in the estimates. At the same time
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Figure 1. A seismic amplitude trace before (in blue) and after (in red) smoothing.

Computation of horizon gradients from seismic 9



Figure 2. Well sampled at discrete times T (k) with associated gradients in a (x, k)-cross section.
Gradients are constant and non-crossing in Ω0.

Figure 3. Illustration of the computation of displacement between trace (i, j) and the well trace.
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Figure 4. Graphical representation of the GMRF.

we need to consider the dependency between the gradients between the layers, such that
the change in the gradient between consecutive layers is reasonable. In the following sec-
tions we describe how we have modeled the gradients, and how we put constraints on
the model in order to avoid the gradients to cross within a limited area.

2.3 Into the framework of a Gaussian Markov random field
Gaussian Markov random fields(GMRF), (Rue and Held, 2005), are frequently used in
hierarchical models in order to allow for dependence between a set of unknown parame-
ters. A field m is connected to observations d, which are assumed independent given m.
The distribution of interest is the posterior p(m|d), from where we extract the expecta-
tion.

The covariance matrix Σ yields direct information about the marginal dependency bet-
ween the variables. The precision matrix Q, on the other hand, is the inverse of the co-
variance matrix, Q = Σ−1, and give information about the conditional independence.
The advantage with GMRF is the sparseness of the precision matrix, and the numerically
tractable methods that follows with sparse matrices.

We have estimated sets of gradients from the K given seismic amplitude cube. These
estimated values are considered observations of the unknown gradient parameters a =(
a(1), ..., a(nobs)

)
and b = (b(1), ..., b(nobs)). We write

âp(k) = a(k) + εpa(k)

b̂p(k) = b(k) + εpb(k),

where p refers to the pth seismic cube. The error terms εpa(k) and εpb(k) are the error from
the estimation of the gradients, and are taken from the diagonal in Σp

εk .

Our priori assumptions on a and b, is that they are gaussian distributed with mean zero
and equal covariance structure Σ. The gradients a and b are assumed independent, and
the same computations applies for both. Without loss of generality we therefore use only
one gradient m in our explanations, and let (d1, ...,dP ) be the corresponding estimate
of m from the P angle gathers. We assume a first order Markov chain for m, and the
graphical representation of the GMRF is given in Figure 6.

We are interested in the expectation of m given the observations (d1, ...,dP ), E(m|d1, ...,dP ).
The joint probability of m and (d1, ...,dP ) is

π(m,d1, ...,dP ) = π(m)× π(d1, ...,dP |m).
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Recall that the observations (d1, ...,dP ) are assumed independent given m, so we can
write

π(m,d1, ...,dP ) = π(m)×
P∏
p=1

π(dp|m) (1)

In general, if x ∼ N(µ,Q) the exponential is on the form

− 1

2
xTQx + xTQµ + constant terms. (2)

When m ∼ N(0,Qm
−1) and dp ∼ N(m,Qp−1

ε ) for p = 1, ..., P , the exponential of (1) is
on the form

− 1

2
mT (Qm +

∑
p

Qp
ε )m + mT

∑
j

(Qp
εdp) + constant terms. (3)

Since π(m|d) ∝ π(m,d), we compare (3) with (2) get that

Qm|d = Qm +
∑
p

Qp
ε

µm|d = Qm|d
−1(
∑
p

Qp
εdp).

In order to compute µm|d we need to specify the precision matrix Qm. This matrix is
subject to constraints, and in the next section we explain how we select the entries in Qm.

2.3.1 Computation of Qm

In general, for a first order Markov chain the precision matrix Qm is

a c 0 0 · · · 0

c b c 0 · · · 0

0 c b c · · · 0
...

. . .

0 · · · c b c

0 · · · 0 c b


, (4)

If Qmij = 0 for i 6= j then mi and mj are conditionally independent given the other
variables.

The gradient lines must not cross in the area around the well. With a certain level of
significance we can assure that does not occur, by laying constraints on the prior model,
π(m). Since the prior model is a first order Markov chain it can be expressed in terms of
the autoregressive

mk = αmk−1 + γek for k = 2, ..., nobs, (5)

where ek ∼ N(0, 1) for k = 1, ..., nobs and m1 = σme1.
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In matrix notation we can write Lm = e such that

1/σm 0 0 0 · · · 0

−α/γ 1/γ 0 0 · · · 0

0 −α/γ 1/γ 0 · · · 0
...

. . .

0 · · · −α/γ 1/γ 0

0 · · · 0 −α/γ 1/γ





m1

m2

m3

...
mnobs−1

mnobs


=



e1

e2

e3

...
enobs−1

enobs


,

where L a the lower triangular matrix. The precision matrix Qm is the matrix product
LTL, which gives the relation between the autoregressive parameters and the entries in
the precision matrix in (4)

a =
1

σm
+
α2

γ2
(6)

b = − α

γ2
(7)

c =
α2 + 1

γ2
. (8)

The time location of the gradient in a distance D from the well is TD(k) = T (k) +mk ·D
for observation k, and similarly for k− 1 we get TD(k− 1) = T (k− 1) +mk−1 ·D. Within
a given minimum distance Dmin we need TDmin(k) > TDmin(k − 1) to ensure that the
gradients do not cross. We can write

T (k) +mk ·Dmin > T (k − 1) +mk−1 ·Dmin ⇒

mk−1 −mk <
T (k)− T (k − 1)

Dmin
,

where from the relation in (5) we get mk−1 − mk ∼ N(0, 2σ2
m(1 − α)). Note that the

sampling density is constant throughout the traces such that T (k) − T (k − 1) can be set
to ∆T . With a certain level of confidence we require that mk−1 −mk <

∆T
Dmin

, such that

zq <
∆T

Dmin
· 1√

2σ2
m(1− α)

where zq is the quantile value for confidence level q. In addition, from (5) we have the
relation Var(mk) = α2Var(mk−1) + γ2 where Var(mk) = Var(mk−1) = σ2

m.

With two equation and two unknowns we can compute α and γ and further a, b and
c such that the gradients with q% confidence do not cross within Dmin. The resulting
expression for α and γ is

α2 >

(
1− 1

2σ2
m

(
T (k)− T (k − 1)

zqDmin

)2
)2

γ2 > σ2
m(1− α2).
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3 Examples and parameter choice

We are given two seismic angle gathers at offset-angle 0 and 10. The sample density of
the seismic cubes are 50 meters in both x- and y-direction and 5ms vertically. We have
one well with 200 log observations.

There are two values that must be set. The first one is the prior variance σm, and the
second one is the minimal distance constraint Dmin. We set default values to σm =

1ms/meter and Dmin = 100meters, and Figure 5 shows the gradient estimated for the
two angle gathers in blue, and the resulting gradient estimated with the default values in
red.

The impact of adjusting Dmin is visualized in Figure 6. The gradient estimated from the
two angle gathers are still displayed in blue, and the various resulting gradients are dis-
played in different colors explained by the legend in the figure. It can be seen from the
plot that the higher the minimum distance Dmin, the less variation is allowed between
two consecutive gradients, mk and mk−1.

Figures 7 and 8 displays images of the X-cross-section and Y cross-section of traces, in-
tersecting in the well location. And the black lines are the estimated gradients, using the
default parameter values σm = 1 and Dmin = 100. The images to the left show all nobs

blocks while the images to the right are sub-images of those.

4 Conclusions

The gradient of the reflector surface are used in wavelet estimation. These gradients are
computed from seismic gathers around the wells, by matching the extreme values bet-
ween the seismic traces. Gradients are computed from each seismic angle gather inde-
pendently, and connected through a GMRF. It is important that gradient lines do not
cross, and the GMRF framework allows us to specify a prior model to minimize the risk
of that to occur.
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Figure 5. Gradients computed from both angle gathers in blue, and resulting gradient in red

Computation of horizon gradients from seismic 15



Figure 6. The effect of adjusting Dmin in the model
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(a) (b)

Figure 7. X cross-section of traces intersecting in the well location. The black lines are the esti-
mated x-gradients. The right plot is a sub-plot of the left one with indices k = 50, ..., 100.
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(a) (b)

Figure 8. Y cross-section of traces intersecting in the well location. The black lines are the esti-
mated y-gradients. The right plot is a sub-plot of the left one with indices k = 50, ..., 100.
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