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1 Introduction

For many financial institutions and banks, credit risk is by far the most impor-
tant risk type. Estimation of default probabilities is fundamental in both credit
scoring and credit risk models. As the new Basel capital accord (Basel II, 2006) al-
lows banks to use their own default probability estimations, also the calculation
of regulatory capital is influenced by the strategy applied for estimating default
probabilities.

The study of bankruptcy prediction goes back to Beaver (1966) and Altman (1968).
Two classes of models dominate the literature. The market, or structural models,
are based on the value of the firm as set by a market, and often approximated by
stock prices. The KMV model (Crosbie and Bohn, 2002) which is widely used in
industry is an example of a structural model. Accounting based models, on the
other hand, use available financial indicators such as annual financial statements.

This paper focuses on the accounting based models, and in particular on the lo-
gistic regression model (McCullagh and Nelder, 1989). The literature includes
applications of neural networks, linear discriminant models and general additive
models for the same purpose, see for instance Atiya (2001) and Berg (2007). Stud-
ies that compare these models for the purpose of default prediction show, not
surprisingly, that the behavior and suitability depend on the data at hand. For
many practitioners the logistic regression model remains the benchmark model
as it is easy to interpret and available on many software platforms.

Defaults are rare and the data sets of recorded defaults tend to be moderate,
in particular for smaller banks. Moreover, additional information on the risks
will often be available through expert risk assessments, credit ratings from other
sources, regulators or publicly available data. Hence, it makes sense to combine
the data available with the additional information that can be gathered, meaning
that the Bayesian approach might be particularly useful for default probability
estimation.

The Bayesian approach to credit risk modeling is not new. Löffler et al. (2005)
propose an empirical Bayes approach for banks with small credit default data
sets and suggest that prior information may be retrieved from academic literature
or regulators. Other applications of Bayesian models to credit risk modeling is
Mc Neil and Wedin (2007) and Ando (2006).

Inference in the Bayesian logistic regression model is done using MCMC (Gilks
et al., 1996). With software such as OpenBugs (Spiegelhalter et al., 2007) and
MCMCpack (Martin et al., 2008), MCMC algorithms are available to everyone
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in user-friendly environments. However, the fundamental challenge applying
MCMC in practice remains: To determine convergence! The practitioner faces
the task of choosing between several different measures of convergence, which
might give contradictive answers to the question of convergence. Closely related
is the issue of computational speed. Many applications require that the MCMC
chain is run for hours or even days to obtain satisfactory convergence. Mira and
Tenconi (2004) show how to speed up the convergence in a credit risk application.
However, this requires implementation outside the scope of the above mentioned
packages.

The main contribution of this paper is to introduce Integrated Nested Laplace
Approximation (INLA) as an alternative to MCMC for Bayesian credit risk mod-
eling. INLA was developed by Rue et al. (2009) as an efficient method for infer-
ence in complex models where the problems of convergence and computational
time make MCMC unsuitable, or even infeasible. The examples and models con-
sidered in Rue et al. (2009) are more complex than the Bayesian credit risk model
we consider. However, even in our relatively simple model, determination of con-
vergence can be non-trivial.

The INLA approach for approximating the posterior marginals is computed in
three steps. The first step approximates the posterior marginal distribution of the
so-called hyperparameters, that is the parameters of the prior distribution. The
second step computes an approximation of the posterior distribution of the model
parameters, given the observed response variables and the hyperparameters. The
third step combines the previous two steps using numerical integration to obtain
the posterior distribution of the regression parameters.

Applying the Bayesian approach requires a method for articulating one’s prior
information. The Bayesian logistic regression model usually has a prior distribu-
tion on the regression coefficients. For regulators and risk managers it is inher-
ently easier to express opinions in terms of default probabilities than regression
coefficients. The second contribution of this paper is a simple simulation based
method to convert beta distributed priors on default probabilities to priors on the
regression coefficients.

We show that INLA is practically exact in the sense that one would have to run
MCMC for a very long time to detect any indication of error in the approximate
results. With our data, MCMC convergence is also fast. However, this may not
always be the case.

The data set used in this paper is collected from four of the savings banks in the
SpareBank 1-alliance in Norway. All four banks use the internal ratings-based
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approach (IRB) for calculating the capital requirements for credit risk. The data
set consists of 7080 small and medium sized firms. For each firm a set of financial
and non-financial variables are used to estimate the probability of default.

The remainder of this paper is organized as follows: Section 2 introduces the data
set. Section 3 presents the Bayesian logistic regression model for credit risk and
the latent Gaussian models for which INLA was developed. Section 4 gives an
introduction to INLA and the software used in this paper. Section 5 presents our
numerical results, and finally Section 6 concludes.

2 Data

In this paper we consider a Sparebank 1-alliance portfolio from 2006/2007 which
consists of 7080 customers and their associated accounting variables. The porto-
folio consists of non-financial firms from many industries, including manufactur-
ing, building and construction, fishery, trade etc. Firms in the industries shipping,
shipyards and property development are not included in the portofolio consid-
ered here.

There are 126 recorded defaults in the data set, which corresponds to an average
default probability of 1.8%. Table 1 shows the 13 explanatory variables the Spare-
bank 1-alliance considers to be the most important in describing defaults among
customers. All variables are transformed into values between 0 and 10. Except for
the variable age, 10 is also considered to be the best value a customer can get. In
other words, high values are associated with behaviour that reduces the probabil-
ity of default. The variables can be divided into 4 groups; income, consumption,
behaviour and age. Figure 1 shows the histograms of all the explanatory variables
in the data set.

3 Model

3.1 Logistic regression
The logistic regression model belongs to the class of Generalised Linear Mod-
els (GLM), McCullagh and Nelder (1989). The response variable in a logistic re-
gression model is binomial and the expectation is related to the linear predictor
through the logit function.

In our case we introduce an indicator of default. Let Yi = 1 if customer i defaults,
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Shortening Name Values Category
PROFIT Operating profit/Financial costs [0,10] Income
LOSS Operating loss [0,10] Income
CPINV Circulation pace on inventory [0,10] Income
DP Degree of profit [0,10] Income
EQPER Equity percent [0,10] Consumption
MPAY Means of payment [0,10] Consumption
DLIQ Degree of liquidity [0,10] Consumption
ODFAC Overdraft facility [0,10] Consumption
REPHIST History of company’s reprimands [0,10] Behaviour
REPKF Reprimands of payment for key figures [0,10] Behaviour
REPAC Reprimands from accountants [0,10] Behaviour
AD Submitted accounts delayed [0,10] Behaviour
AGE Age [0,10] Age

Table 1. Overview of the explanatory variables.

and Yi = 0 otherwise. Then,

Yi ∼ Binomial(pi), i = 1, . . . , N,

and the linear predictor

ηi = β0 +
M∑

j=1

βjxij + εi, (1)

is linked to the default probability through the logit function,

logit(pi) = log{ pi

1− pi

} = ηi.

Here, the explanatory variables xij are customer characteristics. It follows that the
probability of default is given by

pi =
exp(β0 +

∑M
j=1 βjxij)

1 + exp(β0 +
∑M

j=1 βjxij)
. (2)

3.2 Bayesian formulation
Our Bayesian model is formulated by specifying prior distributions on the regres-
sion coefficients in (1),

βj ∼ π(βj|θj), j = 0, . . . ,M.

The prior distribution π(·|θj) may be any proper probability density function and
θj may be a scalar or a parameter vector. The interpretation of the model param-
eters depends on the choice of the distribution, but may for instance include a
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Figure 1. Histograms of the explanatory variables.
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measure of the centre and spread of the prior. By specifying different values of
θj , the regression coefficients may have very different priors even if the distribu-
tion function π(·) is the same.

The model parameters of the prior distribution in a Bayesian model are often
called hyperparameters. The hyperparameters may also be assigned priors, in which
case we obtain a hierarchical Bayesian model. The INLA methodology was devel-
oped for such hierarchical models. However in our application, the hyperparam-
eters θ = (θ1, . . . ,θM) are non-stochastic, fixed values set by the risk manager or
regulators.

Bayesian inference is based on the posterior distribution. The posterior is the dis-
tribution of the regression coefficients given the observed defaults, that is

π(βj|y) = π(βj,y)/π(y) ∝ π(y|βj)π(βj). (3)

As the default probabilities are given by (2), their distribution is easily obtained
from the posterior values of the regression coefficients.

3.2.1 Choice of prior
We will use normal priors for all the regression coefficients. In principle, any
proper probability density function may be used as a prior for the regression co-
efficients. However, using other distributions, such as skewed or fat-tailed ones,
requires specific knowledge or opinions about the distribution of the regression
coefficients. In our opinion, this kind of information will rarely be available. Also,
the INLA method only allows normal priors.

3.2.2 Prior of the default probabilities
The task of eliciting prior information about the regression coefficients is ex-
tremely difficult, in particular because the interpretation of the coefficients de-
pends on the choice of link function.

Rather than defining a prior distribution on the regression coefficients βj , we sug-
gest that one defines prior distributions on the default probabilities pi. Assume
that the expected values and standard deviations of the default probabilities are
specified, and that the default probability p is assumed to be beta distributed.
We then have that the relationship between the parameters a and b of the beta
distribution and its expected value and variance is given by

E[p] =
a

a+ b

and

Var[p] =
ab

(a+ b)2(a+ b+ 1)
,
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where a > 0 and b > 0. For each company i, i = 1, ..., N , we can sample a
default probability pi from the beta distribution and thereafter an observation
Yi ∼ Binomial(pi). Further, we can do a GLM regression with the drawn Yi vari-
ables and the observed account variables, which gives a set of regression param-
eters β1, . . . , βM . This procedure is repeated many times to obtain realisations of
β1, . . . , βM which belong to pi, i = 1, . . . , N . Finally we can estimate the expecta-
tion and variance of the coefficients by calculating the empirical mean and vari-
ance of the realisations.

These values can thereafter be used as prior expectation and variance of the re-
gression coefficients in a Bayesian logistic regression. Further, by studying the
histograms of the realisations we have seen that the normal distribution seems to
fit well.

One apparently big drawback with this method is that there are many default
probabilities if the credit portfolio is large. However, we may have prior runs
from other models that makes it possible to specify all these priors automatically.

Our approach is a special case of the general conditional means priors framework
for GLMs proposed by Bedrik et al. (1996). However, rather than using simula-
tion to convert a prior on the default probabilities, they derive the induced prior
analytically.

3.3 Latent Gaussian models
In the class of structured additive regression models, the response variables are,
as in GLM, assumed to belong to an exponential family. The linear predictor takes
the more general form

ηi = β0 +
K∑

k=1

f (k)(uik) +
M∑

j=1

βjxij. (4)

The {f (k)(·)}’s are unknown finite-dimensional functions of a set of covariates
u. As in the GLM (1) the {βj}’s represent the linear effect of the covariates x.
Latent Gaussian models is a subset of Bayesian additive models with the linear
predictor on the form (4) which have Gaussian priors for the regression functions-
and parameters, {f (k)(·)} and {βj}. Hence, the Bayesian logistic regression model
is a special case of the latent Gaussian model (4) with only linear terms in the
linear predictor, that is, without the terms {f (k)(·)}.
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4 Methods

4.1 INLA
This section outlines the INLA method. Readers who wish to go into the details
of the approximations and numerical issues of INLA are referred to Rue et al.
(2009).

In order to use a notation similar to that of Rue et al. (2009), we assume for now
that the hyperparameters are stochastic and that the observations are indepen-
dent conditional on the regression coefficients and the hyperparameters. The pos-
terior (3) may be rewritten as

π(β,θ|y) = π(β,θ,y)/π(y) ∝ π(y|β,θ)π(β|θ)π(θ)

=
∏

i

π(yi|β,θ)π(β|θ)π(θ).

INLA is based on a nested expression of the posterior marginal distributions of
βj ,

π(βj|y) =

∫
π(βj,θ|y)dθ =

∫
π(βj|θ,y)π(θ|y)dθ.

The key feature of INLA is to approximate π(βj|y) by

π̂(βj|y) =

∫
π̃(βj|θ,y)π̃(θ|y)dθ, (5)

where π̃(βj|θ,y) and π̃(θ|y) are approximations of the conditional densities. The
integration is performed using numerical integration with respect to θ. One ob-
tains the approximate posterior by

π̃(βj|y) =
∑

r

π̃(βj|θr,y)π̃(θr|y)∆r, (6)

where the sum is over values of θ with area weights ∆r. Rue et al. (2009) discuss
several approximations of the conditional distributions in the sum (6) (and the
integral (5)).

Having derived the above expressions, the INLA approach for approximating the
posterior marginals is computed in three steps. The first step approximates the
posterior marginal distribution of the hyperparameters using the relationship

π(θ|y) ∝ π(β,θ,y)

π(β|θ,y)
.
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Rue et al. (2009) suggest the approximation

π̃(θ|y) ∝ π(β,θ,y)

π̃G(β|θ,y)

∣∣∣∣∣
β=β∗(θ)

,

where the denominator is the Gaussian approximation to the full conditional of
β evaluated in the mode for a given value of the hyperparameters.

The second step of INLA is to compute an approximation of the posterior dis-
tribution of the regression parameters, given the observed response variables
and the hyperparameters. Rue et al. (2009) suggest several different approxima-
tions for π(βj|θ,y). They show that in some applications a Gaussian approxima-
tion may be sufficient, and that the Laplace or simplified Laplace approximation
works well in most cases, see Rue et al. (2009) for details.

The last step of INLA combines the previous two steps using the numerical inte-
gration (6) to obtain the posterior distribution of the regression parameters given
the observed response variables.

4.1.1 INLA approximation error
Rue et al. (2009) provide several examples of applications of the INLA approach
and comparisons with results obtained from intensive MCMC runs. The exam-
ples include using simulated data, generalised linear mixed model for longitudi-
nal data, a stochastic volatility model and two spatial models.

The approximation error of INLA is inherited from the error of the two approx-
imations involved and the error of the numerical integration. The only way to
assess the error with certainty is to run an MCMC for infinite time. Rue et al.
(2009) propose two strategies to assess the approximation error. For each of the
approximations, they follow Spiegelhalter et al. (2002) and compare the effective
number of parameters to the size of the data set. In addition they compare the
difference between the approximations and their Taylor expansions to the size
of the data set. The second strategy is to compute more and more accurate ap-
proximations, that is, use the Gaussian, simplified Laplace and the Laplace, and
compare the corresponding symmetric Kullback-Leibler divergences (Kullback,
1987; Kullback and Leibler, 1951). A small divergence is taken as a sign of accept-
able approximation error, otherwise the approximation is labelled “problematic”.
Rue et al. (2009) state that they have yet not come across examples of the latter.

The examples of Rue et al. (2009) confirm that INLA provides fast and accurate in-
ference compared to MCMC. In our case, we compare the INLA results to MCMC
runs. We focus on an MCMC run with an appropriate number of simulations, but
we have also run MCMC for a very long ("infinite") time.
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4.2 MCMC
It is not the purpose of this paper to provide a deep understanding of MCMC.
For a review of MCMC methods, see Gilks et al. (1996). Applied to the Bayesian
logistic model of Section 3.2, the idea of MCMC is to run an ergodic Markov chain
which has (3) as stationary distribution. Starting from a set of given initial values,
in our case the parameter estimates obtained from standard (non-Bayesian) GLM,
the chain is run until it is believed to have reached equilibrium. Thereafter, the
chain produces a sequence of dependent samples from the posterior distribution.

4.2.1 MCMC convergence
Assessing the convergence of a sequence of realisations of an MCMC run, is a
non-trivial task. A variety of diagnostic tools exist, see Brooks and Roberts (1999)
for a review. A collection of commonly applied convergence measures is imple-
mented in the CODA package, Plummer et al. (2006), Cowles and Carlin (1996).
We have chosen two of these measures, namely the methods of Geweke (1992)
and Raftery and Lewis (1992).

The method of Geweke (1992) compares averages of simulations from the first
and last part of the chain. The test statistic is the ratio of the difference of these
averages to the standard error of the difference. As the chain converges the dif-
ference will tend to be small compared to the standard error, and Geweke (1992)
shows that a normal distribution may be used to test for significance.

The method of Raftery and Lewis (1992) and Raftery and Lewis (1995) examines
convergence for a given quantile, precision and probability of achieving the spec-
ified precision. The method finds the minimum number of iterations that should
be run, and a recommended number based on an assessment of the dependency
between subsequent simulations.

4.3 Software
All our computations were performed in the R (www.r-project.org) environ-
ment for statistical computations and graphics. The computations were run on
a Dell desktop PC with a Core 2 Duo 2.13 GHz processor and 2GB RAM.

The INLA-software developed by Rue & Martino is down-loadable at the home-
page of Håvard Rue (http://www.math.ntnu.no/∼hrue), and it will shortly be
released as a package of R.

We ran MCMC using MCMCpack (http://mcmcpack.wustl.edu/) and the func-
tion MCMClogit. The sampling engine of MCMCpack is a Metropolis-Hastings
algorithm (Metropolis et al., 1953). To maximise computational efficiency, the ac-

Bayesian modelling of credit risk using INLA 13



tual sampling for each model is done in compiled C++ using the Scythe Statistical
Library, which makes the simulations very fast.

The posterior samples returned by MCMCpack are so-called “mcmc objects”,
which can easily be summarised and manipulated using the CODA package
(Cowles and Carlin, 1996; Plummer et al., 2006).

5 Results

5.1 Results with a vague prior
In order to study the impact of having prior information on the default probabili-
ties, we first present the results obtained when no prior is incorporated (or in the
Bayesian framework; when the prior is vague or non-informative). Tables 2 and
3 show the regression coefficients obtained with a vague prior (prior mean 0 and
prior variance 1000) using MCMC and INLA, respectively. We observe that the
coefficients obtained with the two models are practically the same.

Variable Mean SD Lower Upper
(Intercept) 3.9594 0.6142 2.6644 5.0837
PROFIT -0.0490 0.0959 -0.2315 0.1295
LOSS -0.1733 0.0924 -0.3534 0.0149
CPINV -0.0804 0.0314 -0.1362 -0.0174
DP -0.1124 0.0487 -0.2065 -0.0101
EQPER -0.0500 0.0471 -0.1355 0.0433
MPAY 0.0624 0.0464 -0.0276 0.1528
DLIQ -0.0798 0.0459 -0.1715 0.0254
ODFAC -0.2241 0.0460 -0.3270 -0.1301
REPHIST -0.2251 0.0299 -0.2851 -0.1677
REPKF -0.1284 0.0264 -0.1789 -0.0671
REPAC -0.0002 0.0256 -0.0507 0.0513
AD -0.0579 0.0255 -0.1117 -0.0088
AGE -0.0945 0.0387 -0.1709 -0.0207

Table 2. Posterior mean, standard deviation, lower quantile (2.5%) and upper quantile
(97.5%) using MCMC with 10000 iterations and a vague prior.
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Variable Mean SD Lower Upper
(Intercept) 3.9263 0.6606 2.6238 5.2318
PROFIT -0.0539 0.0907 -0.2302 0.1284
LOSS -0.1696 0.0974 -0.3628 0.0218
CPINV -0.0798 0.0307 -0.1396 -0.0181
DP -0.1167 0.0499 -0.2145 -0.0174
EQPER -0.0504 0.0476 -0.1432 0.0448
MPAY 0.0626 0.0474 -0.0319 0.1552
DLIQ -0.0771 0.0457 -0.1694 0.0111
ODFAC -0.2195 0.0441 -0.3086 -0.1342
REPHIST -0.2277 0.0298 -0.2863 -0.1686
REPKF -0.1252 0.0268 -0.1770 -0.0709
REPAC -0.0028 0.0264 -0.0545 0.0498
AD -0.0615 0.0247 -0.1095 -0.0118
AGE -0.0882 0.0357 -0.1603 -0.0190

Table 3. Posterior mean, standard deviation, lower quantile (2.5%) and upper quantile
(97.5%) using INLA with a vague prior.
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5.2 Results with a specific prior
Now we use prior information given by the Sparebank 1-alliance, based on cus-
tomer information in the time period 1994–2000. The prior mean and standard
deviation of the coefficients are shown in Table 4. INLA does not let the user
specify any prior on the intercept, so in order to compare the MCMC results with
INLA, we use the default prior of INLA also in the MCMC algorithm. This prior
uses mean 0 and standard deviation

√
1000 for all the coefficients. It is often dif-

ficult for risk managers to interpret and give expert opinions on the intercept, so
applying a vague prior on the intercept makes sense.

Variable Prior mean Prior standard
deviation

PROFIT -0.096 0.042
LOSS -0.127 0.104
CPINV -0.045 0.022
DP -0.069 0.024
EQPER -0.102 0.023
MPAY -0.103 0.023
DLIQ -0.032 0.019
ODFAC -0.078 0.048
REPHIST -0.268 0.021
REPKF -0.102 0.017
REPAC -0.105 0.017
AD -0.068 0.015
AGE -0.062 0.017

Table 4. Prior mean and standard deviation of the explanatory variables.

5.2.1 MCMC
Table 5 shows the posterior mean, standard deviation and the 2.5% and 97.5%

quantiles of the MCMC run using 10000 iterations. Compared to the vague prior
results in Table 2, we see that the specific prior given in Table 4 influences the
MCMC results significantly. Figure 2 shows the prior and the posterior distribu-
tions of the coefficients, using MCMC with 10000 iterations. The posterior dis-
tribution is presented as a density plot of all 10000 realisations of the posterior,
hence the unsmooth shape. The MCMC run with an infinite number of simula-
tions represents the "true" posterior. We ran MCMC with 106 iterations. The pos-
terior obtained from this run did not differ significantly from the result obtained
using 10000 iterations.
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Variable Mean SD Lower Upper
(Intercept) 3.5773 0.4951 2.5888 4.4994
PROFIT -0.0775 0.0369 -0.1555 -0.0077
LOSS -0.0930 0.0625 -0.2087 0.0344
CPINV -0.0590 0.0178 -0.0945 -0.0284
DP -0.0817 0.0203 -0.1245 -0.0459
EQPER -0.0903 0.0188 -0.1241 -0.0515
MPAY -0.0721 0.0220 -0.1152 -0.0258
DLIQ -0.0322 0.0175 -0.0664 -0.0008
ODFAC -0.1362 0.0339 -0.1992 -0.0696
REPHIST -0.2442 0.0174 -0.2789 -0.2121
REPKF -0.1047 0.0140 -0.1292 -0.0772
REPAC -0.0673 0.0151 -0.0943 -0.0356
AD -0.0600 0.0126 -0.0860 -0.0341
AGE -0.0683 0.0150 -0.0964 -0.0421

Table 5. Posterior mean, standard deviation, lower quantile (2.5%) and upper quantile
(97.5%) using MCMC with 10000 iterations and a specific prior.

5.2.2 INLA
Table 6 shows the posterior distributions obtained using INLA. Compared to the
results obtained using the vague prior (Table 3), the posteriors are here clearly af-
fected by the prior. Figure 3 shows the prior and the posterior distributions of the
coefficients. The posterior density distributions are drawn from the normal dis-
tribution with the achieved approximations of the posterior means and standard
deviations.

5.2.3 Comparison
Figure 4 shows the posterior distributions obtained with the specific prior, using
INLA and MCMC with 10000 iterations. Figure 5 also compares the results of
INLA and MCMC, but also includes the posterior results obtained using a vague
prior, see Section 5.1. The results obtained with informative and vague priors
differ considerably for most of the variables. When the prior and the empirical
data have diverging information, the posterior is mixture of the two, as given by
the Bayesian approach.

We see that the posterior distributions of MCMC and INLA are similar. Since the
MCMC posterior probability is a density plot of the realisations from the MCMC
iterations, it is unsmooth. The more iterations, the smoother the density plot is.
If we compare the posterior means, standard deviations and quantiles in Table 5
and 6 we see that MCMC and INLA give very similar results.
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Variable Mean SD Lower Upper
(Intercept) 3.6248 0.4996 2.6366 4.6089
PROFIT -0.0847 0.0371 -0.1581 -0.0114
LOSS -0.0945 0.0617 -0.2166 0.0271
CPINV -0.0593 0.0179 -0.0945 -0.0240
DP -0.0799 0.0211 -0.1216 -0.0384
EQPER -0.0903 0.0199 -0.1297 -0.0510
MPAY -0.0730 0.0207 -0.1139 -0.0322
DLIQ -0.0307 0.0171 -0.0646 0.0029
ODFAC -0.1369 0.0308 -0.1983 -0.0768
REPHIST -0.2445 0.0167 -0.2775 -0.2115
REPKF -0.1039 0.0143 -0.1320 -0.0757
REPAC -0.0686 0.0137 -0.0957 -0.0415
AD -0.0598 0.0125 -0.0844 -0.0352
AGE -0.0705 0.0152 -0.1005 -0.0405

Table 6. Posterior mean, standard deviation, lower quantile (2.5%) and upper quantile
(97.5%) using INLA with a specific prior.

With the size of our data set, running the MCMC simulation with 10000 itera-
tions is done in a short amount of time. There are many methods to check for
convergence of an MCMC chain. We have focused on the methods of Geweke
(1992) and Raftery and Lewis (1992), see Section 4.2.1. According to the conver-
gence methods some of the coefficients have not converged after 10000 iterations,
even though it looks like they have converged from the trace plots of the MCMC
run. This illustrates how difficult it is to determine when an MCMC run has con-
verged. If we measure convergence by eye, MCMC and INLA give approximately
the same results during approximately the same amount of time.

If the prior information, unlike the case in our study, differs dramatically from
what the data alone implies, MCMC will converge very slowly. In such cases,
INLA is favoured as it will be computationally faster. Also, a great advantage of
INLA is that the user does not have to worry about the issue of convergence.

6 Conclusions

The main contribution of this paper is to introduce INLA as an alternative to
MCMC for Bayesian credit risk modelling. We have compared the two methods
in a Bayesian logistic regression setting. We have modelled the credit default risk
of a dataset of real default data provided by the Norwegian Sparebank 1-alliance.
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The Bayesian approach makes is possible to incorporate prior knowledge on the
regression coefficients. In our case, specific prior information on the default prob-
abilities was given by the Sparebank 1-alliance and converted to prior informa-
tion on the regression coefficients in the logistic regression model.

We find that INLA and MCMC give approximately the same posterior results.
In our case, the MCMC algorithm converges quickly, and hence it is not obvious
that INLA is the best choice. However, the main advantage with INLA for this
purpose is that the user does not have to worry about convergence issues. Also,
INLA gives the same posterior for each data set, and hence the approximation
error is easy to deal with. The MCMC approach gives different posteriors from
one run to another, and the MCMC error is therefore more difficult to track. The
only "true" posterior is obtained by running the MCMC for an infinitely long time.
However, as “infinitely long” must be quantified in terms of a given number of
simulations, one can never be certain that the true equilibrium is actually reached.
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Figure 2. The prior distribution (dashed line) and the posterior distribution (continuous
line) of the coefficients, using MCMC with 10000 iterations and a specific prior.
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Figure 3. The prior distribution (dashed line) and the posterior distribution (continuous
line) of the coefficients, using INLA with a specific prior.
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Figure 4. The posterior distributions obtained with the specific prior, using INLA (dashed
line) and MCMC with 10000 iterations (continuous line).
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Figure 5. The posterior distribution obtained with INLA, using a specific and a vague prior
(blue- and green dashed lines, respectively). The posterior distribution obtained using
MCMC with 10000 iterations, using a specific and a vague prior (blue- and green contin-
uous line, respectively).
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