
IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 1 of 21

D5c
Client Platform Implementation and

Behavior Definition Tools

Date: 15-August-01
State: Draftl
Work Package: WP5
Participant Partner(s): NR
Author(s): Per Thomas Jahr (NR),
 Joachim Lous (NR),

Shahrzade Mazaher (NR),
Anders Moen (NR).

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 2 of 21

1 INTRODUCTION.. 3

2 MADISON ARCHITECTURE... 4

3 SIMULATION MODEL ... 5

3.1 DISTRIBUTION MODEL ... 5
3.1.1 Replication, Pilots and Drones... 5
3.1.2 Zones .. 6

3.2 INTERACTION MODEL .. 6
3.2.1 Exposed Fields ... 6
3.2.2 Actions .. 6

4 ACTOR IMPLEMENTATION .. 8

4.1 THE ACTOR OBJECT STRUCTURE ... 8
4.1.1 Logic... 9
4.1.2 Animation ... 9

4.2 INTERACTION ... 9

5 CLIENT PLATFORM IMPLEMENTATION.. 11

5.1 STARTUP SEQUENCE... 12
5.1.1 Java Embedding ... 12
5.1.2 Bootstrapping ... 12

5.2 PLATFORM SERVICES ... 13
5.2.1 Networked Interaction .. 15
5.2.2 Local Interaction .. 17
5.2.3 Client-User I/O... 18

5.3 THE MADISON SERVER PLATFORM ... 19

6 TOOLS IMPLEMENTATION... 19

6.1 THE WORLD INTEGRATOR ... 19
6.2 MADEDIT ... 20

REFERENCES .. 21

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 3 of 21

1 Introduction

This document describes the design and implementation of the MADISON simulation
framework prototype. This prototype consists of three parts:

• A client side simulation framework developed at NR,

• A server side framework implemented by Archetypon, and

• A network module developed by Boostworks.

This document is mainly concerned with the client simulation framework and will not
elaborate on the other parts of the prototype. For a detailed description of the server
framework, the reader is referred to [5].

The client simulation framework consists of an object model and an infrastructure that is
common to all simulation applications. It is closely related to the simulation object's
behavior, and must be in place in order to support any behavior definition toolset.

The client simulation framework is concerned with the object model for the simulation
applications, a model of interaction between the distributed simulation objects, services
required by all application (e.g., an object registry, etc.), and specific common
functionality required by the simulation objects of a distributed, multi-user simulation,
such as dead reckoning and predictive algorithms.

This document emphasizes on the changes in the client side simulation framework
compared to the version described in an earlier deliverable [4].

The terminology used in this document is the same as explained in [4]. The rest of this
document is organized as follows. Section 2 sketches briefly the MADISON architecture.
Section 3 describes the simulation model adopted in MADISON. Section 4 deals with the
design of the MADISON framework while Section 5 is concerned with its implementation.
Section 6 describes some rudimentary authoring tools developed by the project that can
form the basis of a more advanced toolset.

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 4 of 21

2 MADISON Architecture

Figure 2.1 depicts the general architecture of the MADISON system. For details on the
architecture, the reader is referred to [3]. The simulation platform at the client interfaces on
the one hand to the network to receive events sent from other clients and on the other hand
to the MPEG-4 module of the set-top box via the MPEG-J/EAI interface. This MPEG-J
interface is a Java interface defined by the MPEG-4 standard [1] to enable interaction
between applications and the VRML scene graph while the EAI (External Authoring
Interface) [2] is a corresponding interface defined by the VRML standard. These interfaces
are quite similar in functionality and the choice is mainly based on which one is supported.

Set-top client

Server
Network
 Interface

MPEG-4 Unit

Application layer

 Client
Simulation platform

MPEG-J/EAI

 User

 Server Event-Distribution
 platform

 Registration

Application layer

 Server-side Client
 Simulation Platform

Figure 2.1 General Architecture of the MADISON System

Note that the broadcast communication is between the content server, which can be the
same as the simulation server, and the MPEG-4 unit of the set-top box.

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 5 of 21

3 Simulation Model

This section gives a short description of the MADISON simulation model, described in
more detail in deliverable [4]. The main features of this model are given below.

3.1 Distribution Model

The distribution model chosen in MADISON is a client-server architecture where all
clients are connected to a central server and all communications between the clients goes
via this route, i.e., there is no direct peer-to-peer communication between the clients.

The simulation itself is not centralised, in the sense that the server does not hold the
complete true simulation state; this is distributed among the clients. The simulation part of
the server is a regular client with some special objects. But in addition to this aspect, the
server has a message distribution module whose only purpose is to filter and forward
messages between the clients.

3.1.1 Replication, Pilots and Drones

There are two types of simulation objects (actors) populating a simulation: avatars and
bots. Avatars represent users, bots are controlled programmatically. Both actor types can
appear in two roles: An actor has a pilot replica on exactly one client, which makes all
final decisions about its behavior, and zero to many drone replicas at other clients where it
can be observed. To make the drones replicate actions and state changes, pilots use
platform services to send them special update messages called PDUs.

Note that there can exist bots with only local scope. That is, they have no drones and no
direct effect on the global state of the simulation; they only matter on the client where their
pilot resides. Typical tasks are local application administrative logic, or tools whose state is
only relevant to each client, such as navigation aids etc. displayed in the HUD of the user.

The server contains the pilot replicas of normal bot objects if any, drone replicas of the
avatars, and of special “system” bot objects, e.g., a scorekeeper or other global
administrative logic. Each client contains the pilot replica(s) of the corresponding
avatar(s), drone replicas of the avatars of the other clients, drone replicas of the global bot
objects, and the only replicas of each of the local bot objects.

We thus have these types of actor objects at a MADISON client on a user machine:

• a pilot replica of the avatar controlled by the user,

• drone replicas of (a subset of) avatars controlled by other users,

• drone replicas of (a subset of) bot objects, and

• (the only replica of) bot objects with local scope.

The set of objects on the server-side client comprises of the following kinds:

• a pilot replica of each of the bots (with global scope) existing in the simulation, and

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 6 of 21

• drone replicas of all avatars controlled by the users.

3.1.2 Zones

The mechanism for the different actors to specify their area(s) of interest is called zone. A
zone has a set of member actors, and the messaging server only forwards messages
addressed to a zone to clients with pilots or drones that are members of it. In MADISON, a
zone is an abstract notion; the semantics of being a member are wholly application-
specific. Although the conventional geographical area type zone is the most common use,
zones can also represent more abstract notions, such as affiliation to defined group of
avatars or access to a particular type of events not dependent on spatial position.

Each actor has a home-zone, the zone corresponding to its geographical location in the
simulation world, of which it is automatically a member. Actors can become members of
other zones of interest by subscribing to them. All the messages an actor generates are
stamped with its home-zone, and are distributed to that zone’s membership. Moreover, an
actor can specify additional abstract zones for a given message to be distributed to.

This mechanism allows many to many relationships between actors and the zones. That is,
an actor can send events to many zones and also can receive events from many zones.

3.2 Interaction Model

In MADISON, from a logical point of view, all types of communication between the
different simulation objects (actors) are local, carried out in parallel on each client machine
where the actors are represented. That is, when a pilot actor initiates a communication, the
(inter)action is performed locally in the “eyes” of actors on the same client machine.
Separately from this, the pilot actor will also often use the dispatcher services to inform all
its drones at other clients of the communication, but this is a “private” communication
internal to the pilot implementation. The distribution aspect cannot be observed directly by
other actors inside the local simulation arena; they only “see” each other as they are
represented locally. When receiving the order, each of the remote drones initiates the same
(inter)action locally inside its local environment, as if it was acting autonomously there as
far as the other actors on the remote client are concerned.

There are two mechanisms for local interactions, described in the following sections.

3.2.1 Exposed Fields

Actors may let any of their state values be publicly readable, so that other actors can
programmatically find out things about them, or monitor what they are doing. A typical
property that almost all actors are required to publish is their position, but others may
publish anything they like. The set of exposed fields is identical for pilot and drone
instances of the same actor class (although the values may be out of sync); the surrounding
actors reading the fields should not need to know or care which role it is in.

3.2.2 Actions

Actions are a more concrete form of local interaction between actors. Actions are initiated
by the pilot replicas of actors, either based on their internal logic in the case of bot actors,

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 7 of 21

or under the control of the end-users in the case of avatar actors. There are two subtypes:
Independent actions involve nobody else; examples of independent actions are waving,
sitting down, etc. Directed actions are also initiated by the pilot replicas of actors but are
directed towards other actors; examples are moving an object, pushing a button, etc.

Independent Actions

The other actors at a client are informed of an independent action by a remote pilot only
when the local drone replica of that actor carries out the action, having received the
corresponding information from its pilot. For avatars, this information is usually just left
for the user to observe through the normal presentation of the acting drone.

The situation is different for pilot bots. They do not have a controlling end-user who could
observe the independent actions carried out by other actors and, if necessary, react to them.
They must therefore be notified programmatically when independent actions happen, either
by having registered to listen for such actions (not implemented yet), or by polling exposed
fields of the local drone for changes resulting from the action.

Directed Actions

A directed action has a subject (the pilot actor that initiates it) and an object, or target, (the
actor on which the action is performed). Sometimes the action may also refer to secondary
objects, i.e., other actors used or involved in the task, but those are just considered like any
other parameter of the action.

Usually, the target actor is a drone. The target drone may carry out its reactions to the
action, using prediction if necessary, but that is only a local and temporary change. The
subject pilot also informs its drones to carry out the same directed action on the same
target actor, and one of those drones will end up performing the action on the actual pilot
of the target actor. The target pilot will react correspondingly, and only when it transmits
its reaction to its drones will they know the ‘official’ outcome. The drones of the target
actor must then locally reconcile their predicted reaction with the update from the pilot if
necessary, and the communication loop is complete.

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 8 of 21

4 Actor Implementation

This section is concerned with the internal implementation of actors in the MADISON
framework. It first describes briefly the parts that have been elaborated on in [4], and then
details the new components of the design.

4.1 The Actor Object Structure

The actual classes containing the simulation code can be roughly divided into two groups:
the active simulation objects (Actors) themselves, with all their superclasses and owned
objects, and the 'platform' including the standard system services provided to support the
actors. This division corresponds roughly (although not entirely) to the division between
static system software and application specific code.

All actors represented on a client appear as object instances descended from the BasicActor
superclass. Every actor type has a distinct actor subclass to represent it. This class defines
the simulation API of the actor type, including the exposed fields it has, the actions that
can be performed on it, etc. The rest of the functionality (logic, animation, using services)
is delegated down to specialized objects owned by the actor.

Some chain of
inheritance

BasicActor

SpecificActor

SpecificLogic SpecificAnimator

ActorLogic Animator

S. PilotLogic S. DroneLogic S. PilotAnim S. DroneAnim

<<Interface>>
 IActor

 implements

Figure 4.1 The Actor Object Model

Pilots and drones of the same actor use the same top-level class to represent them, so that
the world outside the object (the other actors in the local simulation) usually does not care
which version it is working with; they look just the same to their environment. The only
difference lies in which versions of the owned objects are instantiated and used, i.e., either
pilot or drone versions. The various versions of the owned objects provide the same
interface to the main actor object, but their internal workings can vary widely.

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 9 of 21

4.1.1 Logic

The logic object is in charge of any change or event at the simulation level. A logic object
implements either the simulation role of a pilot or that of a drone. It completely
encapsulates the logic, including the distribution aspects, specific to each actor.

Typically, a pilot logic object will be concerned with taking decisions internally (either
according to rules/AI, or by getting input from a user or some other external entity), and
will synchronize with its drones by notifying them of its state and decision, using the
system services.

A drone logic object is mainly concerned with effecting the orders received from its pilot
(state changes and external actions), displaying predicted behavior in between the updates,
and reconciling the prediction with the true state when updates arrive.

4.1.2 Animation

The animator object handles everything to do with the visual aspect (display) of the actor
object, and is the only part of the system that has any knowledge of the player and the
scene graph. The normal external view of an object as seen by all other participants is
handled by the drone animator, according to the higher-level instructions received from the
logic object. In between receiving instructions from the drone logic, the drone animator
uses predictive methods to achieve a smooth visualization of the drone avatar

The animator of the pilot object is very different. For a bot, it will usually have no
animator at all: the code that controls it has no use for a graphical rendering, and everyone
interested in seeing it has a drone copy. For user-controlled actors, the pilot animator will
be responsible for presenting visual feedback to the user, such as any dashboard or head-up
display-like controls, which the external observers of the actor do not see.

4.2 Interaction

All actor objects hold a reference to the local services object, from which they can obtain
references to the individual services it encapsulates. One of these services, the registry
service can be used to obtain references to the local copies of the other actors, based on
their global ID or some selection criterion (the ID may have been obtained from an
incoming event, or through selection of an object visible on the screen).

Once a local reference to another actor is found, the first actor (the subject), can inspect the
class, and call public methods on the other actor (the object actor), corresponding to
observing its exposed fields.

Using the local reference, an actor (usually the pilot), can also perform actions on another
actor. Each action supported in an application should be defined in a class implementing
the interface IAction, which is a fixed part of the framework. This interface consists of a
set of methods that can be grouped as follows:

1. Presentation methods to be used by the owned animation object of the actors to present
any default animation of the action. Note that one action can have up to four
presentations: subject (pilot), subject (drone), object (pilot) and object (drone).

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 10 of 21

2. Check methods to check whether the action is legal for the subject/object (based on
their combination of types and/or states)

3. Logic update methods to be used by the owned logic object of the actors to enact the
default logical reaction (state update) involved in this action.

This means different actors don’t all have to duplicate similar code for the same common
reactions, they can simply inherit a standard series of calls to the respective methods as the
their standard reaction to all or most actions. The default implementations are provided as
part of the specific action class rather than inherited down the actor hierarchy, so that new
actions can be added without modifying any actor classes.

Of course, the logic and animation classes of an actor may choose not to use the default
implementations, but rather provide their own specialized behavior. For a ‘push’ action,
most stationary actors would fail the test and thus ignore the action. Most others might use
the standard reaction, which moves them a short distance in the appropriate direction.
Whereas a bot representing a button might skip the test and override the animation and
logic, and in stead remain in place, display a custom animation, and open a door. The
selection of a target actor for an action is the responsibility of the subject actor.

Figure 4.2 depicts the implementation of the MADISON interaction scheme described in
Section 3.2.2 at the distribution level. The subject actor (SP), a pilot, on Client1 sends an
action object of the desired class, represented by the “Some Action Object” box in the
figure, to the object actor (OD), a drone, on Client1, which possibly carries out a predicted
reaction to the action. SP also sends a DirectedAction PDU, a relay of action event, to its
drone (SD) on Client2. On Client2, the subject’s drone recreates the action specified in the
received PDU, and sends it to the local replica of the object actor (OP), also specified by
the PDU. This replica, being a pilot, carries out its side of the action, and updates all its
drones accordingly by sending to them a StateUpdate PDU. The drones of the object actor,
ODs, must then reconcile their predicted state with the actual state of their pilot.

 SP

 OD OP

 Some
 Action
 Object

 SD

Client 1 Client 2

 Some
 Action
 Object

1
2 3

3
1 4

DirectedAction PDU

StateUpdate PDU

Figure 4.2 Overview of Interaction between Actors

At the local level, on Client1, the SP object, the originator of the action, performs the
following steps:

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 11 of 21

1. obtains the local address of the target actor, OD, through the services offered by the
ActorRegistry object of the client platform, described in the next section, Client
Platform Implementation;

2. instantiates an action object of the desired class;

3. delivers it to the target actor by invoking on it the processAction method, defined in the
IActor interface, with the action object as parameter.

The OD object, the object of the action, performs the following steps:

1. passes down the action object to its owned logic object;

2. the logic object performs the action, based on its current state, either by using the
default methods provided by the action object or by overriding them by its own
methods. That is, it updates its logical state and if necessary passes the action object to
the owned animation object of the corresponding actor;

3. the animation object follow the same procedure as the logical object but with respect to
presentation.

On client2, the SD object having received a DirectedAction PDU from its pilot SP,
performs the following steps:

1. passes the PDU on to its owned logic object;

2. the logic object inspects the type of the PDU and acts accordingly.;

3. in this case, the PDU being of the DirectedAction type, it obtains the address of the
target object, specified in terms of the actor’s unique ID in he PDU, using the
ActorRegistry object of its client platform;

4. it instantiates an action object of the appropriate class;

5. delivers it to the target actor by invoking on it the processAction method, defined in the
IActor interface, with the action object as parameter.

This time the target OP is a pilot object that processes the action object following the same
steps as described above for the OD object. In addition, after having performed the action,
it sends a StateUpdate PDU to all of its drones to synchronize. The OD drone on Client1,
upon receiving the StateUpdate PDU, must, if necessary, reconcile its state with that of its
pilot.

Each action object is tailored to the function of the action and carries relevant information.
For example, a TeleportAction object has the position of the destination. This position can
be passed as a parameter to its constructor when instantiating it.

5 Client Platform Implementation

A lot of the behavior of any object in Madison is at least partly defined by the common
static framework of interfaces, conventions and services that we call the client software
platform. It provides an essential toolset of predictable code patterns and ready-made
functionality for external authoring tools to work with. This section provides some details
about the platform implementation of the client side. Most of it applies equally to the
server-side client, except the startup sequence and user I/O, which are of course not needed
there.

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 12 of 21

5.1 Startup sequence

For any application of the Madison platform, a large portion of the java code will always
have to be application specific, such as the logic and animation implementations of the
avatars, and the behaviour of any bots, including possible global “game rules” or “referee”
objects. These applications are downloaded to the set-top boxes whenever the end-user
wants to use them. For purposes of future upgrades and enhancements after the set-top
boxes are deployed, it is an advantage that the more static parts, the platform classes, can
also be downloaded in the same fashion. Allowing this also opens the door to running
entirely different pieces of software if so desired.

5.1.1 Java Embedding

Dynamic adaptation to each application is achieved by transmitting class files as part of the
broadcast stream (which also carries the application specific media objects and possibly an
event stream), so that the STB can download client code when entering a Madison-
enhanced channel.

The download mechanism consists of a custom class loader, equipped to extract and load
named java classes from the stream into the java virtual machine. This is used exactly like
the standard file- and http-based class loaders, and is transparent to the client code.

MPEG-4 specifies how to embed java code as separate objects in the multiplexed MPEG-4
stream. However, the third-party MPEG-4 systems coder/decoder we are using (and to our
knowledge, all others in existence) are still under development, and do not currently
support this part of the standard. As a temporary solution therefore, one of the partners in
the project, Archetypon, has implemented a functionally equivalent system which codes
the java classes as long numeric-array fields in hidden nodes in the scene, which when
received on the client are retrieved through EAI and decoded back to loadable classes.

This alternate strategy makes no difference to the rest of the application: loading is in both
cases handled transparently by a class loader, and in both cases it takes one iteration of the
broadcast carousel to be certain that all the classes have been received. Consequently,
replacing the class loader with one that uses the standard mpeg-4 technique when it
becomes available should be a small task, and will not affect the rest of the code base.

5.1.2 Bootstrapping

With all this flexibility, there needs to be a fixed point of contact to initiate loading in the
first place. Madison has a very simple yet powerful specification for this: The stream must
contain a class with a specific name (madison.Bootstrap), and single-function interface,
which the receiving client uses to start the chain.

In the implementation, this is used in the following manner: When switching channels,
resident software in the box detects if the new channel is Madison-enabled. If so, a small
pre-installed java program is started. Its only job is to instantiate the custom class loader
(also pre-installed), use it to fetch the application-specific Bootstrap class from the stream,
and run its startup method. What happens next is in principle entirely up to the
implementation of the broadcast Bootstrap class, but for the normal Madison setup, it
instantiates the services object (which effectively builds the entire platform infrastructure),
and then loads an application specific control object, which instantiates local actors such as

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 13 of 21

the avatar pilot and initiates registering with the server, thus arriving at normal operation.
Incoming PDUs after registering with a zone will take care of all other instantiation.

The platform classes can be transmitted as part of the dynamic code, or be pre-installed;
this is just a matter of distribution policy and does not affect the code. A more advanced
class loader might also be extended to transparently cache downloaded classes on a hard
disk if available, but this is not implemented in this prototype.

5.2 Platform Services

The simulation platforms both at the client and the server are shown in the diagram below.
The client platform comprises the Services module supporting the flow of the events in the
simulation and the other modules entity grouping a set of services that support both the
logical and the visual aspects of an object’s behavior, such as dead reckoning, collision
detection, etc. Each application has a handle to the Services module and can thereby use
the services it offers.

Client

AP BD

AD

EventDispatcher

ObjectRegistry
(UID, Addr)

Network
 Interface

Services

Server

AD BP
Å

AD

EventDispatcher

ObjectRegistry
(UID, Addr)

Services

Object
Factory

 ZoneManager
(event, zone, uid, addr)

Other Modules
(prediction …)

Other Modules
(dead reckoning …)

 ZoneManager
(event, zone, uid, addr)

 Event-Distribution Platform

 Server ZoneManager

 Server EventDispatcher

Object
Factory

User Registration

Figure 5.1 Platform Architecture at the Server and the Client

Services is an encapsulation of all the services offered by the other client simulation
platform modules. This whole constitutes most of the runtime infrastructure of the client

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 14 of 21

platform. Services offers a common interface (API) that allows the application objects to
use the services offered by the different modules. It also provides a few simple services
itself, used primarily by the other modules of the platform.

Some of the services are:

ObjectFactory is responsible for creating new objects as they enter the simulation world,
including the pilot replica of the client’s avatar. Its major use is by the EventDispatcher, to
create local drones when PDUs addressed to unknown recipients arrive.

Other Modules: The services grouped as other modules in the diagram can be regarded
less as actives service objects, and more as utility libraries used by the simulation objects
to uniformly implement various common internal functionality in an efficient and uniform
way. They are offered as a part of services rather than as classes used or inherited directly
by actors in order to allow “plugging in” alternate classes to do the job without having to
edit any code in the various actors, or replacing specific class implementations

.

 Collision
 Detection

Prediction Animation

 … .…

Figure 5.2 Modules Supporting the Behavior of Simulation Objects

5.2.1 Actor Behavior

These services/libraries are the part of the platform most directly affecting actor behavior:

Prediction. This is essentially a factory service for producing instances of various
MotionPredictor subclasses. These objects encapsulate logging and prediction algorithms
that drones can use to extrapolate their behavior between PDUs, and their pilots can thus
use to optimize their drone-updates to save bandwidth. Even the navigation system uses to
calculate the effects of navigation input between updates.

Predictors share the same simple interface: They have an addSample function, which is
used to feed it an observation of the real kinetic status of an actor (timestamp, position,
orientation, speed, rotation, accelleration) whenever the ‘owner’ sees fit. They also have
methods like getPositionAt and getOrientationAt, which return predictions of what the
situation will be like at a specified (usually future) point in time, based on the history of
previous samples it has logged. What model/algorithm is used to calculate the prediction,
and how much history information it actually stores for this purpose is internal and
predictor-specific. There are several different typical predictors available as part of the

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 15 of 21

platform, representing different common physical behavior models (a ball with a given
position, velocity and rotation will proceed differently from a car with the same starting
conditions). More can be added as required by the application.

Collision detection

Another task that many actors have in common is discovering and reacting to collisions
with other geometry, both the scenery and other actors. As far as scenery is concerned,
one could exploit the collision detection in the player, since he scenery is static and
reactions to it relatively simple. The current prototype does its own detection here too; see
section 5.2.4. In either case it is encapsulated as a service, so actors need not care how it’s
done.

Collisions with other actors are more complex, since both objects may be moving. What to
do to avoid collision, or how resolve the results when collisions do occur, is less obvious.
Again, the strategy employed can be application specific, but certain basic behaviors are
included with the platform, such as stopping dead when colliding, avoiding collisions by
employing a forced right hand rule, or even allowing users to pass through others (useful
for very crowded areas).

Both detectors are used by calling their check methods with the endpoints of the proposed
movement (typically each camera update). The return value indicates if the move is legal
or not, and optionally you can get a suggested alternate destination that is legal. Thus a
movement that would have crossed a wall can stop at the wall in stead, and a mutual
attempt of two actors to walk through each other can be resolved by forcing them both to
sidestep.

5.2.2 Networked Interaction

Event Dispatcher

This service module is concerned with delivering the incoming events to all interested
objects. Each incoming event is tagged with the name of the zone where it has been
originated, i.e., the home zone of its originator; it may, in addition, be targeted to other
zones as well.

Upon receiving an event, the EventDispatcher finds out about all objects interested in the
event. This is done using the ZoneManager described below. The EventDispatcher then
dispatches the event to all those objects.

A corresponding module exists also in the server platform. Both the client and the server
versions of this module perform the same task of dispatching an event to the targeted
objects, but they differ in a subtle way. The client EventDispatcher distributes the
incoming events to the local objects, i.e., in the local domain, while the server
EventDispatcher dispatches the events over the network, in the global domain. The former
therefore needs the local addresses of the objects targeted by the event while the latter
needs network addresses. The client EventDispatcher at each of the network addresses
receives the event, which it further distributes to the targeted local objects.

This module has two interfaces: one used by the local objects to dispatch events and one
used by the network module for delivering events.

The EventDispatcher processes two types of events: system-level and application-level
events. The former type allows for communication between the server’s event-distribution

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 16 of 21

modules (objects) and the clients’ simulation platforms. For example, a simulation object
joining a zone uses the API offered by the Services module to do so. This service is
supported by the ZoneManager which tells the target zone to add a new member to its
membership. If the target zone had no member from before, this client is not registered
with the server ZoneManager for receiving events from that zone. It therefore generates a
system-level event to be dispatched to the server event-distribution module telling the
server ZoneManager to add the network address of the client to the membership of the
target zone. The system-level events are all defined by the MADISON platform.

ZoneManager

The client ZoneManager module manages the zones defined by the simulation application.
Each zone is implemented as an object that keeps track of the IDs of its member actors.
The class Zone is defined by the MADISON platform to be used as the superclass of all
zone objects, i.e., the zones defined in an application must inherit from it and define its
methods. The zone objects are always accessed through the ZoneManager.

Joining and leaving zones can be done either directly by application objects via the
Services module API or indirectly, in an automated way, by the zone objects themselves.
To achieve the latter alternative, each zone object has a method for checking whether an
object qualifies for membership in the zone. If an object passes the check, it is
automatically added as a member to the zone, if not already there, and if not, it is removed
from the zone membership. However, this method is defined by the application for each of
the zones it defines and will usually involve checking values of some global attributes of
an object. This latter alternative is not implemented.

The main structure of the ZoneManager is a table mapping zone names to the
corresponding objects, and the main structure of a zone object is a list of its members.

PDU hierarchy

The MADISON platform defines a class hierarchy, rooted at the class BasePdu, for
sending synchronization messages between a pilot and its drones.

Pilots notify their drones of their state-changes by sending them state update events, and
inform them of their actions by relaying independent action or directed action events.
Upon receiving these events, the drones either synchronize their states with that of their
pilot, or perform the action indicated by the received action event.

In the case of actions, to ensure that the drones perform the action in the same context as
the pilot, each action event also carries all the information of a state update event. The
drones first update their states and then carry out the action in the updated state. The
overhead of carrying a little extra state information in each action is judged to be negligible
with respect to the overhead involved in correcting the effects of an action carried out in a
stale state.

The events are exchanged between the clients via the Server’s EventDispatcher. In the
client platform the PDUDispatcher and the network classes are responsible for the sending
and receiving of the events. The events are implemented by the Pdu class hierarchy
depicted in Figure 5.3. The PDU classes are described in more detail in [6].

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 17 of 21

 BasePdu

 DirectedPdu

 ZonePdu StateUpdatePdu

 ActionPdu

Figure 5.3 The event class hierarchy

5.2.3 Local Interaction

Object Registry

The ObjectRegistry module holds information about all actors local to a client. The main
purpose of this registry is to map the unique identifier of each of the locally represented
actors, to the actual java object reference of the local instance. In addition, it supports
checking on some of the attributes of an actor, e.g., whether an actor is a pilot, and
provides a facility to search registered actors using a caller-supplied test, encapsulated in a
Predicate object, returning the IDs of the set of actors that pass the test, or the one that
scores best on the test.

Actors can obtain the local addresses (java object references) of other actors residing on
the same client by using the services of the ObjectRegistry module, as described at the start
of this chapter.

There are two mechanisms for obtaining the local address of actors: one used to obtain the
local address of a specific actor and the other used for obtaining the local address of an
actor (or a set of actors) satisfying a given criterion. In the former mechanism the unique
ID of an actor, e.g., obtained from an event, is provided to the ObjectRegistry that maps it
to the local address for that actor.

Predicates

In the latter mechanism a test object, or Predicate, is provided to the ObjectRegistry,
which applies the test to all registered actors and returns the addresses of actors passing the
test. The predicate must implement the interface FuzzyActorPredicate, defined by the
MADISON framework. The actual contents of the tests are application specific and may
use any information at their disposal to make their evaluation, including combining other
predicates in logical expressions (‘and’, ‘or’, ‘not’ etc.), or any other calculations on them.
As the name indicates, the predicates are based on fuzzy logic: the result of a test is a
fraction between 0 and 1, indicating to which degree the test was successful. Predicates do
not have to exploit this, they can opt to return only boundary values (0 or 1) indicating
failure or success respectively. Under such circumstances the fuzzy logic operators will
behave as normal Boolean ones. But the option is there for actor logics to work with

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 18 of 21

concepts like “close” or “facing me” (and logical operations on them) as continuous-scale
values and meaningfully compare “scores”.

Actors

Moreover, all actors in an application must implement the IActor interface, defined by the
MADISON framework. It defines the capabilities a valid actor must implement, among
them processAction(IAction action), which is the entry point for all inter-actor actions.
Often it will also be natural to base specific variants on a class from the hierarchy of stock
sub-interfaces and their utility implementations, and only override the parts that need to be
specialized. The framework includes utility Actors from the absolute-minimal BasicActor,
down to BasicAvatar, which is a complete generic avatar with default implementations of
typical Actions.

Actions

Similarly, local actions are supported by classes and interfaces defined in the MADISON
framework. All actions are represented by application defined classes, but they must, as
mentioned earlier, implement the interface IAction defined by the framework, and will
often inherit basic functionality from utility implementations, which are also part of the
framework.

5.2.4 Client-User I/O

The client java application is responsible for retrieving, interpreting and affecting all user
input. Input can originate directly from external devices (mouse, keyboard, gamepad,
remote control, etc), or indirectly via the MPEG-4 player, treating event sources in the
scene as an input device.

Pluggable ‘driver’ modules in the platform translate input from these various sources to
uniform set of events (forward at rate V, rotate at rate R, button 1, button 2, type-in “A”
etc.) that the actors can relate to in the same way, regardless of what type of device the
actual source is.

In order to obtain the necessary level of control, especially to perform effective
predictions, it was for several reasons (current limitations in EAI, MPEG-4, and the
available implementations) necessary to drive user navigation ‘natively’ from the Madison
java code, rather than exploiting the built-in navigation in the player, which would
otherwise have been natural.

This in turn means that the Madison platform must also handle its own collision detection
between the user avatar and the world geometry. To this end, the platform provides a
collider module used to preemptively limit user movements. It is intentionally kept as
simple as possible, operating on explicitly defined 2D collision boundaries rather than all
geometry. In our experience it works very well within its constraints: as long as the floor
plan within a zone is flat, and avatars are earth-bound. The extra processor load is small,
anyway balanced by disabling the now redundant collision-detection in the player (more
optimized but also vastly more complex) so system performance does not suffer. Collision
boundaries for a scene are quickly and easily designed in the MadEdit tool (see chapter 6).

Recent signals from the Web3D consortium indicate that they are aware of the limitations
that led us to this duplication of functionality, and intend to address them in their
upcoming successor to VRML. The proposed changes, most likely based on Blaxxun’s
input framework extension to VRML, appear to be suitable for enabling a return to using

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 19 of 21

the built-in player navigation with its more advanced 3D collision detection. It is likely that
the extensions will find their way into future MPEG-4 profiles, since the consortium is the
creative force behind all the relevant parts of the existing MPEG-4 standard, and they
cooperate closely with MPEG.

5.3 The MADISON Server Platform

The architecture at the Server is different from that of the client in that it consists of two
main components:

• a complete client platform, as described in the previous section, called Server-side
Client, and

• a module handling the server specific services, developed by Archetypon.

The Server-side Client is a complete simulation client hosting the pilot replicas of all bot
objects, the drone replicas of all the avatars, and some special bot objects providing
common control of the application. From the simulation and platform point of view this
client is treated just as any other client.

6 Tools implementation

Two authoring tools for world authoring have been produced. They are rudimentary, but
already very useful, and draw up the main structure of an extensible system that should
scale well into a more complete production environment, given some extra development.

A third tool for partial generation of avatar and other actor code is the next logical step, but
the unexpected demands of the generic client platform code had to be given priority over
this.

6.1 The World Integrator

The first tool is a batch program for automatically adapting and consolidating content from
different free-standing VRML sources into a monolithic file suitable for compiling directly
to .mp4 format. It is suitable for use in scripts or makefiles typically used for building the
complete application.

Keeping conceptually different portions of the world in separate source files and editing
them separately significantly increases maintainability of the components, and speeds the
development cycle. It also imparts much greater flexibility in the production process,
making it more suitable for exploiting various editing tools (both third-party and our own)
for creating and editing the different components. Having this stitching-together done
automatically as a quick and effortless part of the build process eliminates a slow and
error-prone manual phase in each update of the scene.

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 20 of 21

6.2 MadEdit

The second tool is an interactive graphical world editor, dubbed “MadEdit”, consisting of
an applet working in tandem with a VRML player (much like the client itself). The tool
allows loading the world geometry (typically produced in an external design package such
as 3Dstudio) as a “backdrop”, and then visually adding and editing Madison-specific info,
in-place in the 3D world. The added information can then be exported as generated files
containing the appropriate VRML and java code fragments, ready for use in compiling the
final world and application.

So far MadEdit supports editing collision boundaries, but it is suitable for extending to
cover various other world-related features that have so far been defined “manually”.
Examples are zone definitions and boundaries, teleports between them, java embedding,
and tailored makefiles for combining the generated content with standard templates and
hand-coded files into the final application.

MadEdit is intended to form the basis for a more complete package covering all world-
related authoring and assembly tasks in Madison that are suitable for automation. (Except
actual 3D modelling; this is best left to existing third-party tools, which is an advanced
industry in its own right).

IST-1999-12100 : MADISON Deliverable D5c – Client Platform Implementation and

Behavior Definition Tools

 2001 MADISON Consortium Page 21 of 21

References

[1] ISO/IEC. Coding of Moving Picture and Audio. JTC1/SC29/WG11 N2739 subpart
3, in Recommendation 14496-1 (MPEG-4 version 2 MPEG-J), Seoul, Korea, 1999.

[2] ISO/IEC. The virtual Reality Modeling Language (VRML97) – Part 2: External
authoring interface. Committee Draft International Standard 14772-2:1997

[3] MADISON. MADISON architecture. Deliverable D1, MADISON, April 2000.

[4] MADISON. Behaviour Definition Toolset – Interim Implementation. Deliverable
D5b, MADISON, February 2001.

[5] MADISON. Simulation Server Implementation. Deliverable D6c, MADSION,
September 2001.

