
Project Number:33826

CREDO

Modeling and Analysis of Evolutionary
Structures for Distributed Services

Deliverable D6.2
Initial modelling with service interfaces

Due Date: 14-04-2008
Submission Date: 14-04-2008

Start date of project: 01-09-2006 Duration: 3 years

Lead Participant name here Revision: Draft

Project funded by the European Commission
within the Sixth Framework Programme (2002-2006)

Dissemination Level: PU Public

Project Participants

Role No Name Acronym Country

CO 1 Stichting Centrum voor Wiskunde CWI NL
en Informatica

CR 2 Universitetet i Oslo UIO NO

CR 3 Christian-Albrechts-Universität CAU DE
zu Kiel

CR 4 Dresden University of Technology TUD DE

CR 5 Uppsala Universitet UU SE

United Nations University,
CR 6 International Institute for UNU-IIST JP

Software and Technology

CR 7 Almende B. V. ALMENDE NL

CR 8 Rikshospitalet - Radiumhospitalet HF RRHF NO

CR 9 Norsk Regnesentral NR NO

CO = Coordinator CR = Contractor
NL = The Netherlands NO = Norway
DE = Germany SE = Sweden
JP = Japan

2

Document History

Principal Contributors:

Names Affiliation

Alfons Salden Almende

Andries Stam Almende

Tom Chothia CWI

Wolfgang Leister NR

Bjarte M. Østvold NR

Xuedong Liang RRHF

Marcel Kyas UIO

3

Contents
1 Introduction 5

2 Case study 1: ASK Community Systems 6
2.1 Purpose and Context . 6
2.2 High-level Technical Architecture 7
2.3 Core Application Components . 8
2.4 Relevant Communication Sequences 11
2.5 Modeling Components as Network Automata 16
2.6 Network Automata for ASK CS 18
2.7 Requirements Assessment . 26

3 Case study 2: Biomedical sensor networks 28
3.1 Syntactic Interfaces . 29
3.2 Network Automata . 31
3.3 Timed Modelling Design . 33

4 Conclusion 36

4

1 Introduction
In this deliverable, the case study systems ASK CS and BSN are modeled in
terms of service interfaces. The deliverable forms input to further model those
systems as object-oriented Creol components. Therewith, the case partners
obtain high-level and refined reference models of both systems, which can ul-
timately be used to validate whether the CREDO simulation, verification and
performance analysis tools meet the user driven requirements identified (See
deliverable D6.1 and the Methodology Document). Furthermore, these models
help case partners to up to some degree reliably adapt and extend their systems.

In Section 2, the high-level architecture of ASK CS is explained and ini-
tial models for part of the system are presented in terms of network automata
(see Deliverable D1.2). The initial models will specifically be used in the final
modeling (D6.3) to analyze the exploitation of meta-information in the ASK
system.

Section 3 presents a generic architecture for biomedical sensor nodes. This
is followed by a model of biomedical sensor networks (BSNs), based on the ar-
chitecture. The model uses Creol interfaces and timed automata. It is demon-
strated that a model in terms of Reo is inapplicable for the BSN domain and
interfaces of network automata become too large to handle efficiently. The BSN
requirements concerning, e.g., real-time operation or resource availability, are
represented as interface properties. A transceiver model and a wireless channel
model have been developed in Uppaal. We have tested the models in 1-hop and
multi-hop communication networks respectively.

5

2 Case study 1: ASK Community Systems
For a high-level introduction to the ASK CS functionality, we refer to the Credo
Description of Work. In this document, we focus on the high-level technical and
low-level functional aspects of the system.

2.1 Purpose and Context
The initial modeling of ASK CS serves three different purposes. Firstly, we gain
insight into the complexity of creating abstract Credo models of the concrete
software as to tune our expectations with regard to the final modeling. Sec-
ondly, we assess the quality and usefulness of the service interface specification
language as proposed in Deliverable D1.2 “Specifying Service Interfaces”. Fi-
nally, the developers of the Credo tools can use the ASK CS models for testing
and requirement verification.

2.1.1 Initial Modeling Scope

The size and complexity of the ASK CS system as-a-whole makes it necessary
to divide the entire modeling effort into multiple separately addressable parts,
which each serve a clear purpose. Our starting point for this division can be
found in the Methodology Document, where we formulated four individual case
study scenarios. For the initial modeling of ASK CS, we restrict ourselves to
Scenario SC.1: “better exploitation of meta-information within ASK CS”. This
scenario is centered around the communication of so-called happiness informa-
tion, an indicator for the amount of free phone lines in ASK CS at a certain
moment. This information is used inside ASK CS to decide if calls to users
can be performed directly or should be postponed. A management strategy on
the basis of happiness information has a positive influence on the completion
times for so-called availability jobs, which are jobs carried out by ASK CS to
automatically recruit a number of experts for a certain service in a certain time
window.

In this document, we present the high-level architecture of ASK CS and the
initial models for Scenario SC.1 in terms of network automata with attached
timing information. We plan to use these automata with the Credo tools in
the near future to assess the effectiveness of several management strategies, by
combining the resulting automata models into a single product automaton, and
analyzing several timing properties of this product automaton with the prob-
abilistic model checker PRISM. For the initial modeling, however, we restrict
ourselves to the description of ASK CS and the modeling of individual network
automata.

2.1.2 Relation with Requirements

Scenario SC.1 addresses the following three requirement categories (see the
Methodology Document):

6

• Requirement Category 1: The Credo model should support the modeling
of ASK CS structure (component, process, thread (pool), task, request),
ASK CS behavior (states / actions, communication, function calls), loca-
tion (of structure) and time (of behavior);

• Requirement Category 4: It must be possible to verify non-functional
properties of a reconfigurable system based on a Credo model created for
it;

• Requirement Category 5: The Credo tools must be applicable to individual
components as well as compositions of components.

The requirements of Category 1 are all addressed within the scope of the initial
modeling, with the exception of the location concept. We focus on the structural
concepts in Section 2.2, where we give a high-level overview of the ASK CS
system, zoom in onto its core application components and model the structure
parts relevant to Scenario SC.1. With regard to Category 4, the primary non-
functional property addressed in SC.1 will be task handling completion time, as
we will explain in Section 2.6 where we provide a series of network automata for
several parts of ASK CS. However, the requirements of Category 4 can only be
assessed after the completion of the entire SC.1 scenario, i.e. after the analysis
planned for the final modeling. Finally, as we will show in Section 2.6 as well,
Category 5 is addressed by requiring the possibility to create a single network
automaton for an individual ASK CS component as well as for sets of combined
ASK CS components. This requirement is already fully addressed within the
scope of the initial modeling.

2.2 High-level Technical Architecture
The software of the ASK CS system can be technically divided into three parts:
the web front-end, the database and the core application (see Figure 1).
The web front-end is an ingenious web interface via which nearly every aspect
of the ASK CS system is manually configurable. This includes not only the
domain entities of the system, like users, groups, phone numbers, mail addresses,
IVR menus, services and scheduled jobs, etc., but also highly technical aspects,
like the URL of an asterisk hub (i.e., where the phone card is attached to) or
the port numbers of the core application components. Each configuration of
the ASK CS system, which we call a running ASK CS instance, has a single
monolithic database, in which almost all domain data and technical data is
stored, including e.g. sound files (.wav). System administrators can access
and edit a large part of the contents of the database via the web front-end:
they configure the technical aspects of the system (which is often done only
once and never changed afterwards), but also (more importantly) the domain
information (users, groups, IVR menus, etc.). The latter contents are used by
the core application, which consists of a quintuple of components, as visualized
in Figure 1. The components act as daemon processes: after they have been
started, the components run forever and together handle communication with

7

asterisk reception matcher resman scheduler

database

web

front-end

Figure 1: ASK CS System Overview

users by phone, email, or SMS. They make considerable use of the database,
e.g. for identifying users, handling scheduled activities and storing IVR menu
choices, but also for technical issues like retrieving port numbers of their fellow
components.

2.3 Core Application Components
For the initial modeling scenario SC.1, an understanding of the workings of
the core application components is of considerable importance: the exploitation
of meta-information in ASK CS (the happiness information mentioned earlier)
takes place inside these components. A technical overview of the five core ap-
plication components is given in Figure 2. Each component is depicted together
with its tasks (rounded rectangles), its ports (small squares with arrows and
port numbers) and its task triggers (dashed arrows between tasks). We depict
only those entities which are relevant for scenario SC.1).

In general, the application components work as follows. In fact, the com-
ponents are executable daemon processes: once started up, they run forever.
Starting up the ASK CS core application hence is equal to starting up each of
the ASK CS components. The tasks in each component are executed by threads
of the component’s thread pool. Each component has a task queue, which con-
tains the tasks waiting to be executed by a thread in the thread pool. A task is in
fact the combination of a function pointer and a pointer to a function argument.
Threads execute a task by calling the function pointer’s function with the argu-
ment pointer’s argument. There is a clear distinction between finite tasks (tasks

8

Scheduler

Matcher

Reception

Handle

Request

Task

Hostess

23030

asterisk

Happiness

Task

Hostess Betsy_RM

23010 23080

Handle

Request

Task

Hostess

23040

ResMan

Hostess

23050

Happiness

Task

Hostess RunLoop

Poll DB

Task

Schedule

Availability

Task

23060 [dynamic]

Phone

Task

Figure 2: ASK CS Core Application Components

9

which are finished at some moment in time) and infinite tasks (tasks which run
forever). The finite tasks are depicted in Figure 2 with a double rounded rect-
angle. All infinite tasks are started once the components are started up. The
task triggers indicate which tasks are created by existing tasks, the direction of
the arrows pointing at the tasks being created. Tasks can communicate with
each other by either sending outgoing requests via a (local) source port to a
(remote) destination port, or listening to a (local) port for incoming requests.
This type of communication is performed in the ASK CS system via well-known
standardized distributable socket communication. Tasks can also interact with
the (MySQL) database by sending SQL queries to the MySQL server.

asterisk The asterisk component of ASK CS is mainly based on the open
source Asterisk PBX, but tailored for purposes of integration with the four
other components. The asterisk component manages telephone conversations,
receives incoming calls and sets up outgoing calls.

Reception The major role of the Reception component is to determine which
action should be taken by the ASK CS system based upon an incoming event.
The incoming events are received as requests from the asterisk component. They
can be of various types. To give an example, if a request is received containing an
incoming call event from a certain telephone number, the Reception component
can decide to present an IVR menu to the caller.

Matcher The role of the Matcher component for scenario SC.1 is very lim-
ited: in this scenario, it merely forwards requests from the Reception component
to the ResMan component.

ResMan The role of the ResMan component is in general very limited: next
to some database logging, it merely forwards requests from the Reception or the
Matcher component to the asterisk component.

Scheduler The Scheduler component carries out jobs which are entered by
a system administrator in the database. The Scheduler component does not
schedule any jobs: it performs jobs scheduled by someone else.

For Scenario SC.1, the only considered job is the so-called availability job,
in which, at a certain moment in time, a group of users is called by the ASK
CS system. Each user is asked via an IVR menu if he or she is available for a
certain service. For example, suppose a post-office would like to recruit a group
of six mailmen out of a known group of twenty for performing the delivery of
mail during next saturday. In that case, the system administrator of ASK CS
schedules a schedule availability job, stating that the Scheduler component must
try to recruit six mailmen from the group of twenty known mailmen by calling
them and presenting to them an IVR menu in which they are asked if they are
able to deliver mail for next saturday. The called mailmen reply to the call of

10

ASK CS by pressing a DTMF number (e.g. 1 = I am available, 2 = I am not
available).

Because the amount of phone lines is limited, it is not possible in general to
call all users at the same time. Instead, the Scheduler component frequently asks
the asterisk component for happiness information, an indicator for the amount
of free phone lines, based on which it decides if a set of calls can be made or
should be postponed. Currently, it is this type of “low-level scheduling” that the
Scheduler carries out based on the happiness information.

2.4 Relevant Communication Sequences
We now zoom in onto the precise communication which takes place between
the application components. We identify four communication sequences, i.e.
sequences of directly related requests between components. The following com-
munication sequences are relevant for Scenario SC.1:

1. Availability Job Execution, a sequence specifying how availability jobs are
initiated and executed by the Scheduler component;

2. Conversation Handling, a sequence specifying how ASK CS handles con-
versations with users, including DTMF number input and hang-up;

3. Incoming Call Handling, a sequence specifying how ASK CS handles in-
coming calls from users;

4. Happiness Information Exchange, a sequence specifying how the Scheduler
component requests happiness information from the asterisk component.

2.4.1 Availability Job Execution

The first communication sequence is depicted in Figure 3 and starts in the
Scheduler component. This component has a local job queue, which contains all
known jobs scheduled at a certain time. The job queue should not be confused
with the task queue, in which the tasks for the thread pool are placed. At start-
up, an infinite RunLoop task is started, which continuously checks the job queue.
As soon as a certain job in the queue is scheduled on or before the current time,
it removes that job and puts it as a task in the task queue. Hence, at that
moment the job is taken up by a thread and executed.

The job queue of the Scheduler component initially contains a Poll DB job,
which polls the database to see if the local job queue is dirty, i.e. not up-to-date
with the contents of the database. If this is the case, the local job queue is
updated with the jobs from the database. The Poll DB job always ends with
scheduling a new Poll DB job in the local job queue one minute after it finishes.
This way, the Scheduler component checks the dirtiness of its local job queue
each minute.

The ASK CS database can contain scheduled jobs of many types. One of
them is the availability job, the recruitment job introduced earlier. Slightly sim-
plified, this job has the following goal: “recruit m out of n people by presenting

11

asterisk

Hostess

Phone

Task

23010 23080

Reception

Handle

Request

Task

Hostess

23030

Matcher

Handle

Request

Task

Hostess

23040

ResMan

Hostess

23050

Scheduler

RunLoop

Poll DB

Task

Schedule

Availability

Task

23060 [dynamic]

Betsy_RM

1

2

3

4

5

Figure 3: Availability Job Execution communication sequence

them IVR menu i”, where m <= n. Again slightly simplified, it deals with this
job as follows. Firstly, it checks the number of users already recruited for the
service. Suppose this number is r. Hence, the job is to recruit m− r people out
of n − r. If (m − r) > 0, m − r people are selected from the n − r remaining
people. After that, we are about to encounter the first request in the communi-
cation sequence, from the Scheduler component to the asterisk component. For
each of the m − r people, an individual outgoing call should be made. This is
done as follows: for each person p to be called, if the locally known happiness
information indicates that all phone lines are busy then exit for, else send a
request to call person p with IVR menu i to the asterisk component end for.
Hence, depending on the happiness information, a number of requests is sent
to the asterisk component, at least 0, at max m − r. We explain the details
of the happiness information in Section 2.4.4, where we discuss the Happiness
Information Exchange communication sequence. After the schedule availability
job has sent the requests, it is finished.

We can now move on to the asterisk component. Requests sent to this
component are received either in the infinite Hostess task, or in the infinite
Betsy_RM task (where RM stands for Resource Manager), depending on the
port to which the request is sent. In this sequence, it is the Betsy_RM task

12

which receives the request and translates it into a request for the Reception
component, stating: “Scheduler asks for a call to user p with IVR menu i”. The
Reception component, on its turn, receives the request in its infinite Hostess
task and creates a new Handle Request task which handles the request. The
request now receives an ID (in order of retrieval) and a Sub-ID (0) and the
request to play IVR menu i is translated into a request to play a sound file
w. Then, it is forwarded to the Matcher component. Similar to the Reception
component, the Matcher component receives the request in its infinite Hostess
task and creates a new Handle Request task which takes care of the request.
In this case, it adds the phone number p.t of user p to the request and then
forwards it to the ResMan component, in which the Hostess task adds 1 to the
Sub-ID of the request, stores the request status in the database, and forwards
it to the asterisk component.

Finally, we are back at the asterisk component. The request is now received
in the Hostess task. The contents of the request are now as follows: “Perform
a call to phone number p.t and play sound file w when the call is answered.”.
The asterisk component takes care of this in a fresh new Phone task and the
communication sequence finishes.

2.4.2 Conversation Handling

A conversation between ASK CS and a user can be roughly characterized as
follows:

1. call setup by either the system or the user;

2. a sequence of sound files played by the system and DTMF number inputs
from the user;

3. hang-up by either the system or the user.

We have already seen the first step for an outgoing call to a user in the
previous section. In fact, this sequence also includes the playing of the first
sound file by the system once the user takes up the phone. The second step, the
actual conversation, is handled via the Conversation Handling communication
sequence, as shown in Figure 4. Based on input from the user, that is, either a
DTMF number pressed or a hang-up, the system has to determine which action
to take, for example: play another sound file, store some value in the database,
hang-up, connect the user to another user, etc.

The communication sequence starts at the asterisk component. The asterisk
subsystem receives a user input in an existing Phone task. In this task, the
input is converted into a request. Note that the asterisk component remembers
the ID and Sub-ID of the initial call-out request received in the Availability
Job Execution sequence. The new request hence gets the same ID and Sub-ID,
whereafter it is sent to the Reception component, which determines in a new
Handle Request task which action to carry out next. If the user input is a
DTMF number, the Reception could decide to store a value in the database.

13

asterisk

Hostess

Phone

Task

23010 23080

Reception

Handle

Request

Task

Hostess

23030

ResMan

23050

Hostess

1 2

3

Figure 4: Conversation Handling communication sequence

For example, if a user p gets the question “Are you available for service s in time
window t? Press 1 for available, 2 for not available” and this user presses number
1 on her phone, the Reception component updates the database with the fact
that user p is available for service s in time window t. The Reception component
could decide to perform more than one action, for example, it could also forward
a request to play a sound file with the text “Thank you!” and hang-up after the
file has been played. The IVR menu used for the call determines which actions
to carry out given a certain input. Hence, the system administrator is able to
configure the precise sequence of actions to take.

In case the user input leads to further conversation or hang-up, the commu-
nication sequence hence continues with a request from the Reception component
to the ResMan component and eventually a request to the asterisk component.
This sequence works in the same way as the final part of the Availability Job
Execution sequence.

2.4.3 Incoming Call Handling

The third relevant communication sequence is depicted in Figure 5, via which
an incoming call from a user is handled. The difference with the former com-
munication sequence is twofold. Firstly, the sequence starts with the asterisk
subsystem answering the incoming call and creating a new Phone task, which
converts the incoming call to a request for the Reception component. Secondly,
the Handle Request task in the Reception component now uses the database to
determine which IVR menu to use, based on the phone number of the incoming
call. After that, the sequence continues in the same way as in the previous two
sequences.

14

asterisk

23010 23080

Phone

Task

Reception

Handle

Request

Task

23030

ResMan

23050

HostessHostessHostess

1
2

3

Figure 5: Incoming Call Handling communication sequence

2.4.4 Happiness Information Exchange

In the Availability Job Execution communication sequence, the Scheduler com-
ponent uses happiness information to determine whether or not to continue
sending requests to the asterisk component. As we explained earlier, this hap-
piness information is an indication for the amount of free phone lines out of the
total amount of phone lines. Slightly simplified, it is computed as follows: given
a total amount of phone lines l and an amount of b busy phone lines, then the
happiness h = 1 − ((2/l) ∗ b). Hence, the happiness ranges from −1 (all lines
busy) to 1 (all lines free).

asterisk

Happiness

Task

Hostess

23010 23080

Scheduler

Hostess RunLoop

23060 [dynamic]

Happiness

value

Happiness

Task

1

2

Figure 6: Happiness Information Exchange communication sequence

The amount of free phone lines is known inside the asterisk component. The
Scheduler component updates its happiness information by regularly polling
the asterisk component, via the communication sequence depicted in Figure 6.
Hence, the sequence starts at the Scheduler component. Next to the Poll DB
job explained in the Availability Job Execution sequence, the job queue ini-

15

tially contains another job: the Gauge Happiness job. This job sends a “gauge
happiness” request to the asterisk component, whereafter it reschedules itself
for 30 seconds after its completion. The Hostess task of the asterisk component
receives the request and creates a new Happiness task, in which the current hap-
piness is computed and sent to the Scheduler component. Once the Scheduler
component receives this value in its Hostess task, it updates the local happiness
information.

2.5 Modeling Components as Network Automata
We have chosen to base our modeling work on automata. These provide a
concrete, intuitively clear, model of computation, and a structural approach to
the analysis of the behavior of components and their composition. There is also
a large amount of theoretical and implementational work on using automata
for representing components in distributed and reactive systems, which may
be of use. The automata model that we will use for the initial modeling of
the ASK system was presented in Deliverable 1.2. We will review some of the
main features of the automata model in this section and we refer the reader to
Deliverable 1.2 for a full account. The formal definition of the automata is as
follows:

Definition 1 (Network Automaton: Syntax). A network automaton P is a
structure P = 〈S, t, A, T 〉 where:

• S is a finite set of states,

• t ∈ S is the initial state,

• A is a finite set of action names, and

• T ⊆ S ×M(Act)× S is the set of transitions.

Each transition is labeled with a multiset of actions m ⊆ M(Act), where
Act = Aτ ∪AI ∪AO, consists of

– Aτ = {a | a ∈ A} the set of internal actions of P ,

– AI = {a? | a ∈ A} the set of input actions of P , and

– AO = {a! | a ∈ A} the set of output actions of P .

Note that Aτ , AI and AO are pairwise disjoint.

We can link two automata together using a product function. This function
returns a single automaton that acts in the same way as the two input automata
run together. In particular it matches the inputs and outputs of the transitions
(see Deliverable 1.2 for a full definition).

We augment the basic network automata, as defined above, with the ability
to pass values from a finite data domain. This means that instead of just in-
putting and outputting on a channel name we can send data values, for instance

16

Figure 7: An automaton model of a component

a!〈5〉 means output the value 5 on the channel a and a?(x) means listen on the
channel a for a value and bind it to the variable x in the rest of the automaton.
In addition, transitions may be labeled with guards to test the values that a
variable might have. We define this extension of the automata model by provid-
ing a mapping back into the original model. This allows us to use value-passing
actions as a convenient short hand for the larger basic automata.

When we model components as automata, we abstract away from most of
the details and only put the key features of what we are trying to model in
the automaton. An example model of a component is given in Figure 7. The
first action that this component performs is to request a file on a socket. It
then receives a file and either plays it or prints it. The real component that
this automata models will be much more complex, it would probably time out
if it did not get the file quickly enough, for instance. How the choice between
playing and printing is made is not specified in the model, this could in fact be
a complex process, involving user input, however we keep the model simple. It
is the modeler’s job to ensure that their abstract model matches their real code;
if it does then we will produce accurate results when modeling a collection of
these automata running together.

Our tool support allows us to model and combine automata. To analyze the
automata we can export them to a range of other tools. We can export the
automata to Maude for model checking and to allow them to interact with com-
ponents written in the Creol language. We are currently working on exporting
the automata to the PRISM model checker, which will allow us to check the
completion times for availability jobs within the Scheduler of the ASK system
and compare certain happiness information-based management strategies.

17

2.6 Network Automata for ASK CS
The goal of the network automata models presented in this section is to de-
termine an optimal strategy for the Scheduler to retrieve and use happiness
information to perform its availability jobs. We plan to report on the actual
application of the Credo tools for finding the optimal strategy in Deliverable
D6.3 “Final Modeling”. In this document, we limit ourselves to the modeling
effort only. We base the models on the following scenario. We consider a small
ASK CS configuration with two phone lines and five users1. The users are di-
vided into two groups. The first group is a group of three passive scheduled
users: these users are to be called by ASK CS in an availability job. The second
group is a group of two active non-scheduled users: these users call the system
for irrelevant purposes, but the point is that they thereby occupy phone lines,
which potentially causes delays in the completion time of the availability job.
The goal is to optimize this completion time without affecting the behavior of
the users, e.g. by tailoring the frequency of happiness information exchange or
the strategy used for postponing outgoing calls.

2.6.1 Design Principles

We have balanced between keeping the size and the amount of automata as
small as possible on one hand, and keeping the model as realistic as possible on
the other hand. This has resulted in the following simplifications in comparison
with the real ASK CS:

• We limit value passing as far as possible;

• Users always pick up the phone when called;

• Users always answer “yes” to an availability call;

• Users have fixed waiting and listening times;

• Hang-up can be done only by users, not by ASK CS;

• We model the Hostess tasks and the TaskHandler tasks as one automaton;

• We do not model the Betsy RM task of the asterisk component;

• The IVR menu is built into the Reception automata;

• The Availability job is built into the Scheduler automata;

• We leave out the Matcher component and the ResMan component.
1the small number of phone lines and users are chosen as a convenient starting point only –

further research in the “Final Modeling” phase is needed in order to determine realistic values.

18

2.6.2 Automata Overview

The result of our modeling effort is a set of 10 network automata, which we will
explain individually in the next sections:

• User Automata: a Passive Scheduled User automaton and an Active
Non-scheduled User automaton, used for modeling the behavior of users.
The idea is to use three instances of the passive and two of the active
automaton, thereby having five users of two different types.

• Application Component Automata which model the behavior of the
ASK CS application components: an Asterisk Task Handler and an Aster-
isk Incoming Handler automaton, a Reception Task Handler automaton,
a Scheduler Task Handler and a Scheduler RunLoop automaton.

• Happiness Information Automata: An Asterisk Resource Meter au-
tomaton and a Scheduler Happiness Value automaton, which model the
happiness information as it is present inside the asterisk component and
the Scheduler component, respectively.

• A Database Automaton, in which the results of the Scheduler’s avail-
ability job are stored.

2.6.3 User Automata

1 4

58

0 3

67

2

UT?(n)Listen [3]UH!<n>

UY!<n>

Listen[8]UA?(n)Wait [4]UC?(n)

Figure 8: Passive Scheduled User Automaton

The two types of user automata are shown in Figures 8 and 9. The Passive
Scheduled User of Figure 8 starts with waiting for an incoming call from ASK
CS. After that, she waits for 4 seconds, takes up the phone and listens to a
message (sound file) for 8 seconds, in which she is asked if she is available for
a certain service in a certain time window. She answers “yes” to the message
by pressing a DTMF number on her phone. After the user has listened to a
“Thank you!” message for 3 seconds, she hangs up. The network automaton
in Figure 8 models this behavior by a set of actions, which all communicate a
value n. This value (1 ≤ n ≤ 3) represents the unique number of the user. The
intuitive meaning of the actions is as follows:

• UC?(n): phone is ringing, ASK CS calls the user

19

• Wait[s]: user waits for s seconds

• UA?(n): user answers phone and listens to a message (availability question)

• Listen[s]: user listens for s seconds

• UY!<n>: user answers “yes” to the message

• UT?(n): user listens to a “Thank you!” message

• UH!<n>: user hangs up the phone

1 2UI!<n> 4Listen [7] 5UH!<n>0 Wait [5] 3UA?(n)

6

Wait

[15]

UB?(n)

Figure 9: Active Nonscheduled User Automaton

A similar sequence occurs in the behavior of the Active Non-scheduled User,
shown in Figure 9. However, this user is active: she calls the ASK CS herself.
We add the possibility that all phone lines of ASK CS are busy and the user
retries a call after a while. This is modeled by the loop in the figure. The
intuitive meanings of the actions are as follows:

• Wait[s]: user waits for s seconds

• UI!<n>: user calls ASK CS

• UB?(n): all phone lines of ASK CS are busy

• UA?(n): user answers phone and listens to a message

• Listen[s]: user listens for s seconds

• UH!<n>: user hangs up the phone

2.6.4 Application Component Automata

We have modeled five application component automata, two for the asterisk
component, one for the Reception component and two for the Scheduler com-
ponent. For the asterisk component, we distinguish between the handling of
requests from the Reception component (outgoing call, “are you available?”
question and “thank you” message) and the handling of incoming information
from the user (incoming call, “yes”-answer and hang-up). The requests from
the Reception are handled by the Asterisk TaskHandler as shown in Figure 10,

20

0 3ATC?(n)1

2

4RVplus!

UC!<n>

ATA?(n)

UA!<n>

ATT?(n)UT!<n>

Figure 10: Asterisk TaskHandler Automaton

while the user information is handled by the Asterisk IncomingHandler depicted
in Figure 11.
The Asterisk TaskHandler has straightforward behavior. Note that for an out-
going call, one of the phone lines is used. This is why the RVplus! message
is communicated with the Asterisk Resource Meter automaton (see Figure 15),
which keeps track of the amount of busy phone lines. If there is no free phone
line, then the Asterisk TaskHandler blocks until one becomes free. The ac-
tions have the following meaning (we repeat previously explained actions for
convenience):

• ATA?(n): request to play a message

• UA!<n>: ASK CS plays a message

• ATC?(n): request to perform an outgoing call

• RVplus!: increase the amount of busy phone lines

• UC!<n>: ASK CS calls the user

• ATT?(n): request to play a “Thank you!” message

• UT!<n>: ASK CS plays a “Thank you!” message

In the Asterisk IncomingHandler, the added complexity is that we allow the
situation that all phone lines are busy and the user tries to call again somewhat
later. Therefore, in the reception of an incoming call, extra communication with
the Asterisk Resource Meter takes place in order to check whether all phone lines
are occupied or not. If the automaton synchronizes on RVplus!, this means that
one of the phone lines was available, otherwise, the automaton synchronizes on
RVmax?, which indicates that all phone lines are busy. The following actions
are used:

• UY?(n): user answers “yes” to the message

• RTY!<n>: “yes” answer is propagated to Reception

21

• UH?(n): user hangs up the phone

• RVminus!: decrease the amount of busy phone lines

• RTH!<n>: hang-up is propagated to Reception

• UI?(n): user calls ASK CS

• RVplus!: increase the amount of busy phone lines

• RTI!<n>: incoming call is propagated to Reception

• RVmax?: all phone lines are busy

• UB!<n>: user hears busy tone

0 4UI?(n)

2

1 5RVplus!

3 6

UH?(n)

RVminus!

RTH!<n>

UY?(n)

RTY!<n>

RVmax?UB!<n>

RTI!<n>

Figure 11: Asterisk IncomingHandler Automaton

The automaton for the Reception component is depicted in Figure 12. It accepts
four different inputs: an incoming call request, a “yes” answer and a hang-
up request, which are received from the asterisk component, and an outgoing
call request, which is received from the Scheduler (and not from the asterisk
component, because we leave out the Betsy RM task). Note that a “yes” answer
results in an output action to the database, DBY!<n>. The consequence of this
is that the amount of users to be recruited for the availability job decreases.
The actions of the Reception TaskHandler are straightforward:

• RTH?(n): user hangs up the phone

• RTI?(n): user calls ASK CS

• ATA!<n>: send request to play a message

• RTY?(n): user answers “yes” to the message

• DBY!<n>: store “yes” result in the database

• ATT!<n>: send request to play a “Thank you!” message

22

• RTC?(n): request to perform an outgoing call

• ATC!<n>: outgoing call request is propagated to asterisk

01

5

3RTC?(n)

RTI?(n)

RTY?(n)

RTH?(n)

ATC!<n>

ATA!<n>

4DBY!<n>

ATT!<n>

2

ATA!<n>

Figure 12: Reception TaskHandler Automaton

For the Scheduler, we modeled two automata. The RunLoop automaton takes
care of running through a one-minute cycle in which the happiness information
is retrieved twice (once per 30 seconds), and the availability job is executed once
(the 50th second of each minute). It is shown in Figure 13. As can be seen, ac-
tions STH! and STS! are used to trigger the tasks in the Scheduler TaskHandler
automaton depicted in Figure 14. This latter automaton implements the some-
what more complicated availability job, as follows: it sends a message DBD!
to the database, after which it receives a list of identification numbers of users,
which is always a (possibly empty) subset of the list {1, 2, 3}. The end of the list
is indicated with the number 0. For each number in the list, the local happiness
information is checked with SHVV! and SHV?(h). Since the current implementa-
tion of the network automata does not allow for negative numbers, we map the
{−1, . . . , 1} range onto a {0, . . . , 2} range. Hence, if the happiness is 0, all phone
lines are occupied. If the happiness indicates that there is a free phone line, a
request for an outgoing call is sent to the Reception via RTC!<n>, otherwise,
the loop is exited and the remaining numbers of the database are consumed
without any consequence. The following list of actions is used in the Scheduler
RunLoop and the Scheduler TaskHandler:

• Count[s]: delay for s seconds

• STH!: update happiness information

• STS!: perform availability job

• AHVV!: propagate happiness information request to asterisk

• DBD!: ask database for list of users to call

23

• DBU?(n): get the identification number of a user

• SHVV!: request current happiness value

• SHV?(h): get current happiness value

• RTC!<n>: request to perform an outgoing call

0 1Count [20] 2STH!

Count [30]

34 STS!5 STH!

Count [10]

Figure 13: Scheduler RunLoop Automaton

2DBD! DBU?(n) 3 if (n!=0) 4

7

0

568

STS? 1

9

DBU?(n)

if (n=0)

SHVV!RTC!<n>

SHV?(h)if (h>0)

if (h=0)

if (n=0)STH?AHVV!

Figure 14: Scheduler TaskHandler Automaton

2.6.5 Happiness Information Automata

In ASK CS, happiness information is exchanged between the asterisk component
and the Scheduler component. In order to precisely model the updating mecha-
nism currently implemented in ASK CS, we have modeled two automata which
represent the happiness value. The Asterisk Resource Meter (see Figure 15)
keeps track of the happiness value within the asterisk component. It is updated
each time a phone line is occupied or released. The Scheduler Happiness Value
(see Figure 16) represents the happiness as known by the Scheduler component.

24

It initially assumes that all lines are free and is updated each time the RunLoop
automaton performs an STH! action. As we explained earlier, since the current
implementation of the network automata does not allow for negative numbers,
we map the {−1, . . . , 1} range onto a {0, . . . , 2} range. The used actions in both
components are:

• RVplus?: increase the amount of busy phone lines

• RVminus?: decrease the amount of busy phone lines

• RVmax!: all phone lines are busy

• AHVV?: receive a happiness information request from the Scheduler

• AHV!<h>: send happiness value h to the Scheduler

• SHVV?: receive a happiness value request from the Scheduler TaskHandler

• SHV!<h>: send happiness value h to the Scheduler TaskHandler

2 40

RVminus?

RVplus? RVplus?

RVminus?

RVmax!

1 3 5

AHV!<2> AHVV? AHV!<1> AHVV? AHV!<0> AHVV?

Figure 15: Asterisk Resource Meter Automaton

2.6.6 Database Automaton

The Database Automaton, depicted in Figure 17, keeps track of the users which
have to be called for the availability job (users 1, 2 and 3). It uses only three
different actions:

• DBY?(n): user n has answered “yes”

• DBD?: Scheduler requests a list of users to be called

• DBU!<n>: user n must be called

25

1

SHV!<2> SHVV?

3

SHV!<h> SHVV?

0

AHV?(h)

2 AHV?(h)

Figure 16: Scheduler Happiness Value Automaton

The list of users to be called is initially {1, 2, 3}. Suppose user 1 answers “yes”,
then the database automaton is able to perform input action DBY?(1). From
that moment on, the list of users to be called is {2, 3}. Note that when the
list is requested by the Scheduler, the end of the list is indicated with action
DBU!<0>. As soon as state 26 of the Database is reached for the first time, this
indicates that the availability job has been completed successfully, since users
1, 2 and 3 all have positively answered to the ASK CS call.
If we compute the product automaton of the automata presented in this section,
we are thereby able to analyze the average completion time for the availability
job by computing how long it takes to reach state 26 of the Database automaton.
Changes to the timings in the Scheduler RunLoop or the functioning of the
Scheduler TaskHandler could lead to a better average completion time. We
plan to report on these expected analysis results in D6.3 “Final Modeling”.

2.7 Requirements Assessment
In Section 2.1.2, we pointed out which requirement categories formulated in the
Methodology Document are addressed by the initial modeling effort as reported
on in this document. Our conclusion is that the expressiveness of Network Au-
tomata is sufficient for modeling the behavior of ASK. Also, the automata can
be arranged such that they map directly onto their real-world structural coun-
terparts. Finally, timings can be attached to the automata in terms of costs
on the transitions between states. Thereby, we conclude that the Network Au-
tomata fulfill the requirements of Category 1, the support of all structural and
behavioral modeling and the support of time. We also conclude that the require-
ments of Category 5 are fulfilled: it is possible to model individual components
as single automata as well as sets of components in combination.

In Section 2.1.2, we also indicated that the requirements of Category 4, the
possibility to verify non-functional properties of a reconfigurable system based
on a Credo model created for it, can not yet be assessed, since efficient creation
of a product automaton and effective analysis of this automaton has not yet

26

00

0

DBD?

1

0

DBU!<1>

2

0

DBU!<2>

3

4

DBU!<3>

05

0

DBD?

6

07

0

DBU!<2>

8

09

0

DBD?

10

011

0

DBU!<3>

12

013

0

DBD?

14

015

0

DBU!<3>

16

017

0

DBD?

18

0

DBU!<1>

19

020

0

DBD?

21

0

DBU!<2>

22

023

0

DBD?

24

0

DBU!<3>

25

26

DBU!<0>

0

DBD?

27

DBU!<0>
DBU!<1>

DBU!<0> DBU!<0>

DBU!<0> DBU!<0> DBU!<0>

DBU!<0>

DBU!<1> DBU!<2>

DBY?(3)
DBY?(2)

DBY?(1)

DBY?(3)

DBY?(2)

DBY?(1)

DBY?(1) DBY?(1)DBY?(2) DBY?(2)DBY?(3) DBY?(3)

Figure 17: Database Automaton

been carried out. We plan to assess the requirements of Category 4 in D6.3
“Final Modeling”.

27

3 Case study 2: Biomedical sensor networks
The generic architecture of a biomedical sensor network is shown in Figure 18,
where each shaded element corresponds to one sensor node. The node n1 reveals
its internal structure, which consists of a radio object r, a controller object c,
and (in our example) two sensor objects s1 and s2.

n1: Node

s2: Sensor

s1: Sensor

c: Controller r: Radio e: Environment

n2: Node

n3: Node

n4: Node

Figure 18: Architecture of a sensor node and its relation to other nodes

The controller object c maintains the main activity of the node. It will
read data from each sensor with specific periods π1 and π2, collect a number of
readings from each sensor in a package, and send it to the radio r. In addition,
it will receive messages broadcasted on the network and react to it. If the
message is routed via the node itself, forward it. If the node is asked to do so
in the packet as long as sufficient power is available, and otherwise ignore it.
Control messages are passed between nodes to approximate the current network
topology and to update routing tables.

The Environment between the sensor nodes models different aspects of (wire-
less) networks. First, it provides channel communication end points by imple-
menting the Channel interface (see below). Then it maintains the intercon-
nections between the nodes in the network: It knows which node is in reach
of another node, and consequently records the network topology. The envi-
ronment object decides, whether a message can be successfully delivered. It
will, depending on the type of the object connecting to a channel end, decide
whether writing to a channel end is broadcast communication or point-to-point
communication. It also controls the mobility of the nodes in that it can decide
to move objects out of and into the range of other objects. Depending on the
desired level of detail, we can move between abstraction levels by replacing the
environment object.

The only means of communication on a wireless channel is by broadcasting
messages. If several Radio objects in reach of each other send at the same time,
their messages are all lost due to collisions. Currently, Radio objects cannot
influence their location in the topology. We plan to provide methods for this in
the future. At first, we consider the case of one-hop communication, where all
objects are in reach of each other.

In Section 3.1 we explain the syntactic interfaces of the components of a
biomedical sensor network. The syntactic interface conveys information of the

28

interface Channel
begin
with Radio
op send (in channel: Int , receiver : Radio, data: Data)
op free (in channel: Int ; out yes: Boolean)
op snoop (in channel: Int; out receiver : Radio, data: Data, strength: Int)

end

Figure 19: Interface of Channel

kinds messages exchanged between the components of the network. In Sec-
tion 3.2 we describe the interface of the environment object in terms of network
automata. Section 3.3 describes a timed model of the radio component. It serves
to explain that a radio component can either send or receive, but it cannot do
both at the same time, and describes the time windows of the send and receive
phase.

3.1 Syntactic Interfaces
The syntactic interfaces express the features provided by the components of a
single sensor node (see node n1 in Figure 18). These interfaces will be imple-
mented by classes to obtain an executable model of a sensor node.

The interface Channel, which is implemented by the Environment and which
is shown in Figure 19, provides all methods required for sending on a channel or
receiving messages from the channel. Note that this and subsequent interfaces
are formulated using the Creol language.

send Send data on channel to the node identified by radio.

free Test whether channel is free.

snoop Read whatever message is available on channel. The result value strength
is set to the received signal strength indication of the message. For con-
venience, this method provides basic package structuring: It extracts the
intended receiver of the message.

The interface of a Radio is shown in Figure 20. In our setting, the Environ-
ment is passive in the sense that it does not deliver messages to sensor nodes,
but instead the Radio component asks the Environment for messages in its reach
by the Channel interface. The radio is a passive process, reacting to calls from
the Controller object. It tries to obtain a channel and to send messages to the
Controller and listens to a channel to pass messages on to the Controller. The
radio will only provide operations to the Controller. These are:

write Write a message to the current channel.

29

interface Radio
begin
with Controller
op write (in receiver : Radio, data: Data)
op read (out receiver: Radio, data: Data, strength: Int)
op setPower (in power: Int)
op setState (in state : Int)
op getChannelStatus (out status: Int)
op getError (out error: Int)
op getChannel (out channel: Int)
op setChannel (in channel: Int)

end

Figure 20: Interface of Radio

read Read a message received by the radio. This method also provides the
signal strength of the received message.

setPower Sets the power used to send messages.

setState Allows the controller to set the state to one of “receiving”, “transmit-
ting”, and “off”.

getChannelStatus Allows the controller to read the status of the channel
(“free” or “busy”).

getError Get a possible error code for the last transaction, where 0 shall rep-
resent “the last operation was successful.”

getChannel Get the current transmission channel frequency of the radio, which
is encoded by a number ranging from 11 to 26.

setChannel Change the transmission channel frequency of the radio, which
encoded by a number ranging from 11 to 26.

The interface of a Controller is shown in Figure 21. The controller only
provides the method “write” to an instance of Sensor, allowing the sensor to
push data to the controller. In all other respects, the controller encapsulates
all activities of the sensor node: reading from passive sensors, aggregating data,
sending it to the radio, instructing the radio to receive messages, and so on.

The interfaces of different sensors are shown in Figure 22. The interface
named “Sensor” is common to all sensors. It is used by controller objects to set
the sampling resolution (most sensors do not allow it), the sampling frequency,
the encoding (most sensors only support one encoding), to switch it on and to
switch it off (for power management).

We define two sub-interfaces: A passive sensor provides a “read” method,
which allows the controller to read data from that sensor. The second sub-
interface exports no additional methods, meaning that the controller cannot

30

interface Controller
begin
with ActiveSensor
op write (in value: Data)

end

Figure 21: Interface of Controller

interface Sensor
begin
with Controller
op setResolution (in res : Data)
op setFrequency (in f: Real)
op setEncoding (in encoding: Data)
op switchOn
op switchOff

end

interface PassiveSensor inherits Sensor
begin
with Controller
op read(out value: Data)

end

interface ActiveSensor inherits Sensor
begin
end

Figure 22: Interfaces of Sensors

read data from it, but allows the sensor to push data to the controller. An
instance of ActiveSensor must implement an activity that pushes the data.

3.2 Network Automata
In this section we describe how a network automata model (as proposed in
Deliverable D1.2) for the Environment class (See Figure 18) is computed.

Let D range over all data values we intend to send via the wireless network.
Let D include the values none and error, where none represents that no data
is available on the network and error represents that there was a transmission
error, caused by either a mid-air collision or noise.

For the model of network automata we ignore the possibility of errors intro-
duced by noise. Noise is a stochastic phenomenon and stochastic phenomena are
not covered in network automata. But we can model errors caused by mid-air

31

n0 {}
d=none

{1?}
d=none

{2?}
d=none

{1?,2?}
d=none

{1!,2!}
d=error

{1!}
d=u

{1!,2?}
d=u

{2!}
d=u

{2!,1?}
d=u

Figure 23: Automaton for two nodes

n0 {}
d=none

{1?}
d=none

{2!,3!}
d=error

{1!,2!,3!}
d=error

{1!}
d=u

{1!,2?}
d=u

{1!,3?}
d=u

{1!,2?,3?}
d=u

{2!}
d=u

{2!,1?}
d=u

{2!,3?}
d=u

{2!,1?,3?}
d=u

{2?}
d=none

{3!}
d=u

{3!,1?}
d=u

{3!,2?}
d=u

{3!,1?,2?}
d=u

{3?}
d=none

{1?,2?}
d=none

{1?,3?}
d=none

{2?,3?}
d=none

{1?,2?,3?}
d=none

{1!,2!}
d=error

{1!,3!}
d=error

Figure 24: Automaton for three nodes

collisions.
Let P be a set of node identities. A topology of a network is a simple directed

graph T = (P,E), where an edge (p, q) ∈ E expresses that a node p can send
a message to the node q and that q can receive that message. Here, we do not
assume that the topology is symmetric: if (p, q) ∈ E, then (q, p) ∈ E need not
hold. Let s ∈ P denote the unique sink node. It has the distinguishing property
that it can send to all nodes in the network, represented by the constraint
{(s, p) | p ∈ P \ {s}} ⊆ E. The converse is not necessarily true.

To each process identifier p ∈ P we associate two channel ends pi, the input
channel end, and po, the output channel end. Let Pi represent the set of all
input channel ends and Po represent the set of all output channel ends. To each
process p ∈ P we assign a data variable dp that represents the value read or
written during the current transaction.

Then the network automaton modelling their interactions has one state T =
(P,E) for each topology, and for each I ⊆ Pi (representing the processes that
listen to the network) and O ⊆ Po (representing the nodes sending on the
network) with I ∩ O = ∅ (because a node cannot send and receive as a same
time) it contains all transitions from T to T with a label that satisfies all the
following label:

1. If O = ∅, then
∧
p∈Pi

dp = none.

2. If o, o′ ∈ O with (o, o′) ∈ E ∨ (o′, o) ∈ E, then
∧
p∈Pi∧(o,p)∈E∨(o′,p)∈E dp =

error.

3. Otherwise
(∧

p∈I\J∧o∈O∧(o,p)∈E dp = do

)
∧
(∧

p∈J dp = error
)
for J ⊆ I.

The nodes in J have their communication disturbed by noise. If no noise
is desired, J = ∅ is assumed.

Figure 23 and 24 show example automata for two and three nodes, where all
are in reach of each other. The channel end marked p? refers to reading from the

32

input channel of process p, whereas p! refers to writing to p’s output channel.
We have elided the constraints describing data propagation and represent them
as d = u, assuming that only the data value u is sent.

Network automata modelling the behaviour of the Environment object are
exponential in the number of nodes.

Theorem 1. Let P be a set of process identifiers. The size of the network au-
tomaton describing the behaviour of the environment of P has Θ(2(|P |−1)(|P |−2))
states.

Proof. Let s ∈ P be the sink node. Each state is represented by a configuration
of edges, which includes the set {(s, p)|p ∈ P \ {s}}. In addition, there are
2(|P |−1)(|P |−2) simple directed graphs with the node set P \{s}. To this, we must
add the subsets of {(p, s)|p ∈ P \{s}}, representing the connections from sensor
nodes to the sink. This results in 2(|P |−1)(|P |−2) + 2|P |−1 ∈ Θ(2(|P |−1)(|P |−2))
states.

For networks of 40 nodes (which is a realistic size for a biomedical sensor net-
work), the network automaton is not representable: we find positive constants
c > 1 such that the automaton has c · 10448 states. This exceeds the common
memory of todays machines by a factor of about 10439.

3.3 Timed Modelling Design
A timed automaton is a finite state automaton extended with real-time clocks.
UPPAAL is a tool box for timed automata, which provides a modelling lan-
guage, a simulator and a model checker. In UPPAAL, timed automata are
further extended with data variables of types such as integer and array etc.,
and networks of timed automata, which are sets of automata communicating
with synchronous channels or shared variables, to ease the modelling tasks. The
modelling language allows to define templates to model components that have
the same control structure, but different parameters, which is a perfect feature
for modelling of sensor nodes.

In this section, we develop a UPPAAL model for a biomedical sensor network
(BSN), as a network of timed automata where each automaton models a sensor
node. As all sensor nodes are implemented with the same chip for wireless
communication, running the same protocol, we use a template to model the node
behaviour with open timing parameters to be fixed in the validation phase. The
network topology is modelled using a matrix declared as an array of integers
in UPPAAL. Elements in the matrix denotes the connectivity between pairs of
nodes.

3.3.1 Modelling the Chipcon CC2420 Transceiver

To study the network performance, we need to model only the transceiver of
a sensor node for wireless communication. We assume that all sensor nodes
use the Chipcon CC2420 transceiver. We model the transceiver as a UPPAAL

33

template based on the radio control state machine of the transceiver, described
in its reference manual.

The modelled template is shown in Figure 25. Most of the states are of
the same name as the radio control states in the original state machine for
the transceiver. The functionality of the transceiver is modelled by the state
transitions according to the reference manual.

TX_PREAMBLE

Backoff
y<=BACK[bo_cnt]
and x<=P_W

TX_CALIBRATE
y<=1

Initial_delay

x<=D

PreRX

PreTX

RX_FRAME
x<=P_W and
y<=P_S[tmp_sig]

RX_SFD_SEARCH
x<=P_W &&
y<=bound

TX_FRAME y<=P_S[buffer[ID]]

PowerDown
x<=P_M

y>=bound
bound:=ack(ID),
y:=0

signal[ID]>0 and
ignore[ID][signal[ID]]==1
go?
ignore[ID][signal[ID]]:=2

y>=1
send(ID)

x>=P_W bo_cnt:=0,y:=0

signal[ID]!=0 and
bo_cnt >= MAX_BO

buffer[ID]:=0,
bo_cnt:=0, y:=0

signal[ID]!=0 and
bo_cnt < MAX_BO
bo_cnt++, y:=0

signal[ID]==0
bo_cnt:=0,y:=0

x>=D
buffer[ID]:=ID,
x:=0, y:=0

topology[tmp][ID]<=0

topology[tmp][ID]>0
tmp_sig:=signal[ID]

x>=P_W
buffer[ID]:=0

start[ID]!
y:=0

signal[ID]>=0
stop[tmp]?

received[tmp_sig]++,
buffer[ID]:=tmp_sig

signal[ID]<0
go?
buffer[ID]:=0

buffer[ID]>0
go?

y:=0

i : int[0,N-1]

buffer[ID]==0 and
signal[ID]>0 and
ignore[ID][signal[ID]]==0

start[i]?
tmp:=i,
y:=0

x>=P_W and y>=P_S[buffer[ID]]
stop[ID]!
y:=0,
reset_signal(ID)

x>=P_M
buffer[ID]:=ID,
ignore[ID][ID]:=0,
x:=0, y:=0

x>=P_W

y>=P_S[buffer[ID]] and x<P_W
stop[ID]!

reset_signal(ID)

Figure 25: A UPPAAL template for wireless sensor nodes based on the Chipcon
CC2420 Transceiver

3.3.2 Modelling the Network and Communication

Now we describe how data packets are transferred between nodes and how errors
are modelled, that may occur during packet transmission. The description is
mainly on the global data variables used by the template automaton.

The network topology – the spatial distribution of the sensor nodes – rep-
resents the direct connections between the nodes. It is the task of the routing
protocol to find a path for a packet from one node to the sink. We model the

34

network topology using a matrix (topology) referred as topology matrix. The
dimensions of this matrix correspond to the number of nodes in the network.
Every element stands for the connectivity from one node (row index) to another
(column index). If the matrix should map the topology, negative values can be
used, for instance, to represent that a pair of nodes is not connected and posi-
tive values can reflect the distance or signal strength between the corresponding
nodes. The matrix can also be used to store routing information. In this case,
some values can stand for a connection, where a node is in range but not on a
routing path.

Using the topology matrix, it is easy to model a fixed routing scheme. The
matrix also allows us to model dynamic reconfigurations of the network topology
due to the movement of a node or the change of routing information at runtime.
To study dynamic reconfigurations, we have modelled controlled flooding which
is a dynamic routing scheme. A node broadcasts a packet to all its neighbours
and remembers every received packet to control this flooding. If a node re-
ceives a packet that has been forwarded earlier, it will be ignored, which avoids
cyclic forwarding. The model contains a matrix (ignore) with which every node
remembers the packets it has received so far. The same matrix is used to re-
member if an acknowledgment is expected or received. In addition to dynamic
routing, the flooding scheme offers the opportunity for an implicit acknowledg-
ment: when a node has transmitted a packet, it will most likely receive it again
after a short while, because the receiver(s) will broadcast it again. When a
defined time after transmission has passed, a node will call a function (ack) to
check if a packet has to be retransmitted.

For simplicity, we abstract away from the contents of packets. Every node
has an unique identifier and if a node emits a packet, it is named by the identifier
of the node. The identifier is also used to determine the length of the packet
(P_S[ID]). To transmit a packet, a node uses a function named send. The
function walks through the topology matrix and updates the incoming signal
of every node in range, where the incoming signals are modelled by an array
named signal. Packet collisions that lead to packet losses are modelled with
help of the signal array. If a node starts a transmission while another node in
range is receiving a signal, the corresponding element in the signal array will be
set to a negative value meaning that the packet is corrupted.

Detailed information on the design of the timed automation model, sim-
ulation and verification environment settings and results can be found in [1]
[2].

35

4 Conclusion
In this document, we reported on the initial modeling of the service interfaces
of the two case study systems ASK CS and BSN. The results presented in this
document will be used as input for further modeling activities and verification
of the Credo language and tools.

In the initial modeling of ASK CS, we limited ourselves to Scenario SC.1
of the Methodology Document: better exploitation of meta-information within
ASK CS. We presented a detailed overview of the structure and behavior of
the current ASK CS relevant for this scenario. Based on this overview, we
created a set of ten different network automata, as proposed in deliverable D1.2
“Specifying Service Interfaces”. We conclude that the requirements attached to
Scenario SC.1, as far as they are addressed in the initial modeling part for this
scenario, are completely fulfilled. Moreover, we feel that the modeling approach
envisioned at the start of the project is feasible for this case study.

In the case study on biomedical sensor networks the initial timed models
were used to analyse packet delivery ratio. In later deliverables we will introduce
models based on full Creol-programs, and we will address the other requirements
from D6-1 (and its addendum) using Creol tools, e.g., simulation and model
checking.

Technical Annexes
D6.2.1 This technical annex surveys the most often used validation tools for

wireless sensor networks.

D6.2.2 This technical annex presents a solution for QoS provisioning in biomed-
ical sensor networks.

D6.2.3 This technical annex describes a model-based validation technique,
which can be used in QoS validation and parameter tuning in biomed-
ical sensor networks.

References
[1] S. Tschirner, X. Liang, and W. Yi. Model based validation of QoS properties

in biomedical sensor networks. Journal of Logic and Algebraic Programming,
submitted for publication (Feb. 2008).

[2] S. Tschirner and W. Yi. Validating QoS properties in biomedical sensor
networks. In Proc. The 19th Nordic Workshop on Programming Theory
(NWPT’07), pages 11–15, Oslo, Norway, Oct. 2007.

36

