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ABSTRACT 

The ENVISAT satellite with its many sensors opens for 
new, interesting approaches of combined multi-sensor, 
multi-temporal monitoring. In this study, we have 
focused on monitoring of snow parameters in the 
snowmelt seasons of 2003 and 2004 (April-June) in 
South Norway. The sensors used in this study are 
ENVISAT MERIS and ASAR and Terra MODIS. The 
study is motivated by operational prospects for snow 
hydrology, meteorology and climate monitoring. 

We have developed a generic multi-sensor/multi-
temporal approach for monitoring of snow cover area 
(SCA), snow surface wetness (SSW) and snowmelt 
onset time (SOT). The objective is to analyse, on a daily 
basis, a time series of optical and SAR data together 
producing sensor-independent products. We have 
defined raster products for each variable and developed a 
prototype production line. The production line 
automatically performs data retrieval, pre-processing, 
parameter retrieval, data aggregation and product 
generation.  

A few algorithms for multi-sensor/time-series processing 
have been developed and are compared. One approach is 
to analyse each image individually and combine them 
into a day product. How each image contributes to the 
day products is controlled by a pixel-by-pixel confidence 
value that is computed for each image analysed. The 
confidence algorithm is able to take into account, e.g., 
information about observation geometry, probability of 
clouds, prior information about snow state and reliability 
of the classification. The time series of day products are 
then combined into a multi-sensor/multi-temporal 
product. The combination of products is done on a pixel-
by-pixel basis and controlled by each individual pixel’s 
confidence and a decay function of time for the product. 
The “multi-product” should then represent the most 
likely status of the monitored variable.  

1  INTRODUCTION 

The seasonal snow cover is practically limited to the 
northern hemisphere. Here, the average snow extent 
during the winter months ranges from 30 to 40 million 
km2. The water equivalent volume of these snow masses 
ranges from 2000 to 3000 km3. In Fennoscandia and the 
Alps, snowfall is a substantial part of the overall 

precipitation. In Finland 27% of the annual average and 
in Norway about 50% of the precipitation in 
mountainous areas is snow.  

Snow cover has a substantial impact on the interaction 
processes between the atmosphere and the surface. Thus, 
the knowledge of snow parameters is important for both 
climatology and weather forecast. The snow cover has 
also an important impact on water hydrology in regions 
with seasonal snow.  

Optical remote sensing sensors are able to map snow 
cover quite accurately, but are limited by clouds. SAR 
sensors penetrate the clouds, but current satellite-borne 
sensors are only able to map wet snow accurately. 

The research institutes NR and NORUT IT are currently 
developing algorithms for snow parameter mapping 
applying a multi-sensor and multi-temporal approach. 
The overall idea is to combine the use of optical and 
SAR sensors and utilise the best features of each sensor 
when possible in order to map snow parameters more 
frequently and with better spatial coverage than would 
otherwise be possible.  

In this paper we describe our first experiments with 
multi-sensor and multi-temporal retrieval of snow cover 
area (SCA), snow surface wetness (SSW) and snowmelt 
onset time (SOT). The results reported here include the 
use of ENVISAT MERIS and ASAR and Terra MODIS. 
Common for all the experiments is that the sensor fusion 
has taken place at the level of geophysical parameters. A 
future topic might be to experiment with fusion at the 
sensor data level. 

2 SNOW COVER AREA ALGORITHMS 

2.1 Parameter retrieval algorithms 

The optical SCA algorithm is based on an empirical 
reflectance-to-snow-cover model originally proposed for 
NOAA AVHRR in [1] and later refined in [2]. The 
algorithm has recently been tailored to MODIS data by 
NR. It retrieves the snow-cover fraction for each pixel.  
The model is calibrated by providing two points of a 
linear function relating observed reflectance (or 
radiance) to fractional snow-cover area. The calibration 
is usually done automatically by means of calibration 
areas. Statistics from the calibration areas is then used to 
compute calibration points for the linear relationship.  



Various approaches have been tested for cloud detection, 
and the best results so far have been obtained using a k 
Nearest Neighbour (kNN) classification approach. The 
classifier has been trained on a set of partially cloudy 
images acquired through a melting season. Images, 
where the calibrations areas are masked out by clouds, 
will be discharged. 

Several papers have demonstrated the potential of SAR 
for wet snow detection using ERS and Radarsat standard 
mode (see, e.g., [3] and [4]). Wet snow was detected by 
utilising the high absorption and therefore low 
backscatter of wet snow pixels and then comparing the 
backscatter with the corresponding pixel of a reference 
scene taken during dry-snow or snow-free conditions. 
Recently, dry snow has also been inferred by using 
digital elevation models (DEM) and the wet snow line to 
postulate dry snow pixels above the wet snow [5]. The 
methodology has been further improved by taking into 
account in-situ air temperature measurements and 
deriving interpolated temperature fields based on 
standard 6ºC per km height-laps rate [6]. A threshold of 
-3dB has been used with ENVISAT ASAR Wide Swath 
imagery to detect wet snow.  

2.2 Baseline multisensor algorithm 

The basic idea behind the algorithm is to apply daily 
optical data and supply with SAR data as frequently as 
practically possible. SAR data have to be limited to the 
melting season due to the wet snow requirement. 
Furthermore, current cost regimes for optical and SAR 
data will in practice limit the use of SAR data. From 
practical experience so far, approximately 1-2 SAR 
image acquisitions per week seem feasible.  

The overall algorithm can be written as follows: 

 MSCAt(x,y) = USCAi(x,y)  (1) 

for i which gives max(confMSCA(USCAi(x,y))    i = t,...,t-n 

where MSCA is the new multi-sensor/time-series SCA 
product, USCA is a "time-unit" product (a single-sensor 
product or a day product), confMSCA  is a confidence 
function for multi-sensor/time-series, t is the current day 
and n is the number of days in the time series. In other 
words, for each pixel (x,y) select the ”best” time unit i 
from a time series of unit products. “Best” means the 
pixel with maximum confidence. Hence, the selection 
process is entirely controlled by the confidence function. 
The confidence function, confMSCA, is a decay function of 
time, i.e., a function giving reduced confidence as the 
age increases of each unit product. The function might 
be linear giving largest confidence to today’s 
observations and no confidence above a given time 
horizon. The two main versions of the multi-sensor/time-
series algorithm developed so far and described in the 
following differ mainly in their way of generating the 
time-unit products. 

2.3 NR version 

The NR version of the algorithm uses day products for 
the time-unit products. A day product is defined as a 
merge of single-image products as follows (pixel 
indexing has been skipped for clarity): 

for (each product SSCAi of this day)         (2) 
 if (confDSCA(SSCAi) > confDSCA(DSCA))  
  then DSCA = SSCAi 
 else if (SSCAi = CLOUD and DSCA = UNCLASS)   
  then DSCA = CLOUD  

Here, SSCA is a single-image product and DSCA is the 
day product (initialized with “UNCLASS”). In other 
words, if there is one or more cloud-free optical or radar 
observations for a given pixel position that day, select 
the single-image product pixel with highest confidence. 
Otherwise, the pixel is set to “CLOUD”. The approach 
assumes that there in general are multiple acquisitions 
each day, either optical or a mixture of optical and SAR. 
It is also assumed that the SCA in practice will not 
change during the day, which means that multiple 
observations during a day represent observations of the 
same snow-cover situation.  

The day-confidence function, confDSCA, is the product of 
the single-image confidence function (for either optical 
or SAR) multiplied by an inter-product confidence 
factor. This factor makes it possible to give one sensor 
different confidence scaling than the other. The image-
confidence function is for optical data typically related to 
the actual spatial resolution of a given pixel (determined 
by the distance from nadir for a line-scanning 
instrument), the likelihood of clouds in a pixel 
(transparent clouds makes mixed pixels) and the 
assumed snow albedo (which might be quite low late in 
the melting season). 

2.4 NORUT version 

NORUT has developed a multi-sensor/time-series 
algorithm which is adapted to near-real-time operation. 
A new SCA product from the SAR- or optical-
processing line will result in an updated multi-sensor 
product. The current SCA product and its associated 
confidence map are used as the basis. The new single-
image SCA product is subsequently used to upgrade the 
current multi-sensor/time-series product. The processing 
line is also able to handle the case when data from 
different sources arrives at the processing line 
asynchronously. 

3 SNOW WETNESS ALGORITHM 

The preliminary results from the work on snow surface 
wetness are currently limited to time-series analysis of 
optical data, not multi-sensor. The next step will be to 
integrate the two approaches. The time-series approach 
applied is presented in the following. 



3.1 Optical approach 

The ideal approach based on optical data would have 
been to apply a retrieval algorithm for liquid water 
contents in the snow, like what has been proposed in [7]. 
However, this would require an imaging spectrometer 
with optimally located spectral channels for measuring a 
liquid-water molecular absorption feature. The approach 
we have used here is to infer wet snow from a 
combination of measurements of snow temperature 
(STS) and snow grain size (SGS) in a time series of 
observations. The temperature observations give a good 
indication of where wet snow potentially may be present, 
but are in themselves not accurate enough to provide 
very strong evidence of wet snow. However, a strong 
indication of a wet snow surface is a rapid increase of the 
effective grain size observed simultaneously with a snow 
surface temperature of approximately 0°C. A simplified 
version of the algorithm used (more temperature classes 
are used in practice)         is expressed below (pixel 
indexing has been skipped for clarity):  

if (SGStoday - SGSrecently > SGSsnowmelt-tresh)     (3) 
  and (STSlow < STStoday < STShigh) then 
 MSSW = WET-SNOW 
else  
if SGStoday < SGSbare-ground-tresh then 
 MSSW = SNOW-FREE 
else 
if STStoday > STShigh then 
 MSSW = SNOW-FREE 
else  
 MSSW = DRY-SNOW 

The algorithm also illustrates how bare ground is 
inferred from temperature observations above 0°C and a 
rapid developing negative gradient for SGS (both due to 
appearance of snow-free ground patches at the sub-pixel 
level). Anyway, we have also applied the SCA product 
to mask out snow-free areas. 

The STS algorithm is based on Key’s algorithm ([8] and 
[9]), which we in a pilot study [10] identified as one of 
the best single-view techniques for retrieval of STS for 
polar atmospheres, and it can be applied with MODIS as 
well as AVHRR and AATSR data. For SGS we used a 
normalised grain size index based on work in [11] and 
followed by experiments in [12]. MODIS channels 2 and 
7 have been used because the index then has been shown 
to be less sensitive to snow impurities. 

Before calculating SSW, we have to decide the values of 
a number of parameters. These are threshold values to 
separate the STS into different classes, a minimum value 
of SGS to indicate snow-free ground (SGSbare-ground-tresh), 
and an assumed mean increase of SGS per day to 
indicate a probable melting (SGSsnowmelt-tresh). All these 
parameters have to be set experimentally, so those we 
have applied in our experiments described below are 
subject for changes. 

3.2 SAR approach 

SAR is very sensitive to snow wetness. By using the 
same technique as the SCA algorithm for wet snow we 
achieve a binary wet snow map. This is a first order 
product, which we initially will use for SAR in our 
multi-sensor approach. Further development will include 
a quantitative wet snow product, which indicates the 
percentage of liquid water in the snow.  For single-
polarisation SAR imagery this can only be achieved by 
using a model-based inversion algorithm. The 
backscattering from snow is a complicated function of 
surface parameters (roughness, correlation length and 
wetness), snow parameters (density, depth, grain size 
and water content) and soil parameters (surface 
roughness and moisture) in addition to sensor parameters 
(frequency, polarisation and incidence angle). If the 
snow is wet, the dominating contribution comes from the 
snow surface, due to absorption.  In [12] algorithms were 
demonstrated for retrieval of snow wetness from multi-
polarisation SAR. For single polarisation SAR (such as 
ENVISAT ASAR Wide Swath) there are too many 
parameters involved in the equation to facilitate a full 
inversion of the problem. Several authors have, however, 
shown that wet snow can be detected (see [3]).   

4 EXPERIMENTAL RESULTS 

4.1 Snow cover area 

4.1.1 NR version 

The NR version of the SCA multi-sensor/time-series 
algorithm was first tested for the time period of 9-31 
May 2004 when the snowmelt was ongoing in South 
Norway.  For each day there was at least one MODIS 
image.  An optical day product was produced for each 
day, except for those days when all scenes had to be 
discharged due to calibration areas masked out by cloud 
cover (11-14, 17 May). The time series also included 5 
ASAR images, from 9, 12, 19, 25 and 31 May 2004.  

The optical products yields the SCA as a fraction for 
each 250 m pixel, while the radar products yields the 
snow cover as a classification into snow/no-snow for 
each 100 m pixel. The snow fraction for each 250 m is 
for the final radar product then derived from the binary 
classification by resampling. Two types radar products 
were available for the experiments, one where only 
observed wet snow were classified as snow, and one 
where also inferred dry snow were included in the snow 
class. 

The time series analysis were tested and evaluated with 
confidence values ranging between 0.0 and 1.0 and with 
a decay factor of 0.1 per day.  This means that a pixel 
with confidence of 0.6 could last for a maximum of 6 
days, depending on its initial value. We experimented 
with different settings of the inter-product confidence for 
SAR and applied various versions of the product: 1) with 
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Fig. 1. Multi-sensor/time-series SCA products produced by the NR algorithm. Fractional snow cover is shown on a 
scale from green (snow free), via tones of green to white (100% snow cover). Clouds and other areas of zero 

confidence are shown in grey. When not specified, MODIS and ASAR have been used as the data sources. From 
upper left: a) Optical SCA day product for 9 May 2004; b) Multi-sensor/time-series SCA day product for 9 May 

2004. The product consists of optical observations as well as SAR observations; c) 10 May; d) 12 May; e) 19 May.  
Most of the mountain areas are mapped from the SAR data. Optical data with cloud mask errors cause false snow 
in the west and south; f) 25 May, with inclusion of optical data only; g) 25 May, also with inclusion of SAR data; 
h) 31 May, single-image product where MERIS has here been used as the data source (without cloud masking). 

dry and wet snow included; 2) with only wet snow 
included; and 3) entirely without SAR. 

In the following, results are presented from the test run 
where the SAR inter-product confidence was set to 75%, 
and only wet snow observations were taken into account 
(see discussion below for these choices). 

The first day in the time series is 9 May and consists of 
an optical day product and as well as a SAR product. 
Being the first day in a time series, the day product 
corresponds to a situation where there have been no 
useful observations for a while. This situation might 
appear if there are several days of full cloud cover and 
with only dry snow present in the SAR products. Figure 
1a shows the optical day product and Figure 1b the 
multi-sensor day product. We see that the mapped area 
was increased by including radar data, and that the two 
results appear to agree quite well.  

When new day products are added to the time-series 
algorithm, the mapped areas will increase, and the 
estimated values updated according the confidence 

functions. In Figure 1c we see the development of the 
time-series product the first few days after its initiation.  
The second day in the time series, 10 May, yielded good 
optical observations, which updated and confirmed the 
existing data and increased the mapped area to almost 
the whole mountain area. The next two days were 
cloudy. Therefore, there was no day product on 11 May 
and only a SAR day product on 12 May, see Figure 1d. 
On 12 May it is clear that the confidence decay function 
has worked on the existing time-series product.  In the 
western of the map we see that the SAR product has 
been applied. Note the difference to the east, where the 
radar product had zero confidence and the existing time-
series product was decayed below the threshold (the grey 
cloud colour). The reason for zero radar confidence here 
may be presence of forests. Also note that some 
locations near the coast in the west has been wrongly 
classified as snow in the radar product. 

The period 13-22 May continued to be dominated by 
clouds, and the daily MSCA had to rely on old products 
and radar observations.  Figure 1e shows the MSCA for 



19 May, and almost all the snow-covered mountain areas 
result from optical data.  Due to occurrence errors in the 
cloud mask for optical data, some clouds in the western 
part are classified as snow covered. The SAR products 
have identified a lot of snow cover, but these areas are 
surrounded by unclassified pixels.  We cannot say from 
the product whether those areas actually are snow 
covered or not. 

The optical SCA product for 23 May updated and 
verified the time-series product in the east and south. An 
important difference, when utilising optical products 
compared to radar products, is the ability to estimate 
fractions of snow cover. The radar SCA gives a more 
binary result, and yields often a patchy appearance, 
while the optical data gives a more smooth appearance. 

The time-series product of 25 May is shown in two 
different versions, one with optical data only (Figure 1f), 
and one where also SAR data have been included 
(Figure 1g).  The SAR data improves the classification in 
the northwest by identifying snow-covered areas as well 
as snow-free areas. Note that in the eastern part of the 
radar product some strange patches of snow within the 
snow-free areas appear. 

In Figure 1h we show the last product in the test.  From 
27 May the sky was mainly cloud free in large parts of 
the area. The last day product of 31 May used here is 
based on MERIS data. Since MERIS does not allow 
detection of clouds over snow-covered surfaces, it is 
hard to use this sensor operationally. However, this 

product indicates that SCA retrieval from MERIS works 
as well as for MODIS. 

4.1.2 NORUT version 

Figure 2 shows an example of multi-sensor/time-series 
SCA product based on the NORUT version of the 
algorithm. In addition to the SCA product an image 
indicating the source is also shown. The multi-
sensor/time-series confidence map is also shown. For 
demonstration near real-time multi-sensor/time-series 
products were produced for the period 20 April-31 June 
2004. Each time a new single-image product was made a 
multi-sensor/time-series product was also produced. The 
decay function was set last one week.  

In Figure 2 product samples from the period 24 April-3 
May are displayed. Areas without SAR coverage is 
clearly more clouded than areas with SAR coverage. 
When studying the details of the products it is also 
evident that pixels with contribution form SAR have a 
higher contrast (typically either 0% or 100% SCA) than 
for optical contributions. 

4.2 Snow surface wetness 

4.2.1 Optical version 

The optical SSW algorithm has been tested on a time 
series of MODIS images from April 2003.  For each day 
in the period STS and SGS have been calculated from 
MODIS L1B data with pixel size 1 km. The inference of 
SSW for a certain date has been done using the STS and 

 

  

Fig. 2. Product samples from the period 24 April-3 May 2004 produced with the NORUT version of the 
algorithm (top). Yellow denotes clouds, and is most prominent in the beginning of the period. Green denotes 

forest mask (non-classified areas). The bottom row shows the source grid for the maps with optical in red, SAR 
in green and the mask in blue. 



SGS for the current day and the SGS from one until a 
few days before.  

The classification is done for each pixel using the 
calculated STS and the size of the variation of the grain 
size index. Four temperature classes have been used with 
the following threshold values: dry/cold snow (< -2°C), 
dry/moist snow (> -2°C and < -0.5°C), moist snow (> 
-0.5°C and < +0.5°C) and wet snow (> +0.5°C and < 
+1.0°C). Each of these classes has subclasses according 
to the variation of the SGS: decreasing SGS, constant 
SGS, increasing SGS (more than an assumed mean value 
per day) and unknown (no value to compare with). In 
addition the classification gives indications of snow-free 
ground present. 

The classification is done for each pixel. A class value 
cannot be calculated if today’s pixel is covered with 
clouds. After calculation STS and SGS values, the 
possibility of snow-free ground is checked.  Then the 
SGS value is compared with the SGS from yesterday. If 
yesterday’s pixel is covered with clouds, the SGS 
difference is unknown. Then the algorithm goes back to 
the day before and successively backwards up to the 
maximum number of days set (we have used a maximum 
of 5 days).  

In Figure 3a the classification result is added on top of 
the SCA maps. 100% SCA is shown in white, and the 
decreasing percentage of snow cover is shown in green 
with increasing darkness. Note that there are large snow 
covered areas that have not been classified. In particular, 
one can observe areas with 100% snow cover which are 
unclassified due to the sensitivity effect of STS and SGS 
to fractional snow-free ground, as mentioned above. 

If we increase the STS upper threshold to +3°C, the 
areas with assigned class values will increase 
substantially. In Figure 3b-d this threshold has been 

used. The figures show the development through the 
period from 16-22 April 2003 in South Norway. Before 
this week there had been a long period of cold weather, 
but during these days the temperature increased and the 
snowmelt started. 

In Figure 3b one can see that in the south and in the 
highest mountain areas the snow is starting to get 
warmer and is not far from 0°C (blue). There are only a 
few small areas with cold dry snow (white). In the north-
eastern part one can see larger white areas, but this may 
be due to erroneous cloud detection. The temperature of 
the clouds is far below zero. In other areas the melting 
has probably started. There are large orange/yellow areas 
and some red.  

Four days later, the melting is going on in the entire 
region (Figure 3c). Errors in the cloud detection can be 
seen in the south. The white area is certainly clouds and 
not dry snow. 

Figure 3d shows that there probably was wet snow 
almost everywhere. Only on the highest glacier areas we 
can see some blue and white pixels. If we compare with 
Figure 3a, we can see the result of using the +3°C 
threshold instead of +1°C as upper temperature limit.  

4.2.2 SAR version 

The SAR SSW algorithm has been run continuously in 
parallel with the SAR SCA algorithm, and has produced 
16 SSW products through the snowmelt season. The 
time series has been studied and shows consistent time 
behaviour. Comparisons with in-situ measurements from 
the 2004 field season are planned. 

Figure 4 shows a comparison between the SAR wet-
snow product from 25 May 2004 and the MODIS wet 
snow product from 26 May 2004. The same features are 
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Fig. 3. SSW products for four days in 2003 produced by the NR version of a time-series algorithm. There are four 
temperature classes:  (1) Dry, cold snow (white), (2) dry/moist (blue/light blue), (3) moist (orange/yellow) and (4) 

wet (red). For classes 2 and 3 blue and orange means constant grain size and light blue and yellow means increasing 
grain size. The figure shows from left to right: a) 30 April; b) 16 April; c) 20 April; and d) 22 April. The STS 

threshold was + 1°C for map a and +3°C for maps b-d. 



recognisable in each image, but there are also large 
differences. The SAR wet snow algorithm detects in 
general more wet snow than the optical algorithm. 

5 DISCUSSION AND CONCLUSIONS 

5.1 Snow cover area 

The first experience with the NR version of the multi-
sensor/time-series algorithm shows that the results 
depend very much on how the initial single-image 
product confidence is set and on the time decay function.  
It appears that closeness to clouds should have been 
given reduced confidence in the optical data in order to 
reduce the risk of classifying clouds as snow.  More 
important, however, is to consider how to fuse the SAR 
and optical products better.  

When optical data are unavailable due to clouds, the use 
of radar data improves the product by covering larger 
areas. Due to the binary character of the radar products, 
some omission of snow (probably due to high-
backscattering objects in some SAR pixels) and the 
limitation to only detect wet snow, we have set the inter-
product confidence value for SAR to a lower value than 
for optical. We examined and evaluated various inter-
product confidence factors for SAR, and we found that 
factors below 0.5 clearly reduced the contribution from 
the SAR products too much. Using a value close too 1.0 
preserved too much of the binary pattern from the ASAR 
products. This means that high confidences for SAR had 
a tendency to override subsequent optical products.  We 

found that a factor of 0.75 was a good compromise 
between preserving results from the optical sensors and 
including results from radar products when needed.  

We examined the effect of including assumptions about 
dry snow in the radar product.  Using a SAR SCA 
product including also inferred dry snow appeared to 
overestimate the snow cover compared to the optical 
product.  Using SAR SCA based on wet snow only 
appeared to slightly underestimate the snow cover 
compared to the optical product. We also tried to reduce 
the confidence of SAR pixels classified as dry snow, but 
this did not improve the result significantly.  

Some experiments were performed with MERIS data 
instead of MODIS. The MERIS-based single-scene SCA 
maps seem to be of similar quality as the MODIS-based 
maps for cloud-free conditions. However, clouds make 
serious problems over snow covered surfaces since 
MERIS does not have the spectral bands needed to 
separate snow and clouds spectrally. AATSR can be 
used for generating a cloud mask, but it would, 
unfortunately, only cover a part of the MERIS image. If 
one limits the use of the MERIS image to the area 
covered by AATSR, less frequent coverage would be a 
consequence.  

The experience with the NORUT version of the SCA 
algorithm confirms that interpretation of SCA from SAR 
imagery is not as straightforward as for optical imagery. 
In the original 100 m SAR product the wet snow 
threshold is binary (wet snow/non-wet snow). Due to the 
logarithmic coding of backscatter in SAR imagery a 
small fraction of bare ground in a SAR pixel may cancel 

 

Fig. 4. Comparison between SAR wet-snow product from 25 May 2004 (left) and the MODIS wet snow product from 
26 May 2004 (middle). The map on the right shows the wets snow retrieved from optical data superimposed onto the 
SAR-based map for comparison. It is clear that the optical algorithm predicts less wet snow than the SAR algorithm.  



out a large fraction of snow. Also, the resampling of 100 
m products to 250 m generates fractional snow coverage 
where bare ground, wet and dry snow and maybe also 
mask pixels are combined into a snow-cover fraction. 
There is a need to harmonise the fusion of SAR and 
optical SCA retrieval better in the future. 

In spite of the abovementioned problems, the results of 
the study showed that SAR-based maps in general were 
fairly consistent with optical-based maps. The SAR-
based maps were very useful for updating the multi-
sensor/time-series products in a period of missing optical 
observations.  The SAR observations were to a large 
degree confirmed by subsequent optical SCA 
observations. However, for some places the SAR wet 
SCA values had a tendency to underestimate the SCA, 
compared to optical data.  When dry snow estimates 
were included in the radar products, the tendency was 
the opposite. 

5.2 Snow surface wetness 

The optical experiments done so far have confirmed that 
the approach of combining STS and SGS, analysed in a 
time series of observations, can be used to infer wet 
snow, including giving an early warning of snowmelt 
start. Air temperature measurements from 
meteorological stations confirm the maps produced in 
general. The main problems observed so far are related 
to clouds. In some maps it is observed that dry and cold 
snow is more frequent close to clouds. One could 
imagine that this is because the clouds have kept the 
sunlight away – hence the snow has not been warmed. 
But it might as well be that parts of the clouds have not 
been detected. The problems are typically associated 
with transparent clouds. 

The calculated SGS index does not give the precise size 
of the snow grains, but is an indication of the grain size. 
The value of the SGS index increases with increasing 
grain size. For a pixel totally covered with snow, the 
SGS index is a good indication of the grain size. Bare 
ground gives a low value for the SGS index. This means 
that for a pixel only partly covered with snow, we could 
measure a low SGS index even for large snow grain 
sizes. A decreasing value of SGS could mean new fallen 
snow or increasing snow-free area. 

For STS there is a similar problem. With a snow 
temperature of 0°C, the snow will start to melt and the 
temperature will stop increasing. For a pixel only partly 
covered with snow, the temperature of the snow-free 
area will influence, resulting in measured STS values 
some degrees above 0°C. This will usually mean that the 
snow is wet, but if the snow-free area is sufficiently 
large, one can measure an average positive temperature 
for the pixel even if the snow is cold and dry. 

Therefore, a good estimate of SSW is valid only for 
pixels completely covered with snow. An accurate SCA 
map should be used to restrict the pixels classified. We 

assume that the SSW estimate is reasonable good even if 
there are small areas of bare ground included.  

The SAR experiments have confirmed that SAR can be 
used to detect the presence of wet snow. The generation 
of quantitative correct products is in development. For 
very accurate estimates, there is a need to invert a 
simplified backscatter models to obtain approximate 
correct results for the liquid water content in the snow 
surface.  

A first comparison between SSW products derived from 
SAR and optical sensors has been carried out. There are 
large differences between the two products. The optical 
based algorithm seems to predict less wet snow than the 
SAR algorithm. It is too early to conclude why this is so, 
but we expect to harmonise the results when the reason 
for the difference is better understood.  
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