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Abstract— In this article we describe a Bayesian model for
integration of multi-scale image data. The approach is based on
the concept of a reference resolution. Data at this and lower
resolutions are connected to the reference resolution through
a fully specified statistical model. Algorithms for parameter
estimation and classification based on the multi-scale model
are proposed, and results and comparisons with single-scale
classification are presented.

I. INTRODUCTION

The rapidly growing number of earth observation satellites
provide a much better coverage in space, time and electro-
magnetic spectrum than in the past. Analysis of compound
data sets therefore steadily gains importance. One of the key
challenges in multi-sensor image fusion is how to combine
images with different resolution to obtain more precise results.

The multi-scale model presented in this document is based
on the concept of a reference resolution and is developed in
a Bayesian framework [1]. We let the reference resolution
correspond to the highest resolution present in the data set.
For each pixel of the input image at the reference resolution
we assume that there is an underlying discrete class. The
observed pixel values are modeled conditionally on the classes,
described at the reference resolution. The properties of the
class label image are described by an a priori model. Markov
random fields (MRFs) and Potts model have been selected
for this purpose. Data at coarser resolutions are modeled as
mixed pixels, i.e., the observations are allowed to include
contributions from several distinct classes. In this way it
is e.g. possible to exploit spectrally richer images at lower
resolution to obtain more accurate classification results at the
reference level, without losing as much details as if we simply
oversampled the low resolution data prior to the analysis.

Multivariate Gaussian distributions are used to describe the
data given the class. The classification is based on the Bayesian
approach through maximization of the a posteriori probability,
using the iterative conditional modes (ICM) algorithm.

The results of experiments on simulated images derived
from SPOT XS and Landsat TM data are presented and
discussed in view of the increased computing time.

A more detailed description with references is given in [2].

II. MODEL

The model consists of two parts, the prior model for the
class image and the likelihood for data, which is a model
conditional on the class image.

A. Model for class image

Define a reference resolution for which:

• Each pixel contain only one class (out of K possible).
• All observations are at this or a coarser resolution.

Assume the class image is described by z = (z1, ..., zn) where
zi defines the class in pixel i at the reference resolution.
Consider Potts model

π(z) =
1

C(θ)
exp{

∑

i

αzi
+ β

∑

i∼i′
I(zi = zi′)} (1)

where θ = (α1, ..., αK , β) and C(θ) is a normalization
constant. I(·) is here the indicator function and i ∼ i′ means
that pixels i and i′ are neighbors. This is an ordinary MRF
model that is widely used for this purpose [3], [4].

B. Model for data

Assume that the observations y = (y1, ...,yp) are available,
where yj is a (possibly multi-channel) image at resolution rj .

We furthermore assume that data at different resolutions are
conditionally independent, i.e.

p(y|z) =
p∏

j=1

p(yj |z).

This is a reasonable assumption for sensors with different
spectral properties.

Fig. 1. Illustration of the multi-scale model in the case of two resolutions.

We also assume that the pixel dimensions at lower reso-
lutions are entire multiples of the pixel dimensions at the
reference resolution (level 1), and that the images are perfectly
overlapping. An extension to partly overlapping pixels and
images is possible, but it would imply a considerably more
complicated notation and implementation.
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Fig. 2. Simulated images for multi-scale classification: (a) 512 × 512 class label image with 5 classes. (b) 3-band 512 × 512 simulated image with class
characteristics derived from SPOT XS data. (c) 6-band 256× 256 simulated image with class characteristics derived from Landsat TM data (3 bands shown).

In order to specify p(yj |z), we introduce the notation:

sj(v) =The set of pixels at the reference resolution which is

contained in pixel v at resolution rj .

mj =The number of pixels in sj(v).
vj(i) =The pixel at resolution rj containing pixel i at the

reference resolution.

Referring to Fig. 1, the data at coarser resolutions are modeled
as mixed pixels, i.e., we introduce hidden variables ỹj

i at the
reference level that sums up to the observed pixel values yj

v

at the coarser resolution level j:

yj
v =

1
mj

∑

i∈sj(v)

ỹj
i (2)

We can consider ỹj
i as the observation that would be obtained

if a sensor existed that had the radiometric properties of
the sensor at level j, but acquired images at the reference
resolution. A similar assumption has been used in [5] and [6].
We further assume

ỹj
i |z ∼ N(µj

zi
,Σj

zi
) (3)

where N(µ,Σ) is the Normal distribution with expectation
vector µ and covariance matrix Σ.

III. CLASSIFICATION

Assuming all parameters involved are known, classification
is based on the posterior distribution

p(z|y;θ) ∝ p(z)
p∏

j=1

p(yj |z). (4)

The maximum a posteriori (MAP) solution is obtained by
maximizing (4) with respect to the complete vector z. Explicit
MAP solutions have been obtained in [7] for problems with
all observations given at the same resolution. Although such

algorithms (based on integer programming and Lagrangian
based methods) should be possible to develop also for the
problem at hand, we here consider a simpler version based on
the ICM algorithm [4].

The ICM algorithm consists of sequential optimization of
the components of z by maximizing p(zi|zi′ , i

′ �= i,y).
Using (1) and (4)

p(zi|zi′ , i
′ �= i,y) ∝

exp{αzi
+ β

∑

i′∼i

I(zi = zi′)}
p∏

j=1

p(yj
vj(i)

|z). (5)

For each ICM iteration and for each pixel i, (5) is calculated
for zi = 1, . . . ,K, and the class with the highest probability
is retained. From (2) and (3), we get

yj
v|z ∼ N(

1
mj

∑

i∈sj(v)

µj
zi

,
1

mj

∑

i∈sj(v)

Σj
zi

) (6)

making (5) relatively easy to compute.

IV. PARAMETER ESTIMATION

The model described in section II contains many parameters
that need to be estimated or specified by other means. Due
to the presence of data at several resolutions, ML estimates
are computationally expensive. We have therefore applied a
simpler approach based on [4]. The details are given in [2].

V. RESULTS

The proposed multi-scale classification scheme has been
tested on a simulated data set, where the class properties
are derived from real SPOT XS and Landsat TM images.
We used simulated images because the new method only
can be expected to bring improvements in the presence of
fine structures such as roads and transitions corresponding
to region boundaries, whereas ground truth for real images
generally is collected well inside homogeneous regions.
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Fig. 3. Classification result of (a) the multi-scale classification scheme and (b) the corresponding single-scale classification scheme applied after resampling
of the second image to the reference resolution. Correctly classified pixels are shown in gray levels and misclassified pixels are shown in red. The upper left
corners are magnified to show some representative details of (c) the multi-scale result and (d) the single-scale result.

The class label image that we used is shown in Fig. 2 (a).
It represents an agricultural scene and is derived from a class
image used in a previous study [8], by manually adding roads,
so that the number of classes becomes 5. It is not a realization
of a MRF. The 3-band image shown in Fig. 2 (b) was obtained
by simulating multivariate Gaussian noise according to the
class properties estimated from a real SPOT XS image, and
by attributing the signal vectors to the pixels of the ideal class
image. Likewise, a 6-band image was simulated from the class
properties of a real Landsat TM image. However, it was done
according to the multi-scale model to yield an image that has
2 × 2 times lower resolution than the initial class image, and
mixed pixels at region boundaries. A square of 100 × 100
pixels in the ideal class image was defined as training set, and
the rest of the image constituted the test set.

The result of the proposed multi-scale classification scheme
is shown in Fig. 3 (a). To compare the multi-scale approach
with single-scale analysis of the data set, we resampled the
image with Landsat TM properties to the reference resolution
using nearest neighbor interpolation, and concatenated the
resulting image bands with those of the image with SPOT XS
properties, so that we got a 512×512 image with 9 bands. The
ICM loops for parameter estimation and classification were
carried out, the only difference from the multi-scale algorithm
being that the computations related specifically to the multi-
scale model are let out. The result is shown in Fig. 3 (b).
Magnified extracts of the classification results are presented
in Fig. 3 (c) and (d). Single-scale analysis was also performed
separately on the image with SPOT XS properties and the
resampled image with Landsat TM properties.

The most important performance measures are summarized
in Table I. We see that there are only 9.1 % misclassified pixels
when applying the single-scale ICM scheme to the image
with SPOT XS properties only. The same method applied to
the concatenation of this image and the resampled version

TABLE I

PERFORMANCE SUMMARY

Method Data Accuracy Time
Multi-scale ICM XS + TM 97.8 % 8 m 33 s
Single-scale ICM XS + TM 95.2 % 1 m 42 s
Single-scale ICM XS 90.9 % 45 s
Single-scale ICM TM 78.3 % 54 s

of the image with Landsat TM properties further reduces
the proportion of misclassified pixels by 4.3 %, and another
2.6 % are eliminated with the new multi-scale method, so
that only 2.2 % of misclassified pixels remain. However, the
last improvement is obtained at the cost of 5 times higher
computing time.

As can be seen from the classification results in Fig. 3, the
new multi-scale approach significantly improves the classifi-
cation accuracy near fine structures and regions boundaries.
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