Markov Mesh Simulations with Data Conditioning through Indicator Kriging

Heidi Kjønsberg, Odd Kolbjørnsen Norwegian Computing Center

Markov mesh models

- Grid models
- Unilateral simulation
- Very fast
- Simulation probability:

 $P(x_i \mid \boldsymbol{x}_{j < i}) = P(x_i \mid \boldsymbol{x}_{j \in \Gamma_i})$

(Colin Daly, Geostats 2004)

🔞 នី GEOSTATS VIII International Geostatistics Congress

Conditioning in Markov mesh

If unconditioned:

$$P(x_i \mid \boldsymbol{x}_{j < i}) = P(x_i \mid \boldsymbol{x}_{j \in \Gamma_i})$$

For conditioning:

wanted: $P(x_i | \boldsymbol{x}_{j < i}, \boldsymbol{x}_w)$

Our starting point:

- Unconditioned parametrized model exists
- Need method for conditioning

ថ្មី **GEOSTATS** VIII International Geostatistics Congress

Main idea for data conditioning

$$P(x_{i} \mid \boldsymbol{x}_{j < i}, \boldsymbol{x}_{w}) = \frac{P(x_{i} \mid \boldsymbol{x}_{j < i}, \boldsymbol{x}_{w})}{P(x_{i} \mid \boldsymbol{x}_{j < i})} P(x_{i} \mid \boldsymbol{x}_{j < i})$$

$$P(x_{i} \mid \boldsymbol{x}_{j < i}, \boldsymbol{x}_{w}) \approx \frac{Z(x_{i} \mid \boldsymbol{x}_{j < i}, \boldsymbol{x}_{w})}{Z(x_{i} \mid \boldsymbol{x}_{j < i})} P(x_{i} \mid \boldsymbol{x}_{j \in \Gamma_{i}}) = \Psi(x_{i} \mid \boldsymbol{x}_{j < i}, \boldsymbol{x}_{w})P(x_{i} \mid \boldsymbol{x}_{j \in \Gamma_{i}})$$

Two methods

Approximate

• unilateral

$$P(x_i \mid \boldsymbol{x}_{j < i}, \boldsymbol{x}_w)$$

 $\approx \Psi(x_i \mid \boldsymbol{x}_{j < i}, \boldsymbol{x}_w) P(x_i \mid \boldsymbol{x}_{j \in \Gamma_i})$

Accurate

- iterative McMC
- block update, Metropolis-Hastings

For each iteration step

- let v denote existing grid configuration
- pick a set of grid cells Ω that are allowed to be changed in this step
- scan through these cells, assigning values according to the approximate algorithm; Γ_i , observations, edge cells
- gives proposal configuration μ $q_{\mu} = \prod_{i \in \Omega} \Psi(x_i | \mathbf{x}_{j < i}, \mathbf{x}_w, \mathbf{x}_{edge}) P(x_i | \mathbf{x}_{j \in \Gamma_i})$ $P_{\mu} = \prod_{all i} P(x_i | \mathbf{x}_{j \in \Gamma_i})$
- accept new state with probability

$$\alpha = \min\left(\frac{q_{\nu}P_{\mu}}{q_{\mu}P_{\nu}}, 1\right)$$

For each iteration step

- let *v* denote existing grid configuration
- pick a set of grid cells Ω that are allowed to be changed in this step
- scan through these cells, assigning values according to the approximate algorithm; Γ_i , observations, edge cells
- gives proposal configuration μ $q_{\mu} = \prod_{i \in \Omega} \Psi(x_i | \mathbf{x}_{j < i}, \mathbf{x}_w, \mathbf{x}_{edge}) P(x_i | \mathbf{x}_{j \in \Gamma_i})$ $P_{\mu} = \prod_{all i} P(x_i | \mathbf{x}_{j \in \Gamma_i})$
- accept new state with probability

$$\alpha = \min\left(\frac{q_{\nu}P_{\mu}}{q_{\mu}P_{\nu}}, 1\right)$$

For each iteration step

- let *v* denote existing grid configuration
- pick a set of grid cells Ω that are allowed to be changed in this step
- scan through these cells, assigning values according to the approximate algorithm; Γ_i , observations, edge cells
- gives proposal configuration μ $q_{\mu} = \prod_{i \in \Omega} \Psi(x_i | \mathbf{x}_{j < i}, \mathbf{x}_w, \mathbf{x}_{edge}) P(x_i | \mathbf{x}_{j \in \Gamma_i})$ $P_{\mu} = \prod_{all i} P(x_i | \mathbf{x}_{j \in \Gamma_i})$
- accept new state with probability

$$\alpha = \min\left(\frac{q_{\nu}P_{\mu}}{q_{\mu}P_{\nu}}, 1\right)$$

Each proposal grid configuration respects all observations

For each iteration step

- let *v* denote existing grid configuration
- pick a set of grid cells Ω that are allowed to be changed in this step
- scan through these cells, assigning values according to the approximate algorithm; Γ_i , observations, edge cells
- gives proposal configuration μ $q_{\mu} = \prod_{i \in \Omega} \Psi(x_i | \mathbf{x}_{j < i}, \mathbf{x}_w, \mathbf{x}_{edge}) P(x_i | \mathbf{x}_{j \in \Gamma_i})$ $P_{\mu} = \prod_{all i} P(x_i | \mathbf{x}_{j \in \Gamma_i})$
- accept new state with probability

$$\alpha = \min\left(\frac{q_{\nu}P_{\mu}}{q_{\mu}P_{\nu}}, 1\right)$$

Approximate method, isolated observation

CONTRACTS VIII International Geostatistics Congress Single configurations

conditioned simulation

Approximate method, two neighbouring observations

Cell wise average (2000 simulations)

conditioned simulation

Iterative method used for local update

Assume we have:

- existing grid configuration
- new observation(s)

Want to:

 adjust existing configuration locally, around new observation(s)

Method:

 use iterative method on subset of initial grid

🔞 និ GEOSTATS VIII International Geostatistics Congress

Local update, isolated observation

Cell wise average (3000 iterations)

accept rate: 21%

ថ្មី **GEOSTATS** VIII International Geostatistics Congress

Local update, line of observations

Cell wise average (5000 iterations)

initial grid + observations

random snapshot

accept rate: 24%

ថ្មី **GEOSTATS** VIII International Geostatistics Congress

Conclusions

 Established fast method for conditioning to observations in Markov mesh models

 Iterative method well suited for local update

Acknowledgements

We would like to thank the Research Council of Norway, ENI, and StatoilHydro for financial support.

