The HikerNet
Principle, Applications and Simulation

Wolfgang Leister, Norsk Regnesentral

NUUG Møte
Oslo, 18. august 2005

When telecommunication is out of reach ...

- Telecom infrastructure in remote areas not available
 - The telefonfjell phenomenon ...
- Use of satellite connections is too expensive
- Use of P2P ad-hoc messaging can build an alternative infrastructure
- all participants contribute
 and share task of message delivery
 - Mountain hiking
 - Developing countries
 - Sea, Jungle, ...
 - Cheaper messages
 - Games
Basic Idea for the HikerNet

► People move and meet!
► All participants carry a device
 ▪ Integrated into cell phone or other items
 ▪ Messages are carried with the device
► When participants meet messages are exchanged automatically using radio transmission
► Message replication
► Handy as user interface

Related Technologies

► DakNet
 (MIT MediaLab)
► ZebraNet Wildlife Tracker
 (U Princeton)
► Mobile Ad-hoc Networks (manet)
 (IETF Working Group)
► FleetNet
► Cybiko Wireless Chat
► Email, SMS, MMS, ...
► Peer-to-Peer: Gnutella, Freenet, Eternity Services, ...
Principles for the HikerNet

- Ad-hoc peer-to-peer
- Store and forward of messages
- Use movements of participants
- Non-time critical messages only

HikerNet

- Based on roles: Terminal, H-node, N-node
- User writes message on terminal
- H-node handles messages for one user
- N-nodes transport the messages
HikerNet (2)

► To types of messages: MSG, ACK
► Messages identified by unique ID
► Protocol parameters
 ▪ TTL (times to live)
 ▪ TTR (times to replicate)
 ▪ Expiry date

Extensions to the HikerNet

► Stationary N-nodes (message hubs)
► Stationary relays (N-nodes with several manifestations)
► Bridges (stationary relays that connect larger areas)
► Gateways (to other services, e.g., Internet email)
► Broadcasting (radio) of messages with carousel
► Publicly available terminals
► Attach N-nodes to moving objects / animals
Service examples

► messaging (text, images)
► Voice, message service
► Automated messages (traffic, public transportation, …)
► News messages
► Collective collecting of data (traffic info, movies)
► Tracking (GPS/timestamps messages)
► Anonymous chat
► Games and communities (collecting music?)

The Prototype Implementation

► HikerNet implementation written in C for Linux
► hnagent (uses pipes for input / output)
► can use “adapter” for protocols
► can use pendrive for transporting messages
Security in the HikerNet

- Security =
 - Confidentiality + Integrity + Availability

- Important for the HikerNet:
 - Tracability / Authenticity
 - Anti-Spam
 - Privacy (HikerNet can unwantedly leak information)

- Encrypted messages
- National / international legislation

Message Format

- Messages are encrypted with message key
- Only receiver address and necessary information in visible header
PKI for HikerNet

► Each H-node has private/public key pair
 ▪ Encryption / authentication

► Central server keeps data base of public keys
 ▪ Request public keys from server
 ▪ Mechanisms for changes of public keys

Can HikerNet work?

► Simulation of the HikerNet
 ▪ before deployment

► Parameters
 ▪ system parameters (TTL, TTR, Expiry date)
 ▪ #users / #nodes
 ▪ Which hardware (memory, processor, ...)?
 ▪ Delivery time
 ▪ How many messages do arrive?
Simulation Design (1)

- Nodes communicate once a day, at the cabins
- All nodes move to a neighboring cabin once a day
- Choice of next cabin:
 - Random neighboring cabin
 - Weighted neighboring cabin (dependent on #beds)
- Stationary nodes
Simulation Design (2)

- There are simulators for movements of hikers in mountain areas!
 - AlpSim (Gloor, Mauron, Nagel, 2003)
 - RBSim (Gimblett, Richards, Itami, 2001)
- Used for applications in tourism
- Take interest in area into account

Architecture of the simulator

- Simulation designed by Erlend Garberg @ Ifi
- Two components
 - Hiker-movement component
 - Simulation of hiker movements, meetings
 - Communication simulation (CS)
 - Simulates communication between nodes
 - Message generation
 - Calls existing HikerNet prototype
- HikerNet implementation written in C for Linux
- Simulation written in python
Measurements

- Delivery time
- Percentage of arrived messages
- Memory usage
- Number of messages in network
- Do stationary nodes have an influence?

Results – Delivery time

- Delivery time is reduced when number of nodes increases.
- Delivery time is reduced when TTL is larger (significantly for TTL < 10)
- Average delivery time graph stabilizes towards 4 days, and for TTL=9 and 250 nodes.
Results – Jumps

► While delivery time is reduced when number of nodes or TTL increases,
► The mean number of jumps increases at the same time.
► Reason: TTL limits number of jumps; however: pathes with additional jumps are faster in time.

Results – Arrival rate

► Arrival rate of messages rises when number of nodes increases
► Arrival rate of messages rises when TTL (up to TTL<10)
► After one week over 80% of the messages have arrived.
Results – Number of messages in network / Memory usage

► The number of messages in the network rises when number of nodes increases.
► The number of messages in the network rises for larger TTL-values.
► Memory usage and number of messages are proportional.

Results – Stationary nodes

► Stationary nodes reduce the number of nodes necessary for the same performance.
► For small numbers of nodes stationary nodes give better performance.
Conclusions

► For sufficient number of users (>100) the average delivery time is close to optimal delivery time.
 ▪ It takes >10 days until all messages have arrived.
 ▪ The users must accept that messages do not arrive.
 ▪ The users must accept that delivery time varies.
► Performance is dependent of topology.
► Hardware requirements are modest.
► TTL=9

Future work and considerations

► Implement security-infrastructure
► Implement HikerNet in Java for mobile phones
► Adjustments of the HikerNet to other applications and scenarios
► Games / Communities
 ▪ Distribution of music, like collector cards
 ▪ Communication hotspots attract other business
 ▪ Is communication speed high enough for today's user in mass market?