The HikerNet
can we show that it works?

Wolfgang Leister, Norsk Regnesentral

When telecommunication is out of reach ...

► No telecom infrastructure in remote areas ...
► Use of satellite connections is too expensive
► Build alternative messaging infrastructure
 ▪ Based on P2P ad-hoc messaging
► all participants contribute
 and share task of message delivery
 ▪ Mountain hiking
 ▪ Developing countries
 ▪ Sea, Jungle, ...
 ▪ Cheaper messages
 ▪ Games
Basic Idea for the HikerNet

► People move and meet!
► All participants carry a device
 ▪ e.g., cell phone or other items
 ▪ Messages are carried with the device
► When participants meet:
 ▪ Exchange messages automatically using radio transmission
► Use message replication
► Mobile phone as user interface

Related Technologies

► DakNet (MIT MediaLab)
► ZebraNet Wildlife Tracker (U Princeton)
► Mobile Ad-hoc Networks (manet) (IETF Working Group)
► FleetNet
► Biomedical Sensor Networks
► Cybiko Wireless Chat
► Email, SMS, MMS, ...
► Peer-to-Peer: Gnutella, Freenet, Eternity Services, ...
HikerNet principles (1)

- Store and forward of messages
- Use movements of participants
- Based on roles: Terminal, H-node, N-node
- H-node handles messages for one user
- N-nodes transport the messages

HikerNet principles (2)

- Two types of messages: MSG, ACK
- Messages identified by unique ID
- Protocol parameters
 - TTL (times to live)
 - TTR (times to replicate)
 - Expiry date
Extensions to the HikerNet

► Stationary N-nodes (message hubs)
► Stationary relays (N-nodes with several manifestations)
► Bridges (stationary relays that connect larger areas)
► Gateways (to other services, e.g., Internet email)
► Broadcasting (radio) of messages with carousel
► Publicly available terminals
► Attach N-nodes to moving objects / animals

The Prototype Implementation

► HikerNet implementation written in C for Linux
► hnagent (uses pipes for input / output)
► can use "adapter" for underlying protocols
 • e.g., bluetooth, udp, tcp, ...
► can use pendrive for transporting messages
Can HikerNet work?

► Simulation of the HikerNet

► Parameters
 ▪ system parameters (TTL, TTR, Expiry date)
 ▪ #users / #nodes
 ▪ Which hardware (memory, processor, ...)?
 ▪ Delivery time
 ▪ How many messages do arrive?

Topology of the simulated network
Simulation Design (1)

► Nodes communicate once a day, at the cabins
► All nodes move to a neighbouring cabin once a day
► Choice of next cabin:
 ▪ Random neighbouring cabin
 ▪ Weighted neighbouring cabin (dependent on #beds)
► Stationary nodes

Simulation Design (2)

► Simulators for movements of hikers in mountain areas:
 ▪ AlpSim (Gloor, Mauron, Nagel, 2003)
 ▪ RBSim (Gimblett, Richards, Itami, 2001)
► Used for applications in tourism
► These take interest in area into account
Architecture of the simulator

- Simulation designed by Erlend Garberg @
- Two components
 - Hiker-movement component
 - Simulation of hiker movements, meetings
 - Communication simulation (CS)
 - Simulates communication between nodes
 - Message generation
 - Script with calls to HikerNet prototype
- HikerNet implementation written in C for Linux
- Simulation written in python

Results – Delivery time

- Delivery time is reduced when number of nodes increases.
- Delivery time is reduced when TTL is larger (significantly for TTL < 10)
- Average delivery time graph stabilizes towards 4 days, and for TTL=9 and 250 nodes.
Results – Jumps

- While delivery time is reduced when number of nodes or TTL increases,
- The mean number of jumps increases at the same time.
- Reason: TTL limits number of jumps; however, paths with additional jumps are faster in time.

Results – Arrival rate

- Arrival rate of messages rises when number of nodes increases
- Arrival rate of messages rises when TTL (up to TTL<10)
- After one week over 80% of the messages have arrived.
Results – Number of messages in network / Memory usage

► The number of messages in the network rises when number of nodes increases.
► The number of messages in the network rises for larger TTL-values.
► Memory usage and number of messages are proportional.

Results – Stationary nodes

► Stationary nodes reduce the number of nodes necessary for the same performance.
► For small numbers of nodes stationary nodes give better performance.
Conclusions from simulation

► For sufficient number of users (>100) the average delivery time is close to optimal delivery time.
 ▪ It takes >10 days until all messages have arrived.
 ▪ The users must accept that messages do not arrive.
 ▪ The users must accept that delivery time varies.
► Performance is dependent of topology.
► Hardware requirements are modest.
► TTL=9

Java / Bluetooth Implementation

► Implementation by Markus Voss @
► Implementation on mobile phones
 ▪ J2ME / JABWT
 ▪ Only one application at a time
► Bluetooth stack
 ▪ RFCOMM service of Bluetooth
► Node Rendez-vous / SPAN
 ▪ to save battery
Bluetooth

- Wireless communication technology
- Protocol stack
 - Java: JABWT
 - Linux: bluez
- Frequency hopping
- ISM frequency band:
 - 2.4 GHz
- Reaches ca. 10 m

Protocol stack
- HikerNet uses RFCOMM

Bluetooth-Modes

- Device detection
 - Inquiry – Inquiry scan
 - >10.24 sec
- Master-Slave
 - Page – Page scan

Connected state:
- active, hold, sniff, park
- Energy consumption:
HikerNet – Bluetooth Operation

- Uses Node Rendez-vous
 - Modified SPAN
 - Wakeup when needed to save battery

- Three modes

Search mode
 - Detect other devices
 - Negotiate Coordinator/Slave

Coordinator mode
 - Detectable
 - Communication with slaves

Slave mode
 - Not detectable
 - Communication with coordinator only

Search Mode

- Usefulness-factor
 - Decides whether coordinator or slave
 - Depends on memory, battery, #simultaneous connections, history, ...

Search Mode

Inquiry or Inq scan

Partner list

No partner

Node has high usefulness in negotiation

Coordinator Mode

Node has low usefulness in negotiation

Slave Mode
Slave Mode

- Slave
 - In energy saving mode most of the time
 - Java cannot switch off Bluetooth entirely
 - Communicates with one coordinator only

Coordinator Mode

- Add slave
- Inquiry scan
 - No contact: counter++
- Scheduled slave contact
 - Too many slave contacts
- Remove slave
 - Too many failures
- Not willing
- No slave left
- Search Mode

www.nr.no
Implementation

► Implementation on simulator works
► Both test phones had limitations / bugs
 ▪ Stack overflow / Phone crash when many bluetooth connections
► Measurements could not be performed 😞
► Theoretical evaluations suggest energy saving

Current work and considerations

► Implementing message encryption and security-infrastructure based on
 ▪ Message keys
 ▪ private/public key pairs
► Can CREOL give answers to
 ▪ Can HikerNet work?
 ▪ Can we say more about delivery rates, delivery time, #hops, ... ?
 ▪ What about energy saving?
 ▪ Is the SPAN-variant always working?