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We present a statistical framework for model calibration
and uncertainty estimation for complex deterministic models.
A Bayesian approach is used to combine data from
observations, the deterministic model, and prior parameter
distributions to obtain forecast distributions. A case
study is presented in which the statistical framework is
applied using the hydrogeochemical model (MAGIC) for an
assessment of recovery from acidification of soils and
surface waters at a long-term study site in Norway under
different future acid deposition conditions. The water
quality parameters are coupled with a simple dose-
response model for trout population health. Uncertainties
in model output parameters are estimated and forecast results
are presented as probability distributions for future
water chemistry and as probability distributions of future
healthy trout populations. The forecast results are examined
for three different scenarios of future acid deposition
corresponding to three different emissions control strategies
for Europe. Despite the explicit consideration of uncertainties
propagated into the future forecasts, there are clear
differences among the scenarios. The case study illustrates
how inclusion of uncertainties in model predictions can
strengthen the inferences drawn from model results in support
of decision making and assessments.

1. Introduction
Deterministic models are often used to simulate hydrological,
hydrochemical, or other complex environmental systems,
and to make predictions about system response under
different input regimes. Such deterministic models produce
unique output parameters as a function of a unique group
of input parameters. Calibration of input parameters through
fitting the corresponding output parameters to observed data
is a fundamental step in developing dynamic, process-
oriented models for use in prediction of future system
response. Systematic calibration procedures (instead of ad
hoc practices) are necessary to improve the relevance and
reliability of model applications. Although such systematic

procedures are becoming more frequent in the literature
they are still not regular practice in much of the applied
environmental modeling community.

In addition, it is common to present model predictions
or forecasts without quantitative estimates of the associated
uncertainties, particularly for “real-world” applications in a
policy context. In many cases, a prediction is based on one
set of input parameters assumed to be the “best guess” for
the parameter values. However, in a deterministic model
with multiple input parameters, many different combinations
of input parameters may give similar output parameters,
and hence similar fits to measurements of the output
parameters (1, 2). Taking into account the uncertainties in
input parameters and observations used for calibration, a
large ensemble of plausible combinations of input parameters
can be found for any model application. The ensemble of
output parameters produced can then be presented as
probability distributions instead of fixed values.

Several approaches have been developed for estimating
uncertainty using Bayesian techniques with deterministic
models of water resources. These approaches have been used
primarily with conceptual hydrological catchment models
(2-7). The use of Bayesian techniques with biogeochemical
or hydrogeochemical models is relatively rare, probably due
to the higher dimensionality of the input and output
parameter spaces in water quality models as compared to
water quantity (rainfall and runoff) models. In this paper we
present a Bayesian framework that can be used with complex,
deterministic models to calibrate the models and propagate
uncertainty through the model simulations. The analysis
framework is demonstrated using the deterministic acid
deposition response model MAGIC (8, 9). The water quality
parameters are coupled with a simple dose-response model
for trout population health (10).

The goal of this paper is to describe and demonstrate
how a statistical framework for calibrating and propagating
uncertainty can be used in generating probability distribu-
tions for model forecasts of acidification effects in terms of
water chemistry and fish status.

2. Materials and Methods
Our approach is to combine the deterministic model MAGIC
with a stochastic model for the observed output data, and
to estimate all unknown parameters by Bayesian computa-
tions using Markov Chain Monte Carlo (MCMC) techniques.
This involves specifying prior probability distributions for
the input parameters and the likelihood functions for the
output data. The posterior distributions are calculated by
running the deterministic model repeatedly with parameters
suggested by an MCMC scheme. This approach allows a
formal management of uncertainties in both parameters and
data and allows the impact of the uncertainty on model results
to be explicitly shown.

2.1. The Combined Model Framework. The deterministic
model m (i.e., MAGIC) relates output parameters at time t
to input parameters up to and including t. This model may
be written

where m is an exact vector function, v is a vector of time-
independent input parameters, xt is a vector of time-
dependent input parameters at time t, and mt is a vector of
time-varying output parameters at time t.

Assume that there exist observations yt corresponding to
the output parameters mt, and that these output data are
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unbiased measurements of the underlying, “true” output
parameters. The output data and output parameters can then
be linked through the stochastic model

where the error εt has zero mean and is the difference between
the output parameters mt from the model and the output
data yt. If the error Et is assumed to follow a specified statistical
distribution, a likelihood function for the output data can be
specified.

Assume further that there exist a set of optimal input
parameters that represents the output data yt faithfully, i.e.,
that minimizes εt in some sense, both for a calibration period
with known output data and for hypothetical future obser-
vations. One of our aims is to estimate the unknown, optimal
input parameters with uncertainty, with corresponding
predictions (with uncertainty) of the output parameters mt

given by the model (eq 1). Adding the uncertainty due to εt

gives the uncertainty in predicting future output data yt.
The input parameters typically have concrete physical

meanings, and for many of the input parameters there exist
corresponding observations, here called input data. However,
the unknown, optimal input parameters usually differ from
the observed input data, since the model (eq 1) is only an
approximation to the truth and the input data may have
measurement errors. Anyhow, the input data do contain
information on the optimal input parameters, and together
with subjective expert knowledge, the input data are used to
formulate prior probability distributions for the (optimal)
input parameters.

We put the input parameters and other unknown pa-
rameters into a vector θ, and denote the prior probability
distribution of θ by p(θ). Further, let y denote the output
data from the calibration period, with likelihood L(y;θ)
conditioned on θ. By Bayes’ formula, the conditional
distribution p(θ | y), also called the posterior distribution, is

This posterior distribution contains all information relevant
to the parameter vector θ, given the model m and the data
y. A more thorough discussion of many aspects of Bayesian
calibration of deterministic models is found in ref 11.

2.2. The MAGIC Model. The MAGIC model was developed
to predict long-term effects of acid deposition on soil and
surface water chemistry (8, 9). The model has been extensively
used at a range of different sites and applications (12-14).

MAGIC calculates annual or monthly concentrations of
ions in soil solution and surface water using mathematical
solutions to simultaneous equations describing sulfate
adsorption, cation exchange, dissolution-precipitation-
speciation of aluminum, and dissolution-speciation of
inorganic and organic carbon. The model accounts for the
mass balance of major ions by simulating ionic fluxes from
atmospheric inputs, chemical weathering, net uptake in
biomass, and loss to runoff. A model simulation is initialized
in pre-industrial times (1850 is used in the current applica-
tion) and is run forward in time to a calibration period using
historical changes in the deposition of the major ions to drive
the model.

In the traditional procedure for calibrating the model two
sets of input parameters are adjusted by trial and error,
whereas the remaining input parameters are fixed:

(1) total soil base cation weathering (BCw), which is the
sum of the weathering rate of the four base cations Ca2+,
Mg2+, Na+, and K+;

( 2) total initial soil base cation saturation (BSini), which
is the sum of the relative amounts of the individual

exchangeable base cations Ca2+, Mg2+, Na+, and K+ in the
soil during the year the simulation is initiated.

Calibration is carried out by adjusting values of BCw and
BSini (and the partitioning of each ion) until output parameters
match output data for water chemistry and soil base
saturation in the calibration period. After calibration, the
model is used for predicting the future soil and water
chemistry under different scenarios of changes in atmo-
spheric deposition.

In this paper we disregard the traditional calibration
approach and, instead, implement the Bayesian approach
outlined above which considers all input and output
parameters in the model as being subject to uncertainty.
This approach allows for a larger suite of input parameters
to be considered during calibration. In all, there are 28 time-
independent input parameters (v) and nine time-dependent
input parameters (xt) (Table 1). The output parameters (mt)
from this application of MAGIC consist of 14 time variable
parameters related to soil and water chemistry (Table 2).

A particularly relevant output parameter from the model
is the combined parameter acid neutralizing capacity (ANC)
of the stream water. It is calculated from the equivalent
concentration of seven ions in the surface water (Table 2)

where the brackets indicate concentrations expressed as
µeq/L. ANC is commonly used as indicator for water quality
related to long-term fish population survival in connection
with acidification (10, 15).

2.3. Data. The Birkenes catchment is located in southern
Norway, about 20 km inland from the coast. The catchment
area is 0.41 km2 with elevation of 200-300 m. The vegetation
is mainly 100-year-old Norway spruce with some pine and
birch and an undergrowth of mosses, blueberry, and fern.
Podzolic and brown-earth soils have developed from a
shallow layer of glacial till on granitic bedrock. Peaty deposits
have developed on poorly drained sites in the catchment.
On the slopes, well-drained thin organic layers on gravel or
bedrock are common. The catchment is drained by three
small second-order streams, which converge about 150 m
above the lower catchment border. A station for sampling
precipitation and air is located about 500 m north of the
catchment (16). The catchment is substantially influenced
by seasalt deposition, which has considerable influence on
the stream and soil water chemistry.

Measurements of major anions and cations have been
recorded since 1974 for both bulk deposition (daily) and
runoff chemistry (weekly) (16, 17). In the current application,
the chemical composition of the annual deposition and the
runoff amount are obtained from volume-weighted daily
observations. These input data (zt) correspond to the nine
time-dependent input parameters (xt) in Table 1.

In addition to these time series, physical and chemical
properties of the catchment have been measured, including
soil depth, soil porosity, soil density, and cation exchange
capacity (CEC) (Table 1). Soil property data are based on
samples from four soil profiles, each sampled in five depths,
analyzed in 1992 and 2000 (18, 19).

The relative changes in the long-term historic deposition
data are taken from calculations with a European-scale
atmospheric dispersion and transportation model (the EMEP
model) (20).

2.4. Prior Distributions and Likelihood. Prior distribu-
tions for the input parameters have been constructed based
on corresponding input data and expert knowledge (Table
1). The prior distributions for parameters like soil depth and
porosity are based on measurements and are rather narrow.

yt ) mt + Et (2)

p(θ | y) ∝ L(y;θ) p(θ) (3)

ANC ) [Ca2+] + [Mg2+] + [Na+] + [K+] - [SO4
2-] -

[NO3
-] - [Cl-]
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On the other hand, weathering rates (BCw) and initial base
saturation (BSini) are either difficult or impossible to measure,
and hence their prior distributions are rather wide and non-
informative. Five of the constant input parameters in v are
fixed, and hence 23 constant input parameters remain to be
estimated.

The prior distributions for the time-dependent parameter
vector xt are explicitly based on corresponding time-
dependent input data zt. We expect that xt is close to zt, but
we are not willing to specify the magnitude of the difference.
The prior distribution for xt therefore has a mean equal to
zt and standard deviation proportional to zt, where the
proportionality factors γ1 and γ2 are estimated from data.

The error Et is assumed to be normally distributed, with
mean 0, uncorrelated elements and uncorrelated in time.
These assumptions are discussed further later. We denote
the vector of standard deviations by σ. The first five elements
of σ (σ1, ..., σ5) are fixed at plausible values (subjective guesses
given by experts), since there is only one observation available

for each of these. The remaining elements (σ6, ..., σ14) are
parameters to be estimated from the data.

Let y denote all available output data from year t ) 1
(1974) to year T (2002). Further, let θ denote all parameters
to be estimated. These comprise (a) the time-independent
input parameters v, (b) the time-dependent input parameters
xt up to year T, (c) the parameters γ1 and γ2, and (d) the
unknown’s. The likelihood is then

where the index i denotes the i’th element of a vector. Missing
observations (see the data section) are just ignored in the
likelihood.

Our parameter space is large, but hopefully it is possible
to estimate the parameters with reasonable precision,
because (i) we have informative priors for all input param-

TABLE 1. Input Parameters with Prior Distributions

input parameters unit prior distributiona

constant parameters v
fixed soil parameters

depth m uniform (0.3, 0.5)
porosity % uniform (40,60)
bulk density kg m-3 uniform (696,850)
cation exchange capacity meq kg-1 uniform (95,117)
sulfate adsorption half saturation µeq L-1 uniform (1,500)
sulfate adsorption maximum meq kg-1 uniform (0,50)
aluminum dissolution constant Log10 uniform (6,11)
temperature °C fixed (5)
partial CO2 pressure % atm uniform (0.50,2)
dissolved organic C concentration µmol L-1 uniform (0,250)
nitrification (% of incoming flux) % fixed (100)
ammonium uptake (% of incoming flux) % uniform (0,100)
nitrate uptake (% of incoming flux) % uniform (0,100)

soil base cation weathering (BCw)
Ca2+ weathering meq m-2 yr-1 uniform (0,100)
Mg2+ meq m-2 yr-1 uniform (0,100)
Na+ meq m-2 yr-1 uniform (0,100)
K+ meq m-2 yr-1 uniform (0,100)

initial soil base cation saturation (BSini)b

exchangeable Ca2+ % uniform (0.1,50)
exchangeable Mg2+ % uniform (0.1,50)
exchangeable Na+ % uniform (0.1,50)
exchangeable K+ % uniform (0.1,50)

surface water characteristics
relative area water:catchment % fixed (0.01)
water retention time year fixed (0)
aluminum dissolution constant Log10 uniform (6,11)
temperature °C uniform (3,10)
CO2 partial pressure % of atm uniform (0.05,0.2)
dissolved organic C concentration µmol L-1 uniform (0,100)
nitrification (% of incoming flux) % fixed (100)

time-dependent parameters xt

runoff amountc m yr-1 normal (z1t, γ1 z1t)
deposition concentrationsd

Ca2+ µeq L-1 normal (z2t, γ2 z2t)
Mg2+ µeq L-1 normal (z3t, γ2 z3t)
Na+ µeq L-1 normal (z4t, γ2 z4t)
K+ µeq L-1 normal (z5t, γ2 z5t)
NH4

+ µeq L-1 normal (z6t, γ2 z6t)
SO4

2 µeq L-1 normal (z7t, γ2 z7t)
Cl- µeq L-1 normal (z8t, γ2 z8t)
NO3

- µeq L-1 normal (z9t, γ2 z9t)
a Prior distributions are selected from the available knowledge on each parameter. In cases where an expert judgment has suggested upper

and lower limits, we have used uniform distributions. b The sum of four exchangeable base cations (Ca2+, Mg2+, Na+, K+) is constrained to be e100.
c The observed runoff amount in year t is z1t. (The MAGIC model uses observed runoff and contains no hydrological model.) γ denotes hyper
parameters that are estimated from data (see details in the Supporting Information). d The observed deposition concentration in year t for component
i (i ) 2, ..., 9) is zit. The distributions for all components two to nine are exactly correlated at the same time with correlation 1. All other prior
distributions are independent.

L(y;θ) ∝ {1/∏
t)1

T

∏
i)1

14

σi}exp{-
1

2
∑
t)1

T

∑
i)1

14

σi
-2(yit - mit)

2}
(4)
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eters, (ii) there are several output data for calibration, since
they are multivariate and from long time period, and (iii) the
MAGIC model has shown to mimic the true process reason-
ably well in many applications.

3. Results
3.1. Examination of Distributional Assumptions. We cali-
brated the model on the entire period of data (1974-2002).
To check some of the distributional assumptions, we
calculated the empirical residuals Êt ) yt - m̂t, where m̂t are
the posterior means. Details are found in the Supporting
Information. The normality assumption seemed to be
reasonable in the calibration period. However, the individual
elements of the residuals were correlated with each other
within the same time, as already mentioned in the previous
section. Furthermore, the residuals were positively auto-
correlated over time.

3.2. Examination of Prediction Ability. To test the
prediction ability of the model, we re-calibrated it to the
1974-1990 data only. In addition, the estimated model was
used to predict output parameters (with uncertainty) from
1991 to 2002, conditioned on the observed time-dependent
input data in the same period.

For all parameters the estimated (1974-1990) and pre-
dicted (1991-2002) output parameters are in reasonable
agreement with the corresponding observations (Figure 1).
For instance, the observed declines in the concentrations of
sulfate and calcium are reproduced, and the falls or rises in
1993 in various parameters are predicted well (1993 had an
unusual water chemistry, induced by an extreme storm event
(21)).

Figure 1 also shows 95% pointwise credible intervals
(sometimes also called Bayesian confidence intervals) for
the output parameters mt (inner bands) and 95% prediction
intervals for the observations yt (outer bands), where the
latter include the uncertainty of the error Et. We expect that
around 95% of the observations fall inside the prediction
intervals (the outer intervals), and this holds for all individual
parameters. For ANC, however, the width of the prediction
interval seems to be overestimated. The reason is that
correlations within the elements of the errors Et are ignored
in our model.

We did not re-estimate the whole model, but calculated
a modified 95% prediction interval, taking into account the
empirical covariance matrix of Et. The spread of the observa-
tions seems reasonable compared to this modified interval,
shown as the medium interval in the ANC panel in Figure
1. The covariance matrix of Et was estimated by combining

the estimated variances (with uncertainties) and the cor-
relation matrix from Table S-1 in the Supporting Information
(without uncertainty).

Overall, this test of the calibration routine shows that the
last 12 years of output data, excluded from the calibration
procedure, are reproduced satisfactorily by the conditional
predictions of the output parameters. Therefore, even if the
model definitively may be improved according to the results
of Section 3.1, it still seems to be useful for predictions ahead
in time.

3.3. Scenario Forecasts. We now return to the model
calibrated on the entire period of data (1974-2002). Future
values (until 2050) of the output parameters were forecasted
conditional on certain scenarios for the input data in the
same period. The scenario for measured runoff amount is
constant, taken as the average of all the observations.
Scenarios for measured S and N deposition have been
estimated at the EMEP grid scale based on European emission
scenarios (20). The deposition sequences used were averages
for the four EMEP grid cells covering most of southern
Norway, scaled to current deposition. Three different sce-
narios were used:

Current Legislation (CLE). This scenario is based on the
current legislation in Europe, assuming these are followed
as legislated.

Maximum Feasible Reduction (MFR). This scenario as-
sumes that best available technology will be fully imple-
mented in Europe between 2010 and 2015. This scenario
entails considerable reductions of both S and N emissions
compared to the CLE scenario.

No Anthropogenic Deposition (NOD). This scenario as-
sumes a linear decrease to zero from 2010 to 2015 in all
deposition of anthropogenic origin. Although clearly un-
reasonable, this scenario provides a measure of maximum
recovery in the future.

Time trends for the conditional forecasts (mean posterior
values) for each year are shown in Figure 2. Under all
scenarios a substantial change from the current situation is
expected for the different major ions. The changes in SO4

2-

and NO3
- are direct responses to the changes in the

deposition input. The concentrations of Ca2+, H+, and Al
decrease as a result of reduced concentration of mobile anions
(in particular SO4

2-) and increased pH of the deposition.
ANC is projected to increase and there are clear differences
among the different scenarios.

Figure 3 shows the posterior distributions for the ANC
parameter for the different scenarios in 2020 and 2050. The
uncertainty includes the uncertainty of the output parameter

TABLE 2. Output Parameters, Likelihood, and Number of Observations of Corresponding Output Data

output parameters mt unit likelihood of output data yt

number of
observations

soil pH pH normal (µ1, σ1 ) 0.15) 1
soil base cation saturation 1

exchangeable Ca2+ % normal (µ2, σ2 ) 0.5) 1
exchangeable Mg2+ % normal (µ3, σ3 ) 0.5) 1
exchangeable Na+ % normal (µ4, σ4 ) 0.5) 1
exchangeable K+ % normal (µ5, σ5 ) 0.5) 1

surface water concentrationsa

Ca2+ µeq L-1 normal (µ6t, σ6) 27
Mg2+ µeq L-1 normal (µ7t, σ7) 27
Na+ µeq L-1 normal (µ8t, σ8) 27
K+ µeq L-1 normal (µ9t, σ9) 27
SO4

2- µeq L-1 normal (µ10t, σ10) 27
Cl- µeq L-1 normal (µ11t, σ11) 27
NO3

- µeq L-1 normal (µ12t, σ12) 27
H+ µeq L-1 normal (µ13t, σ13) 27
Al µeq L-1 normal (µ14t, σ14) 18

a σ 6 - σ 14 denote hyper parameters that are estimated from data (see details in the Supporting Information).
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mt, corresponding to the (inner) credibility intervals in Figure
1. Uncertainty due to Et is ignored here, since εt only represents
short-term variations from year to year.

3.4. Coupling to a Dose-Response Model for Fish
Populations. The scenario forecasts for ANC were coupled
to a simple, static dose-response model for fish survival (10,
22). The model is a logistic regression model with three classes
of fish population status related to ANC in water (healthy,
damaged, and extinct). The probability for having a healthy
trout population as a function of ANC is

where a and b are parameters with estimated values and
standard errors given in ref 22. Based on this, we have
constructed corresponding priors: the priors for a and b are
both normal with means -1.01 and -0.13 and standard
deviations 0.012 and 0.05, respectively.

Combining this model with the posterior distribution for
predicted ANC conditioned on the different scenarios gives
a posterior distribution for the probability of achieving a
healthy fish population in the stream at a given year. For
illustration, we show the predicted situations in 2020 and
2050 in Figure 4. The results show very clear differences for
the different scenarios. In 2020, there is an estimated
probability of 0.29 (the posterior mean) for a healthy fish
population under the CLE scenario, increasing to 0.53 under
the MFR scenario and further increasing to 0.89 under the
NOD scenario. The difference between the estimated prob-
abilities for the CLE and MFR scenarios in 2020 is 0.24 with
95% credible interval 0.19-0.29 (see Table S-4 in the

Supporting Information). Hence, even though the individual
estimated probabilities have rather wide credible intervals
as seen in Figure 4, the differences among them are highly
significant, with rather small credible intervals, taking into
account the correlations between the individual posterior
distributions.

The considerable time lag in recovery of the water
chemistry is seen from the difference between the years 2020
and 2050; there is considerably larger probability of having
a healthy fish population in 2050 than in 2020, even though
the deposition is kept constant from 2015. The time lag seen
from the onset of a deposition change to the response in the
predicted fish population status is only related to the time
lag in water chemistry in this approach. The dose-response
model does not include any information about the time lag
in the fish response to the change in ANC. For natural recovery
of a fish population the recovery delay time can be consid-
erable. However, for lakes and streams being stocked with
fish, the response time can be assumed immediate.

4. Discussion
Our stochastic model (eq 2) can be modified in several ways.
We have already pointed out that the errors Et were correlated
at a single point in time, and autocorrelated over time, so an
improved model for Et could be a multivariate time series
model. Another useful modification could be to take into
account that the output data yt in our case always are non-
negative, by using multiplicative instead of additive errors.
The observant reader may have seen that the (outer)
prediction intervals for NO3

- and Al in Figure 1 are in fact
negative. However, this does not have a dramatic effect, since

FIGURE 1. Estimates (1974-1990) and conditional predictions (1991-2002) of selected output parameters (solid lines) with corresponding
observations (squares). Estimated and predicted values are calculated as the posterior means. In addition the light blue lines show the
95% credible intervals for the output parameters; the outer, dotted lines show the 95% prediction intervals for the observations. For ANC,
the dashed lines show the adjusted 95% prediction intervals. Output data up to 1990 (indicated by the dotted vertical line) were used for
calibration; the output data after that were used for comparison with predictions conditioned on the input data after 1990.

p ) 1

1 + ea+bANC
, (5)
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the MAGIC model guarantees the output parameter mt to
always be non-negative. Furthermore, the prior distribution
for xt (Table 1) could also be replaced by a non-negative
distribution, for instance log-normal.

We have so far not given any interpretation of the error
Et ) yt - mt. It may contain both model error, i.e., the
difference between mt and a hypothetical true value mt

TRUE,
and measurement error, i.e., the difference between yt and
mt

TRUE, and it can be difficult to separate these two sources
of error. One important consequence of model error may be
model bias, i.e., a systematic difference between mt and
mt

TRUE. This may be accounted for if the output data yt are

unbiased measurements of mt
TRUE, by applying the model

instead of the model in eq 2. Here â0 is a parameter that
accounts for additive bias, whereas â1 is a parameter that
accounts for multiplicative bias. A further discussion on
model inadequacy and various sources of error can be found
in ref 11.

Model predictions will always have uncertainties, although
they are commonly ignored in many model applications. We
have presented a statistical framework for automatic cali-
bration and uncertainty estimation in deterministic models

FIGURE 2. Estimates (dotted line until 2002) and conditional forecasts (lines after 2002) of selected output parameters with corresponding
observations (squares). The forecasts are conditioned on each of the three different forecast scenarios. The light blue lines show the
CLE (current legislation) scenario, the solid black line shows the MFR (maximum feasible reduction) scenario, and the dotted line shows
the NOD (no anthropogenic deposition) scenario. Observations for all years (1974-2002) were used for calibration (indicated by the dotted
vertical line).

FIGURE 3. Posterior distributions (corresponding to the inner band
in Figure 1) for the ANC parameter in 2020 and 2050 conditioned on
each of the three different scenarios. The light blue line shows the
CLE (current legislation) scenario, the solid black line shows the
MFR (maximum feasible reduction) scenario, and the dotted line
shows the NOD (no anthropogenic deposition) scenario.

FIGURE 4. Posterior distributions for probability of having a healthy
fish population in 2020 and 2050 conditioned on each of the three
different scenarios. The light blue line show the CLE (current
legislation) scenario, the solid black line shows the MFR (maximum
feasible reduction) scenario, and the dotted line shows the NOD
(no anthropogenic deposition) scenario.

yt ) â0 + â1 mt + Et (6)
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using a Bayesian approach based on an MCMC algorithm
for combing information from observations with the deter-
ministic model. The approach makes it possible to present
model prediction results as probability distributions rather
than single values.

In most model applications, in particular those linked to
decision support or policy making, uncertainty analyses are
commonly ignored. Uncertainty analysis is often considered
complicated and may even be seen as undermining the
conclusions from the model simulations because one actually
reveals that the results are uncertain. In the development of
our approach we have been mindful that, although the
method itself is technically complex, the final outputs from
the analysis should be easy to communicate in a straight-
forward manner.

Many policy makers and other stake holders have experi-
ence in dealing with risks. If results from model applications
are presented as probability distributions rather than single
numbers, those using the results may be able to combine the
probabilities with the consequences and act according to
the resultant perceived risk. In this way models can be even
more powerful tools in support of decision making and
assessments.
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1. Model description 21 

The model framework itself is described in the main paper (2.1). A sketch of model 22 

framework showing the interaction between input parameters, input data, the deterministic 23 

model, output parameters and output data are shown in Figure S-1. 24 

 25 

1.1. Prior distributions and likelihood 26 

The prior for the time-dependent input parameter xt is normal distributed with mean equal to 27 

the corresponding observation zt (Table 1 in the main paper). Let rit=xit-zit denote the 28 

difference between the i-th output parameter and it’s corresponding observation. To keep the 29 

number of unknown parameters within reasonable limits and save computer time, we have 30 

assumed that r2t, …, r9t are exact correlated. Note that this does not mean that there is an exact 31 

relationship between the parameter values x2t, …, x9t, since there is no exact relationship 32 

between the observations z2t, …, z9t. Our approach is still much more flexible than other 33 

calibrations of the MAGIC model, including references (1,2) where only 12 time-independent 34 

input parameters were calibrated, and all remaining input parameters were fixed.  35 

 36 

The two proportionality factors γ1 and γ2 are treated as hyper-parameters (i.e. parameters of 37 

the prior distribution) to be estimated with vague priors (1/ γ1
2 and 1/ γ2

2 being gamma 38 

distributed with shape and rate equal to 0.01).  39 

 40 

The standard deviations σ6, …, σ14 are parameters to be estimated with vague prior 41 

distributions (1/ σi
2 being gamma distributed with shape and rate equal to 0.01). 42 

 43 
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 44 

1.2. Posterior distribution  45 

In the Bayesian framework, the parameter vector θ is regarded as a multivariate random 46 

variable with a prior distribution, which we now will denote p(θ|z) to emphasize that the prior 47 

distribution is based on the input data z. This prior distribution is defined through the 48 

individual prior distributions given in the previous section. The purpose of a Bayesian 49 

analysis is to estimate the conditional or posterior distribution of the parameter vector θ given 50 

all the data y and z. By Bayes’ formula, the conditional distribution p(θ | y,z), also called the 51 

posterior distribution, is given by p(θ | y,z) ∝ L(y;θ) p(θ|z) .  (See discussion at eq. 3 in the 52 

main paper). 53 

 54 

By the Bayesian paradigm, this posterior distribution contains all information relevant to the 55 

input parameters, given the model m and the data y and z. We see that the posterior is a 56 

combination of the likelihood and the prior. For example, input parameters which provide 57 

output parameters that correspond well with the output data are associated with high posterior 58 

probability unless these input parameters have low prior probability. We use vague (wide) 59 

prior distributions for parameters for which we have no prior information, and the results 60 

should not be very sensitive to these vague prior distributions. In classical calibration 61 

problems, the main interest concerns the “optimal” value of θ. Such “calibrated” values could 62 

be taken as the mean of the posterior distribution. However, the Bayesian formulation 63 

provides a complete probability distribution for the input parameters, thereby describing the 64 

uncertainty of the parameters. This is of particular interest in decision-making and in 65 

subsequent use of the results in assessment of ecological risk. The posterior probabilities of 66 

the output parameters from MAGIC may be directly generated by running simulations 67 

drawing parameter values from the posterior distribution p(θ | y,z). 68 
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 69 

We are interested in using the estimated model to make forecasts for future output parameters, 70 

say up to year T*>T, conditional on certain scenarios for future input parameters xt>T. One 71 

possibility is to specify exact values for xt>T. Another possibility is to use a vague scenario for 72 

xt>T by specifying a prior distribution for xt>T based on a given scenario for future input data 73 

zt>T. We will use this latter approach in the result section. The posterior distribution of mt>T, 74 

p(xt>T |y,z, zt>T), is easily found by simulations from the model m using the prior distribution 75 

for xt>T and the posterior distribution for θ. 76 

  77 

The posterior distribution of θ is virtually impossible to specify analytically, due to the 78 

complexity of the relationship between the input parameters, the output parameters and the 79 

data. However, samples from the posterior may be generated by Monte Carlo simulation, 80 

using an MCMC method. A general description of the MCMC algorithm can be found in 81 

numerous references, see for example (3). In the current example, we have used the 82 

Metropolis-Hastings MCMC algorithm (4). This algorithm generates samples from a random 83 

walk, which eventually converges to the true posterior.  84 

1.3. Algorithm details 85 

We want to generate samples from the posterior distribution  p(θ | y,z). The input parameters 86 

consist of 23 time-independent scalars, eight time-series of annual deposition concentrations, 87 

one time-series of annual runoff amount,  the unknown σ’s and the hyper parameters γ1 and 88 

γ2. The Metropolis-Hastings scheme can be described as follows.  89 

Assume that we have generated the sample vectors K
θθθ ,...,, 10 . 90 

1. A candidate proposal
θ for the next sample is determined randomly according to some 91 

probability distribution. 92 

2. Calculate the Hastings ratio 93 
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r =  94 

where q(α, β). is the density of the proposed sample vector β given α.   95 

If the Hastings ratio is greater than 1, this means that the proposed sample is more 96 

likely than the current one.  97 

3. The value of r determines whether the proposed sample vector is accepted   (i.e. 98 

proposalK
θθ =+1  or rejected (i.e. KK

θθ =+1 ).  If r is equal to 1 or greater the proposed 99 

sample vector is always accepted.  If r is smaller than 1 it is accepted with probability 100 

r. Thus, we always accept a proposed sample vector that is more likely than the 101 

current one but we sometimes accept a proposed sample vector that is less likely. 102 

In our implementation, proposal
θ  and K

θ differ in only a subset of the parameters. We start by 103 

updating the unknown σ’s and the hyper parameters, one parameter at the time, according 104 

their posterior distribution given the data and the remaining parameters. This ensures that the 105 

Hastings ratio is equal to one. Consequently, the proposal is always accepted. This can be 106 

done because their posterior distributions are simple. For instance, the posterior distribution of 107 

2−
iσ  is the gamma distribution with shape = 0.01+ 2T  and  108 

∑
=

−+=
T

t
itity

1

2)(
2

1
01.0rate µ . 109 

This is due to the fact that the posterior distribution is proportional to the product of the 110 

probability density of the output data, which is Gaussian, and the prior distribution, which is a 111 

gamma distribution. For the 23 time-independent scalars and the time-series, their individual 112 

posterior distributions given the other parameters and the data are not simple. Therefore, we 113 

apply the rejection sampling strategy in the following steps. In general the proposed update of 114 

the parameter is drawn from an interval surrounding the current value of the parameter. We 115 

first generate proposals where one of the time-independent scalars is changed while all the 116 
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order parameters are kept fixed. Next we generate proposals where all the wet concentrations 117 

for a given year is multiplied with a common scalar (to account for the perfect correlation 118 

between the eight components) while the remaining parameters are fixed. We generate one 119 

such proposal for each year. Finally, we propose changes in runoff amount  for each year. The 120 

loop consisting of updating all the parameters is executed a large number of times. 121 

 122 

2. Results 123 

2.1. Illustration of the MCMC algorithm 124 

The Metropolis-Hastings algorithm is iterative. Each iteration produces a set of values for θ. 125 

When the algorithm has converged, it will sample values from the posterior distribution of θ. 126 

Since the iterations are correlated, many iterations are usually needed to calculate the 127 

posterior probability with sufficient precision.  128 

 129 

The convergence of the algorithm was judged manually, by visual inspection of trace plots of 130 

various parameters (Figures S-3 and S-4). A trace plot shows the sampled value of a 131 

parameter on the y-axis and the iteration number on the x-axis. The left panels of Figure S-3 132 

show the trace plots for the lumped parameters BCw and BSini. Initially, the algorithm 133 

suggests values from the full range of the prior distributions, but stabilizes to a much narrower 134 

range of values after some thousand iterations. The initially large fluctuations are typical for 135 

the “burn-in” of MCMC algorithms.  After the simulated values have stabilized around a 136 

fixed level, they still show rather large fluctuations and are highly correlated. Therefore 137 

several thousand iterations are necessary to estimate the prior distributions with sufficient 138 

precision. Based on these plots and trace plots of other parameters (Figure S-4) we regard the 139 
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first 10,000 iterations as the burn-in phase, and use the last 70,000 iterations for calculating 140 

the posterior distributions.  141 

 142 

The prior and posterior distributions for BCw and BSini show that the posterior distributions 143 

are comparatively narrow and in the lower part of the prior distributions (right panels of 144 

Figure S-3). The rather flat prior for BCw between 0 and 400 meq m-2 yr-1 arises as the 145 

combination of the four uniform distributions for the four individual input parameters that 146 

constitute the total. The posterior distribution is much more peaked with probability mass 147 

concentrated around 60 meq m-2 yr-1.  For the BSini the prior is also rather flat, with somewhat 148 

higher density in the higher end of the distribution. Again, this shape of the distribution is 149 

related to the fact that the parameter shown is a combination of four distributions with the 150 

constraint that the sum of the four should not exceed 100%. The posterior is again rather 151 

narrow, with a maximum around 40%.  152 

 153 

Trace plots for selected output parameters show that these also stabilize near the 154 

corresponding observed value after rather a few iterations (Figure S-4). The variation after 155 

burn-in is about 10 µeq L-1 for SO4
2- (corresponding to 15% of the observed value in 2002) 156 

and about 7 µeq L-1 for Ca2+ (corresponding to 20% of the observed value in 2002), with 157 

some more extreme peaks every now and then throughout the 80,000 iterations. The variation 158 

in modeled ANC is about 20 µeq L-1. Remember that observations of ANC are not directly 159 

used in the model calibration. Rather observations of the seven individual components of 160 

ANC are used. The performance of ANC thus sums up the overall calibration performance of 161 

the seven ions. 162 

 163 

Running 80,000 iterations take about 40 hours on a 2 GHz computer. 164 
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 165 

2.2. Examination of distributional assumptions  166 

To check some distributional assumptions, we first calculated the empirical residuals 167 

ttt ˆˆ myε −= , where tm̂ are the posterior means. Remember that we have only one observation 168 

for each of the first five elements of yt, but for the last nine elements we have 27 observations, 169 

except for Al where we have 18 observations. The validations will be based on the residuals 170 

for the nine outputs with more than one observation. 171 

 172 

Figure S-2 shows quantiles of the residuals versus quantiles of the standard normal 173 

distribution. If εt is normal distributed, these plots should roughly show straight lines, which 174 

they approximately do. Thus, we find that the normality assumption for εt is reasonable. 175 

 176 

Another assumption is that the individual elements of εt are uncorrelated. The empirical 177 

correlation matrix is given in Table S-1. Seven out of 36 correlations are significantly 178 

different from 0, which indicates that the assumption of uncorrelated errors is violated. A 179 

possible future modification of the statistical model is therefore to include correlations. The 180 

basis for these hypothesis tests is that a correlation estimate based on n observation has a 181 

standard deviation of roughly n1 , where n is number of observations, such that empirical 182 

correlations with absolute values larger than n1±  are significant. 183 

 184 

We have also assumed that εt is uncorrelated in time. Table S-2 shows the empirical 185 

autocorrelations at lag 1. Four out of nine correlations are significantly positive correlated, 186 

clearly indicating that εt is dependent over time. 187 

 188 
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2.3. Scenario forecasts for ANC and the probability for a healthy fish populations 189 

Table S-3 shows the credibility intervals for the ANC parameter in 2020 and 2050 190 

conditioned on the various scenarios, corresponding to Figure 3 in the main paper. The 191 

predicted ANC for the CLE scenario in 2020 is -6.6 µeq L-1 with the 95% credible interval 192 

from -12.5 µeq L-1 to -0.9 µeq L-1. For the MFR scenario the estimate is 1.8 µeq L-1 with the 193 

95% credible interval from -3.9 µeq L-1 to 7.2 µeq L-1. The difference between the two 194 

estimates is 8.3 µeq L-1, with a 95 % credible interval of only ±1 µeq L-1 around the mean, 195 

thus the two scenarios are significantly different. The credible intervals for the differences 196 

take the correlations between the individual posterior distributions into account (pair-wise 197 

comparison), which result in small uncertainties. 198 

 199 

Combining this model with the posterior distribution for predicted ANC conditioned on the 200 

different scenarios gives a posterior distribution for achieving a healthy fish population in the 201 

stream at a given year. Table S-4 supplements Figure 4 in the main paper. The CLE scenario 202 

shows an estimated probability of 0.29 in 2020 and 0.40 in 2050 with quite a large span for 203 

the 95% credible interval (0.15-0.46 and 0.22-0.60, respectively). The estimated probability is 204 

considerably higher for the MFR scenario with an estimated probability of 0.53 and 95% 205 

credible interval of 0.35-0.71 in 2020. For the NOD scenario the estimated probability is 0.87 206 

in 2020 and 0.95 in 2050 for a healthy fish population to be successfully established. The 207 

difference between the estimated probabilities for the CLE and MFR scenarios in 2020 is 0.24 208 

with 95 % credible interval 0.19-0.29. 209 

 210 

3. Comparison with other Bayesian approaches 211 

The various approaches for modeling complex environmental systems can roughly be divided 212 

into two groups depending on the basic model. One group is based on empirical stochastic 213 
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models that are rather general and may be used for several applications. in this group 214 

complexity is often handled by a hierarchical structure (see review by (5)). The other group 215 

(ours being one example) is based on deterministic simulation models designed for a specific 216 

applications and based on chemical and physical principles. Combinations of the two 217 

approaches also exist. Reference (6) present a meteorological application in which the 218 

underlying process is modeled by an empirical spatio-temporal model with input data derived 219 

from point measurements and from the output of a deterministic model on an aggregated 220 

spatial scale. Similar combined approaches have also been used within air pollution modeling 221 

(7,8). Many of the approaches are based on Bayesian modeling, because prior information 222 

often exists in addition to data and because the combination of Bayesian algorithms with 223 

simulation based estimation methods is a convenient way to handle complex systems. 224 

 225 

The strength of deterministic simulation models is that they can take into account complex 226 

structures and dependencies that are difficult to handle within pure empirical models. 227 

However, since they are deterministic, it is not obvious how they should be fitted to 228 

observational data. The so called generalized likelihood uncertainty estimation (GLUE) 229 

method (9) has become a popular way to account for uncertainty. The GLUE method has also 230 

been applied with the MAGIC model (1,2). In GLUE, the user specifies prior distributions for 231 

the input parameters and an objective function that quantifies how well the output parameters 232 

(for given input parameters) fit the output data. This objective function is called a 233 

“generalized likelihood”. The prior information and the objective function are combined 234 

following computational rules from Bayesian statistics, but are not based on a statistical 235 

model, and usually the objective function is not a data likelihood function. Prediction of 236 

uncertainty in GLUE is based on simulations of m(xt), taking into account the uncertainty in 237 
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xt, but ignoring εt. Therefore, GLUE uncertainty intervals may be too narrow compared to 238 

observations, as pointed out by several authors (9-11). 239 

  240 

However, if the GLUE methodology is adjusted to take into account the error εt, as in (12) or 241 

(13), the difference between GLUE and a method like ours is then only the Monte Carlo 242 

sampling strategy. GLUE sample independently from the prior distribution, and weight each 243 

sample to get the correct posterior distribution. Our approach uses the Metropolis-Hastings 244 

algorithm, which gives dependent samples from the posterior distribution. Both references 245 

(12) and (13) compared the GLUE sampling with Metropolis-Hastings, and concluded that 246 

the latter should be preferred, at least in situations with high-dimensional parameter space. 247 

Nevertheless, Monte Carlo based techniques like GLUE, our own and several others are very 248 

efficient tools to handle uncertainty in complex systems.  249 

 250 

In some circumstances one may also have prior information about the output parameters, in 251 

addition to the priors that are induced from the priors on the input parameters. Then one can 252 

use a method called Bayesian melding (14). 253 

 254 
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Tables 292 

 293 

Table S-1: Lower triangle of the correlation matrix for empirical residuals from 1974- 2002. 294 

Significant correlations are marked with *. 295 

 Ca2+ Mg2+ Na+ K+ SO4
2- Cl- NO3

- H+ Al 
Ca2+ 1.00         
Mg2+ 0.08 1.00        
Na+ -0.42* -0.58* 1.00       
K+ 0.11 0.38 -0.3 1.00      
SO4

2- -0.01 -0.26 0.00 -0.22 1.00     
Cl- -0.24 -0.16 0.47* -0.13 -0.58* 1.00    
NO3

- 0.04 -0.27 -0.20 0.25 0.39* -0.20 1.00   
H+ -0.30 0.06 -0.22 -0.23 0.39* -0.37 0.12 1.00  
Al -0.27 0.59* -0.11 0.40 -0.20 0.21 0.04 0.26 1.00 
 296 

 297 

 298 

 299 

Table S-2: Autocorrelation at lag 1 for empirical residuals from 1974- 2002. Significant 300 

correlations are marked with *. 301 

Ca2+ -0.06 
Mg2+ 0.48* 
Na+ 0.42* 
K+ 0.75* 
SO4

2- -0.08 
Cl- 0.25 
NO3

- 0.33 
H+ 0.17 
Al 0.62* 
 302 

303 
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Table S-3: Forecasted (posterior mean) ANC parameter in 2020 and 2050 conditioned on 303 

each of the three scenarios: current legislation (CLE), maximum feasible reduction (MFR) 304 

and no anthropogenic deposition (NOD). Differences between the different scenarios are also 305 

shown.  306 

Scenario 2020 2050 
 Forecast 95% credible interval Forecast 95% credible interval 
CLE −6.6 (−12.5, −0.9) −2.5 (−8.6, 3.3) 
MFR 1.8 (−3.9, 7.2) 7.0 (1.1, 12.6) 
NOD 15.5 (9.7, 20.8) 23.5 (17.7,28.9) 
MFR − CLE 8.3 (7.3, 9.2) 9.5 (8.7, 10.4) 
NOD − CLE 22.0 (19.0, 24.6) 26.0 (23.5, 28.4) 
NOD − MFR 13.7 (11.7, 15.4) 16.5 (14.8, 18.1) 

 307 

 308 

 309 

Table S-4: Estimated (posterior mean) probability of having a health trout population in 2020 310 

and 2050 conditioned on each of the three scenarios: current legislation (CLE), maximum 311 

feasible reduction (MFR) and no anthropogenic deposition (NOD). Differences between the 312 

different scenarios are also shown.  313 

Scenario 2020 2050 
 ESTIMATE 95% credible interval Estimate 95% credible interval 
CLE 0.29 (0.15, 0.46) 0.40 (0.22, 0.60) 
MFR 0.53 (0.35, 0.71) 0.69 (0.50, 0.83) 
NOD 0.87 (0.76, 0.94) 0.95 (0.90, 0.98) 
MFR − CLE 0.24 (0.19, 0.29) 0.29 (0.23, 0.33) 
NOD − CLE 0.58 (0.47, 0.66) 0.55 (0.38, 0.68) 
NOD− MFR 0.33 (0.22, 0.43) 0.26 (0.14, 0.40) 

 314 

 315 

316 
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Figures 316 

 317 

 318 

Figure S-1. Sketch of model framework showing the interaction between input parameters, 319 

input data, the deterministic model, output parameters and output data.    320 

 321 

 322 
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323 
Figure S-2. Quantiles of empirical residuals versus quantiles of the standard normal 324 

distribution. 325 

 326 
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 327 

Figure S-3: Left panels: Trace plots for selected input parameters (base cation weathering, 328 

BCw and initial base saturation, BSini) for 80 000 iterations of the algorithm. For clarity in the 329 

figure, every 100th sample is shown.  Right panels: Corresponding prior (grey) and posterior 330 

(black) distributions. The latter is based on the last 70 000 iterations. 331 

 332 
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 333 

Figure S-4. Trace plots for selected output parameters for 2002. For clarity in the figure, every 334 

100th sample is shown.   335 

 336 


