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Abstract

This note describes a C-routine for the estimation of parameters in linear mixed-
effects models, developed for the analysis of large data sets. The glme-routine imple-
ments a fully Bayesian approach to parameter estimation using the Gibbs sampler. The
program is applicable for data from experiments based on crossed as well as nested de-
signs. The development of the program was motivated by the need for computationally
efficient algorithms for analysing data from DNA microarray experiments, in situations
where the effects of interest include both overall and gene-specific effects. We describe
how the program can be applied in this context.
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Version

This documentation is valid for revision 1.70 and higher of the program.
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1 Introduction

In this report we describe the C-routine glme implementing a Bayesian approach to estima-
tion of parameters in linear mixed effects models for large data sets, using the Gibbs sampler.

The implementation of the program was motivated from the need for efficient algorithms
for the analysis of data from DNA microarray experiments, in situations where the effects of
interest include overall effects that, unlike differential expression, are not to be assessed on
a gene by gene basis. The microarray technique has become a very useful tool in functional
genomics, enabling the simultaneous comparison of a large number of genes. However,
the high dimension of the resulting data sets also represents a computational challenge. By
utilising efficient programming techniques, joint estimation of the parameters of a linear
mixed effects model becomes computationally feasible even for large data sets, and the glme
program can be applied to data from experiments that are based on crossed as well as nested
experimental design.

Using the microarray technique, gene expression is quantified by hybridising mRNA
samples representing biological material and conditions of interest to DNA probes repre-
senting known genes or genomic sequences, immobilised on the array. The mRNA samples
are labelled by a fluorescent dye, and the fluorescent intensity corresponding to each probe,
obtained by scanning and image analysis, is used as a measure of gene expression. There
are two main types of microarrays in current use, spotted two-colour DNA arrays, where
two mRNA samples, first reverse transcribed to cDNA and then labelled with different dyes
(red and green) are hybridised to each array, and high-density single-colour oligonucleotide
arrays. The two types differ mainly in the length of the DNA probe sequences and in how
these are distributed on the array. For an overview of different microarray techniques and
other topics regarding microarrays, see e.g. the Nature Genetics supplements The Chipping
Forecast (vol. 21, 1999) and Chipping Forecast II (vol. 32, 2002).

A major aim of many microrarray experiments is to identify genes that are differentially
expressed for different varieties. The term variety refers to the mRNA samples that are stud-
ied, e.g. different tissues (like healthy and cancer tissue) or samples representing a biological
system at different points in time. In addition to, or in place of, the gene-by-gene differential
expression, effects measured at an overall, not gene-specific level can be of interest. For exam-
ple, if the individuals under study in a medical experiment can be allocated into different
groups according to e.g. age or medical condition, questions of interest include whether per-
sons in different groups respond differently to treatment and whether there is a gene-group
interaction effect. Depending on the aim of the experiment, different inferential approaches
are suitable.

The glme-program is designed for the general problem of estimating both gene-specific
and not gene-specific effects. Linear mixed effects models (McCulloch and Searle, 2001; Pin-
heiro and Bates, 2001) provide a framework for the joint estimation of different types of
effects, as well as for handling of multiply spotted genes. The application of linear mixed
effects models to microarray data was first introduced by Kerr, Martin and Churchill (2000)
and further elaborated by among others Kerr, Afshari, Bennett, Bushel, Martinez, Walker
and Churchill (2002) and Wolfinger, Gibson, Wolfinger, Bennett, Hamadeh, Bushel, Ashfari
and Paules (2001). They model the intensity in each spot, after a suitable transformation, as
a sum of effects representing e.g. array, dye, variety and gene, as well as interaction effects
between these factors. Aiming at assessing differential expression, the interaction between
gene and variety is the effect of interest. Due to the computational burden, and to enable

4



gene-specific error distributions, the LME models described are fitted using a two step pro-
cedure, first estimating overall effects, and then fitting the gene-specific effects based on the
residuals from the first step. This approach is reasonable when the aim is to assess differen-
tial expression per gene, but in more general situations, a one-step procedure for estimating
gene-specific as well as not gene-specific effects is preferred. The glme program is devel-
oped to provide a computationally efficient routine for estimation of the model parameters
in one step.

In Section 2 we give a brief description of the LME in a microarray data analysis con-
text. The parameter estimation algorithm is described in Section 3, and the glme-program is
documented in Section 4. Some examples are given in Section 5.

2 A brief description of linear mixed-effects models applied to mi-
croarray data

In this section we first introduce the general linear mixed effects model, and then give a
description of how such models can be applied to microarray data.

2.1 General model

A linear mixed effects model (LME) is of the form

y = 1µ + Xβ + Zb + ε, (1)

where

• y is a vector of n suitably transformed observed response values,

• µ is an overall mean,

• β = (βT
1 , βT

2 , . . . , βT
mF

)T is a vector of fixed effects corresponding to the levels of mF

factors,

• b = (bT
1 , bT

2 , . . . , bT
mR

)T is a vector of random effects corresponding to levels of mR fac-
tors, and where the elements of b1, . . . , bmR

are assumed to be independent realisations
of zero mean Gaussian variables with variances σ2

R1
, . . . , σ2

RmR

,

• X and Z are design matrices for the fixed and random effects respectively, and

• ε is a vector of residuals, assumed to be zero mean independent Gaussian variables
with common variance σ2.

Effects should be specified as fixed if we are mainly interested in estimating the specific
values associated with the different levels of the corresponding factor. If the main interest
lies in assessing the variability associated with a factor, it should be treated as random. In
general, random effects can be used as a tool to explicitly account for different sources of
random variation other than the residual variance, as well as for correlations within groups
of observations. For brevity, we will use the terms ”fixed factors” and ”random factors” to
refer to factors for which the effects are fixed and random, respectively.
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A component-wise representation of an LME is often used instead of the matrix repre-
sentation (1). As an example, consider the model

yijk = µ + βi + bj + cij + εijk, (2)

where βi, i = 1, 2 are the fixed effects corresponding to two levels of a factor, bj , j = 1, 2, 3
are random effects corresponding to three realisations from the set of possible levels of a
second factor, and {bij} are random interaction effects. Each pair of fixed and random effects
is observed twice. For this model, β = β1 = (β1, β2)

T and b = (bT
1 , bT

2 )T , where b1 =
(b1, b2, b3)

T and b2 = (c1,1, c1,2, . . . , c2,3)
T . The design matrices are X and Z = [Z1 Z2],

where

X =




1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




, Z1 =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




, Z2 =




1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1




. (3)

2.2 Linear mixed effects models for microarray data

As pointed out earlier, the implementation of the glme-program was motivated by problems
where overall effects are of main interest. However, the program can also be applied to
assess differential expression, which is the problem for which linear mixed effects models
for microarray data were first introduced. In the following subsections we first present some
recent applications of LME as a tool for identifying differentially expressed genes, and then
we describe a problem of the type that motivated the development of the glme-program.

2.2.1 Identifying differentially expressed genes by LME

A model for the analysis of microarray data within the LME framework was first proposed
by Kerr et al. (2000) and further elaborated in Kerr et al. (2002). They proposed a linear fixed
effects model (i.e. an LME with no random effects) for the identification of differentially
expressed genes taking into account array, dye and overall gene-effects as well as the gene-
specific variety effect which is the effect of interest in this context. Their model, according to
Kerr et al. (2000), which they denote an ANOVA model, is of the form

yijkg = µ + Ai + Dj + Vk + Gg + (AG)ig + (V G)kg + εijkg, (4)

where yijkg is the log-transformed intensity of gene g for variety k labelled with dye j on
array i. The effect of interest is the variety-gene interaction (V G)kg. The model is a special
case of the general model (1) with no random effects term. The vector β of fixed effects is
β = (AT , DT , V T , GT , (AG)T , (V G)T )T , where A = (A1, . . . , AnA

)T is the vector of fixed
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effects corresponding to the nA levels of the the array factor, D = (D1, D2)
T is the vector of

dye-effects, and so on. In Kerr et al. (2002) a dye-gene interaction term (DG)jg is included in
the above model to account for gene-specific dye-effects, and replication is allowed for.

Due to the large number of genes, estimation of the parameters in (4) is computationally
expensive. Also, assuming i.i.d. noise implies that the residual variances for all genes are
assumed to be equal, an assumption that can be questioned. Therefore, the model, including
the dye-gene interaction and replication, is fit in two steps (Cui and Churchill, 2003):

Step 1: yijkgr = µ + Ai + Dj + Vk + rijkgr,
Step 2: rijkgr = Gg + (AG)ig + (V G)kg + (DG)jg + εijkgr,

(5)

where index r refers to replications and Var(εijkgr) = σ2
g . First, Step 1 is fitted for all genes

simultaneously. After obtaining the residuals from Step 1, Step 2 is then fitted on a gene by
gene basis. For a balanced design and for σ2

g = σ2, ∀g, fitting the model in two steps is equiv-
alent to fitting the full model (4) (Wu, Kerr, Cui and Churchill, 2003). Taking a frequentist
approach to inference, the fixed effects are estimated by least squares, and the significance of
the different effects are assessed by non-parametric tests and bootstrapping, avoiding Gaus-
sian assumptions on the residuals. This LME approach is implemented in the R-package
MAANOVA (Wu et al., 2003) which has recently been extended to handle random effects as
well.

A similar two-step mixed effects model is given in Wolfinger et al. (2001). The variety-
gene interaction effect (V G)kg, measuring differential expression, is treated as fixed, as is the
main effect Gg for genes. The dye effect Dj is also treated as fixed, since it has only two levels,
red or green. The remaining main effects of array Ai and variety Vk, as well as the array-gene
interaction (AG)ig are random, which means that they are considered as realisations from a
distribution over a hypothetical set of levels of the factor. A similar model is applied by Jin,
Riley, Wolfinger, White, Passador-Gurgel and Gibson (2001).

For two-colour spotted DNA arrays, an alternative approach to assessing differentially
expressed genes is to specify tests on a gene-by-gene basis based on log-ratios of intensi-
ties at each spot. However, conclusions drawn on a gene-by-gene basis can be misleading,
due to the fact that data from a microarray experiment typically consists of only a few ob-
servations per gene. One remedy to this problem is to borrow strength from observations
for the remaining genes. Work along these lines include the empirical Bayes approaches
of Lönnstedt and Speed (2002) and Smyth (2003b), the latter implemented in the R-package
limma (Smyth, 2003a), as well as the related approach of Efron, Tibshirani, Storey and Tusher
(2001). Using these or similar approaches, the data are usually adjusted for systematic effects
that can be attributed to the microarray technology rather than true biological processes (nor-
malisation). In the linear mixed effects models described above, array and dye effects are
explicitly included in the model, such that data normalisation and estimation of the gene-
dependent variety effects are integrated in a common framework, explicitly accounting for
the degrees of freedom that are lost in the normalisation process. However, the linear nor-
malisation model in Step 1 in (5) has proved to be inadequate in practice, as experience in-
dicates spatial patterns in intensity readings across arrays, as well as non-linear dependence
of log-ratios on intensities, see e.g. Yang, Dudoit, Luu, Lin, Peng, Ngai and Speed (2002) and
Kerr et al. (2002). Therefore, additional pre-processing is most often needed, but the nor-
malisation part of the linear model could still be kept to account for remaining systematic
bias. It should also be pointed out that other transformations than the log-transformation
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might reduce systematic bias and the need for additional pre-processing, an example being
the variance stabilising transform of Huber, von Heydebreck, Sültmann and Vingron (2002).
For a discussion of different alternative transformations, see Cui, Kerr and Churchill (2002).

2.2.2 An application of LME to the estimation of overall effects

A published application of the glme-program is found in Nygaard, Løland, Holden, Lan-
gaas, Rue, Liu, Myklebost, Fodstad, Hovig and Smith-Sørensen (2003). They study the ef-
fects of different degrees of mRNA amplification on the variability of estimates of gene ex-
pression ratios in cDNA experiments. Their model includes main effects for array, cell line,
batch, dye and amplification protocol, as well as two-factor and three-factor interaction ef-
fects. See the cited paper for a further description of the model. In this application, the
major interest lies in the main effects of amplification, averaged over all genes. However,
gene-specific effects enter the model through random interaction effects, included to explic-
itly account for the variability associated with these effects. The resulting model should
be estimated in one step, and therefore a computationally efficient approach to parameter
estimation, as provided by the glme-program, is needed.

3 The Gibbs sampling algorithm

The glme program implements a fully Bayesian approach to estimation of the parameters of
a general linear mixed effects model of the form (1), using the Gibbs sampler. The unknown
parameters of the model are the overall mean µ, the vector β of fixed effects the variances
σ2

R1
, . . . , σ2

RmR

of the random effects and the residual variance σ2. At each iteration of the
Gibbs sampler, predictions of the random effects b are also generated. We will denote by θ

the vector of unknown parameters, including the realisations of the random effects, and we
write

θ = (µ, βT , bT , σ2
R1

, . . . , σ2
RmR

, σ2)T .

To avoid over-parameterisation, constraints or re-parameterisation might have to be in-
voked, as discussed in Section 4.3 and Section 5.2, respectively.

3.1 The Bayesian model

Given the data vector y and assuming conditional independence between observations, the
likelihood of the Bayesian model is

π(y; θ) =
n∏

i=1

π(yi | θ), (6)

where π(yi | θ), i = 1, . . . , n are given by the rows of (1). We assign a uniform prior to
the overall mean, independent Gaussian priors to each of the fixed and random effects, and
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inverse Gamma priors on the variances. More specifically,

π(µ) ∝ 1, (7)
π(βj) ∼ N (0, σ2

F I), j = 1, . . . , mF , (8)

π(bk | σ2
Rk

) ∼ N (0, σ2
Rk

I), k = 1, . . . , mR, (9)

π(1/σ2
Rk

) ∼ Gamma(αR, βR), k = 1, . . . , mR, (10)

π(1/σ2) ∼ Gamma(ασ2 , βσ2). (11)

The hyper-parameters σ2
F , αR, βR, ασ2 and βσ2 are treated as fixed, and can be specified by

the user using input options, as described in Section 4.1. Observe that the value of σ2
F is to

be specified in terms of the precision τF = 1/σ2
F . The joint posterior distribution is

π(θ | y) ∝
n∏

i=1

{π(yi | θ)}

mF∏

j=1

{π(βj)}

mR∏

k=1

{π(bk | σ2
Rk

)π(1/σ2
Rk

)}π(1/σ2)π(µ). (12)

Due to the high dimensionality of the problem, direct maximisation of the posterior dis-
tribution is computationally infeasible, but as we describe in the following subsection, the
problem can be dealt with using simulation based inference. There, we describe the Gibbs
sampling algorithm that is implemented in glme.

3.2 The Gibbs sampler

Due to the high dimensionality of microarray data, alternatives to standard approaches to
parameter estimation for the linear mixed-effects model is needed. The Gibbs sampler is a
simulation based approach that is suitable for complex problems. It is a special case of the
class of Markov chain Monte Carlo methods, where inference is based on samples from a
Markov chain with the distribution of interest as its stationary distribution. For an introduc-
tion to MCMC methods see e.g. Gilks, Richardson and Spiegelhalter (1996).

The general idea of the Gibbs sampler is to generate approximate samples from the joint
posterior distribution by sampling one parameter (or one group of parameters) at the time,
conditionally on the most recently sampled values of the remaining parameters. These con-
ditional distributions are denoted the full conditional distributions. It can be shown that
samples generated by this procedure converge to samples from the joint posterior distribu-
tion. To simplify the presentation we illustrate the approach by a linear mixed-effects model
with one random and one fixed effect, but generalisation to several random and fixed effects
is straightforward. We consider the model

yjkr = µ + βj + bk + εjkr, (13)

which is a special case of (1) with mF = mR = 1 and with replicates r = 1, . . . , N for each
combination of random and fixed effects. The unknown quantities are

• the overall mean µ,

• the fixed effects βj ; j = 1, . . . , J ,

• the variance σ2
R of the random effects bk ∼ N (0, σ2

R) as well as the effects bk, k =
1, . . . , K associated with the K realisations of the corresponding factor, and
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• the residual variance σ2.

The full conditional distributions can be derived from (12), and are given by

π(µ | y, {βj}, {bk}, σ
2
R, σ2) ∝

∏

j,k,r

{π(yjkr | µ, βj , bk, σ
2)}π(µ), (14)

π(βj | y, µ, {βl}l 6=j , {bk}, σ
2
R, σ2) ∝

∏

k,r

{π(yjkr | µ, βj , bk, σ
2)}π(βj), (15)

π(σ2
R | y, µ, {βj}, {bk}, σ

2) ∝
∏

k

{π(bk | σ2
R)}π(1/σ2

R), (16)

π(bk | y, µ, {βj}, {bl}l 6=k, σ
2
R, σ2) ∝

∏

j,r

{π(yjkr | µ, βj , bk, σ
2)}π(bk | σ2

R), (17)

π(σ2 | y, µ, {βj}, {bk}, σ
2
B) ∝

∏

j,k,r

{π(yjkr | µ, βj , bk, σ
2)}π(1/σ2). (18)

Since all priors are conjugate priors, the full conditional distributions are all standard distri-
butions, that is, inverse Gamma distributions for the variances and Gaussian distributions
for the βj and bk. Thus, all full conditional distributions can be sampled directly.

The Gibbs sampling algorithm can be summarised as follows:

Set µ = 0
Set σ2 = 1
Set σ2

R = 1
for (j = 1, . . . , J) do

Set βj = 0
end for
for (k = 1, . . . , K) do

Set bk = 0
end for
for (i = 1, . . . , niter) do

Sample µ from the Gaussian full conditional (14)
Sample σ2 from the inverse Gamma full conditional (18)
Sample σ2

R from from the inverse Gamma full conditional (16)
for (j = 1, . . . , J) do

Sample βj from from the Gaussian full conditional (15)
end for
for (k = 1, . . . , K) do

Sample bk from from the Gaussian full conditional (17)
end for

end for

Based on the resulting set of niter samples, estimated posterior means or medians of the
parameters are found by their empirical counterparts, discarding a set of burn-in samples to
avoid any effect of arbitrary initial values. Since the number of burn-in iterations needed
is usually not known on beforehand, we need to monitor the algorithm to decide whether
the underlying Markov chain has converged (approximately) to the joint posterior distribu-
tion. A useful option of the glme-program is the ability to store the full state, including the
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current state of the random number generator, at exit. This means that the program can be
interrupted to check for convergence and then continued at the current values.

Successive samples from the Gibbs sampler are correlated by design. This correlation
does not have any profound effect on the estimated mean values, but variance estimates
will be negatively biases. The problem can be reduced by thinning, computing the estimates
based on every t’th iteration, where t depend on the degree of correlation.

4 Documentation of the C-program glme

The glme-program estimates the the posterior distributions of the unknown parameters of
the Bayesian model in Section 3.1 based on information from an input data file and addi-
tional command line information. The program can be run until it is interrupted, which is
the default, or alternatively for a specified number of iterations. In any case, the state of the
program at exit can be stored, such that a new run can be started from this state. The calling
sequence and the complete list of options are listed in Section 4.1. In the subsequent subsec-
tions, we give a more detailed description of how to specify the components of the model,
and the output returned by the program.

4.1 Calling sequence

Synopsis

glme [-R restore state fnm] -d datafile [-s seed]
[-S save state fnm][-t thinning][-r dump residuals]
[-e dump effects [col1 col2 ...]][-n maxiter][-a A][-b B]
[-f prec][-c][-v][-l][-m dump mean][-w][-V][-T niter][-h]

Options

-R restore state fnm
Restore the state of a previous run the program, saved in the file
restore state fnm, and start the new run at this state. If used, this
should be the first option.

-d datafile (required)
Input file containing the specification of the linear mixed-effects model. The
file should be of the format described in Section 4.2.

-s seed
Set the seed of the random number generator to seed. The default seed is
fixed, such that repeated runs are identical.

-S save state fnm
Save the current state of the program in file save state fnm. A new run
of the program can be started from this state by using the option -R.

-t thinning
Updated values for every thinning iteration is printed, the default is 1.
The output is printed to standard output, and can be directed to a user
specified output file.

11



-r dump residuals
Dump the residuals every dump residuals iteration, the default is never
(0). The residuals are dumped on a file named FILE.residuals, where FILE
equals the name of the input data file (the argument of the -d option) with-
out suffix. If a file of that name already exists, the residuals are appended
to that file. Each row of the file is on the format

q τ (q) r
(q)
1 r

(q)
2 · · · r

(q)
n ,

where q is the iteration index, τ (q) is the residual precision and r
(q)
i , i =

1, . . . , n are the corresponding residuals from the model for the n observa-
tions.

-e dump effects [col1 col2 ... ]
Dump the values of the random effects corresponding to (a subset of) the
random factors every dump effects iteration, the default is never (0). The
values are dumped on a file named FILE.reffects, where FILE equals the
name of the input data file (the argument of the -d option) without suffix. If
a file of that name already exists, the values are appended to that file. Each
row of the file is on the format

q col τ
(q)
Rcol

re
(q)
1 re

(q)
2 · · · re

(q)
mcol ,

where q is the iteration index, col is the column index for the random factor
for which the effects are to be printed, τ

(q)
Rcol

is the precision and re
(q)
i ; i =

1, . . . , mcol are the effects corresponding to the mcol distinct realisations of
that factor. The factors are numbered according to the column index in the
input data file, including all columns on the file. Note that the columns
are numbered beginning with 0. Invoking the option -e 10 2 3 means
printing the random effects corresponding to the third and fourth column
every 10 iterations.

-n maxiter
Run only maxiter iterations. The default is ∞, such that the program
is run until it is interrupted. If this option is used with the -R option,
maxiter should include the number of iterations from the run that is re-
stored.

-a A The first parameter, αR, in the gamma priors (10) for the precisions {τRk
=

1/σ2
Rk

} of the random effects and in the prior (11) for the residual precision
τ , such that E(τRk

) = αR/βR. The default is 0.01.

-b B The second parameter, β, in the gamma prior (10) for the precisions of the
random effects and in the prior (11) for the residual precision τ , such that
E(τRk

) = αR/βR. The default is 0.01.

-f prec
The precision τF = 1/σ2

F of the Gaussian priors (8) of the fixed effects. The
default is 0, which corresponds to replacing (8) by a uniform prior π(βj) ∝
1.
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-c Constrain the sum of the random effects corresponding to each random
factor to sum to zero.

-v Verbose output, including a summary of the model specification.
-l Log-transform the data read into the program
-m dump mean

Dump the mean of the random effects for each random factor at every
dump mean iteration, the default is never (0). The values are dumped on
a file named FILE.mean, where FILE equals the name of the input data file
(the argument of the -d option) without suffix. If a file of that name already
exists, the mean values are appended to that file. Each row of the file is on
the format

q M
(q)
1 M

(q)
2 · · · M

(q)
m

where q is the iteration index, m is the total number of factors and

M
(q)
j =

{
mean of the effects of factor j, at iteration q, if factor j is random
0, if factor j is fixed

The factors are numbered according to the column index in the input data
file. See also the option -e.

-w Print warning messages.
-V Show the version of the program.
-T niter

Run a CPU test on niter iterations.
-h Show help on glme.

4.2 Input data file

The input data file contains the specification of the fixed and random effects and the mea-
surements for each observation. The input data file should be on the format

n m
f11 f12 · · · f1m y1

f21 f22 · · · f2m y2
...

...
. . .

...
...

fi1 fi2 · · · fim yi

...
...

. . .
...

...
f2n f2n · · · f2m yn

(19)

where

n = the number of observations,
m = the number of factors (fixed and random),
fij = the level (fixed factor) or realisation index (random factor) of factor j for

observation i (see more detailed explanation below)
yi = response value (typically log-intensity or log-ratio), for observation i.

13



Here, we use a common notation for fixed and random effects, denoting by fij the level
j of a fixed factor or the realisation from the population of levels of a random factor, for
observation i. The response values {yi} can be original or pre-processed data. As pointed
out in Section 2 some normalisation might be necessary even if array effects are included in
the model.

Specification of fixed and random effects

The number of levels of a fixed factor or realisations of a random factor, is evaluated from the
information on the input file. The effects of a factor Fj (using the common term Fj to refer to
a fixed or random factor) is interpreted as fixed if the number of distinct levels of Fj , other
than 0, is one and this level is coded by 1, and otherwise it is interpreted as random. For both
types of effects, a value of 0 means ”no effect”. The specification of fixed and random effects
can be summarised as follows.

• Fixed effects:

– The effect of a factor Fj is interpreted as fixed if there is only one distinct level,
other than 0, among the fij , i = 1, . . . , n. This level should be coded 1, otherwise
the effect is interpreted as random.

– A value of 0 means no effect.

– To include a fixed factor with more than one level, other than 0, define one factor
per level.

– An intercept is specified by a column of 1’s in the data file.

In terms of the matrix formulation (1) of the LME model, the coding of the fixed effects
corresponds to the columns of the design matrix X . See also Example 2 in Section 5.2
for a discussion of identifiability of the fixed effects parameters of the model.

• Random effects:

– The realisations of a random factor should be represented by integer indices dif-
ferent from 0. The indices should be coded successively by 1,2,3,. . . , such that if
factor j is random, maxi(fij) in the input file (19) equals the number of distinct
realisations.

– The effects of a factor are interpreted as random if the number of distinct realisa-
tions, with code other than 0, is greater than 1, or if there is only one realisation,
but with code different from 1.

– Preceding the index of the realisation with a minus sign indicates that the effect of
the realisation is equal to the negative of the corresponding positive realisation.
For example, fij = −2 means that for observation i, the effect of Fj is the negative
of that of realisation number 2. The negative and positive of a realisation are
counted as one distinct realisation.

– A value of 0 means no effect.

Examples of input data files are given in Section 5.
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4.3 Sum-to-zero constraints for random effects

Even though in principle all parameters should be identifiable taking a fully Bayesian ap-
proach, near non-identifiability might in practice lead to slow convergence of the Gibbs sam-
pler. Therefore, the random effects can be constrained to sum to zero by invoking the com-
mand line option -c as described in Section 4.1. This will constrain the random effects for
each random factor to sum to zero. The constraints are treated correctly in the program, that
is, all random effects corresponding to a random factor are sampled from their joint density
conditionally on the sum-to-zero constraint.

For fixed effects, non-identifiability can be handled by re-parameterisation, see Section 5.2
for an example.

4.4 Program output

At each iteration, the current values of the unknown parameters are printed to standard
output, which can be directed to an output file. Optionally, thinning can be invoked, such
that for example only every 10th or 100th iteration is printed. Each row of the output is of
the format

iter q X
(q)
1 X

(q)
2 · · · X

(q)
m τ (q)

where

q = iteration index,

X
(q)
j =

{
β

(q)
j (current update of effect j), if effect j is fixed

τ
(q)
j (current update of the precision of effect j), if effect j is random,

τ (q) = current update of the residual precision (1/(σ2)(q)).

Invoking the options -e and -m, the traces of the random effects corresponding to (a subset
of) the random factors and of the corresponding mean values over the random effects for
each factor can be dumped to output files, as described in Section 4.1.

To study the performance of the Gibbs sampler and compute posterior estimates of
the parameters, the program output has to be post-processed. A useful tool for conver-
gence assessment and computation of summary statistics is the R/S-Plus package CODA
(Best, Cowles and Vines, 1995), purpose built for processing output from the BUGS program
(Spiegelhalter, Thomas and Gilks, 1996), but also suitable for processing Gibbs sampling
output from other programs.

5 Examples

5.1 Example 1

In our first example, we consider a special case of model (13) with J = 0, K = 4 and
N = 2, that is, there are no fixed effects other than an overall mean, one set of random effects
associated with four realisations from the levels of a random factor and two replications for
each realisation. Thus, the model can be written

ykr = µ + bk + εkr, (20)
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for k = 1, 2, 3, 4 and r = 1, 2. For this model, the input data file input-ex1.dat is

8 2
1 1 -1.853988
1 1 -1.129544
1 2 0.9037422
1 2 -1.124410
1 3 -0.7398462
1 3 -0.6665096
1 4 -0.3317344
1 4 2.607377

where the rightmost column is simulated data imitating log-ratios ykr, k = 1, 2, 3, 4, r = 1, 2
of intensities from a microarray experiment. The first column represents the overall mean
and the second column represents the four random effects, coded 1,2,3 and 4. We run the the
Gibbs sampler using default settings by the command

glme -d input-ex1.dat

and obtain the following first 10 lines of output

iter 1 -0.6894353 1.1094635 0.92486334
iter 2 0.12125956 0.19953019 0.5604369
iter 3 -0.16457997 0.060155064 0.9493721
iter 4 -0.12441083 0.2435661 0.4064641
iter 5 -1.0425286 0.50105595 0.84835486
iter 6 -1.6630148 0.63185392 0.20803519
iter 7 -1.5694546 2.8588174 0.4980522
iter 8 -0.29239713 0.77783937 0.06623933
iter 9 1.0584113 0.4469442 0.62540024
iter 10 0.61644837 3.1687189 0.81821507

Here, the second column is the iteration index, and then follow the sampled values of the
overall mean µ, the precision τR = 1/σ2

R of the random effects and the residual precision
τ = 1/σ2.

To illustrate the save and restore options, we first run two iterations of the Gibbs sampler
by

glme -d input-ex1.dat -s 123 -n 2 -S ex1-save.dat

using seed 123 and saving the final state of the program in ex1-save.dat. The output
from this calling sequence is

iter 1 -0.37728822 5.7518639 0.64558984
iter 2 -0.41119993 5.3394122 0.63696234

We then run the program invoking the -R option to start the program in the final state of the
first run. Two additional iterations of the Gibbs sampler are generated by

glme -R ex1-save.dat -n 4
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Observe that the number of iterations, specified by the -n option, is four, and thus includes
the two iterations from the run that is restored. The output from this second run is

iter 3 -1.3770948 0.95671158 0.51358401
iter 4 0.1281061 0.79487455 0.75978085

The results are identical to the ones obtained by running four iterations invoking the pro-
gram once by

glme -d input-ex1.dat -s 123 -n 4

The output from this run is

iter 1 -0.37728822 5.7518639 0.64558984
iter 2 -0.41119993 5.3394122 0.63696234
iter 3 -1.3770948 0.95671158 0.51358401
iter 4 0.1281061 0.79487455 0.75978085

5.2 Example 2

Consider a model of the form (13) with J = 2, K = 4 and N = 2. As in example 1, we
use simulated data imitating log-ratios of intensities. Using non-informative priors on the
overall mean µ and the fixed effects parameters β1 and β2, the model is over-parameterised.
We see that the sums µ + βk, k = 1, 2 do not change if the same amount is added to µ and
subtracted from β1 and β2. The problem can be solved by re-parameterising the model, and
we illustrate two alternative re-parameterisations:

1. Replace (µ, β1, β2) by (µ′, α), where µ′ = µ + β1 and α = β2 − β1.

2. Replace (µ, β1, β2) by (α1, α2), where α1 = µ + β1 and α2 = µ + β2.

The parameters of the two models are related by µ′ = α1 and µ′ + α = α2. The input data
files for Model 1 (left) and Model 2 (right) are

1 0 1 -0.758368 1 0 1 -0.758368
1 1 1 1.128266 0 1 1 1.128266
1 0 1 0.01157952 1 0 1 0.01157952
1 1 1 0.9121233 0 1 1 0.9121233
1 0 2 -1.026323 1 0 2 -1.026323
1 1 2 -1.699259 0 1 2 -1.699259
1 0 2 -1.197100 1 0 2 -1.197100
1 1 2 -1.322309 0 1 2 -1.322309
1 0 3 -0.1225574 1 0 3 -0.1225574
1 1 3 1.449209 0 1 3 1.449209
1 0 3 -0.4012761 1 0 3 -0.4012761
1 1 3 1.846157 0 1 3 1.846157
1 0 4 -1.825652 1 0 4 -1.825652
1 1 4 -0.6654628 0 1 4 -0.6654628
1 0 4 -0.794649 1 0 4 -0.794649
1 1 4 -0.558287 0 1 4 -0.558287
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We run the program for 10000 iterations by the command

glme -d input-ex2.dat -n 10000 -a 0.1 -b 0.1 -c > output-ex2.txt

using a Gamma(0.1, 0.1)-prior for τR and constraining the random effects to sum to zero. In
the two leftmost columns of Figure 1 we show trace plots of the Gibbs sampling updates for
the parameters µ′, µ′ + α, τR = 1/σ2

R and τ = 1/σ2 for Model 1 and α1, α2, τR and τ for
Model 2. The plots indicate that the algorithm converges fast, but the precision estimates for
this example with only 4 realisations of the random effect and only 2 replicates, are highly
variable. From Figure 1 and Table 1 we observe that the two parameterisations lead to similar
estimates, as expected.

Model 1 µ̂′ = −0.771 µ̂′ + α = 0.139 α̂ = 0.908 τ̂R = 1.138 τ̂ = 2.50

Model 2 α̂1 = −0.766 α̂2 = 0.139 τ̂R = 1.004 τ̂ = 2.45

True values α1 = −0.5 α2 = 0.5 α = 1.0 τR = 1.0 τ = 4.0

Table 1: Estimated posterior medians for Example 2.
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Figure 1: Trace plots for Model 1 (left) and Model 2 (middle), and density plots (right) for
Model 1 (full lines) and Model 2 (dotted lines) for Example 2. The trace plots display every
10th of 10000 iterations.
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